×
19.07.2019
219.017.b636

СПОСОБ КАТАЛИТИЧЕСКОГО ОКИСЛЕНИЯ Н-ГЕКСАНА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002694829
Дата охранного документа
17.07.2019
Краткое описание РИД Свернуть Развернуть
Аннотация: Предложен способ окисления н-гексана кислородом воздуха в оксопроизводные гексана и органические кислоты фракции С1-С4 в присутствии твердофазного катализатора. В качестве катализатора используют один из металлозамещенных алюмофосфатов МnАРО-5, СоАРО-5, МnАРО-18, СоАРО-18 или в качестве катализатора используют один из смешанных оксидов кобальта и марганца CoMnO или CoMnO, нанесенных на подложку силикагеля SiO или на подложку мезопористого молекулярного сита SBA-15, при этом окисление проводят в течение 24 часов при температуре 150°С, давлении 70 атм и потоке воздуха 60 мл/мин. Технический результат – разработка каталитического способа окисления н-гексана кислородом воздуха, которая обеспечивает высокую селективность по кислотам при мольном выходе продуктов окисления гексана 20%. 14 пр., 1 табл.
Реферат Свернуть Развернуть

Настоящее изобретение относится к каталитическому способу окисления н-гексана кислородом воздуха до кислородосодержащих производных н-гексана и органических кислот фракции С1-С4.

Н-гексан является компонентом широкой фракции легких углеводородов образующейся при нефтедобыче. В последнее время возрастает интерес к окислению дешевых алканов в оксопроизводные, которые в дальнейшем могут использоваться, в процессах нефтехимии и нефтепереработки.

Например, реализован в промышленности процесс окисления бутана в уксусную кислоту в присутствии ионов кобальта, который описан в патентах (US 4,032,570 28.06.1977, US 4,337,356 29.06.1982, US 6,057,475 02.05.2000, US 3,923,882 02.12.1975) Окисление н-бутана проводят воздухом в растворе уксусной кислоты при 160-190°С и 6 МПа без катализатора, либо в присутствии солей кобальта или марганца.

В патенте (US 4,332,743 01.06.1982) описывают жидкофазное окисление С48 парафинов кислородом в C13 кислоты. Для увеличения селективности по уксусной кислоте к катализатору (ацетат марганца или другая соль переходного металла) добавляют фосфорную кислоту или фосфаты металлов I и II групп в количестве 0,1-1000 ppm в расчете на элементарный фосфор. Реакцию проводят при 160-200°С и 3,0-7,0 МПа.

Однако использование гомогенных катализаторов приводит к трудностям отделения их из реакционной смеси.

Известен способ окисления С6-С28 алканов до соответствующих спиртов в присутствии микроорганизмов (US 4,473,643, 25.09.1984.)

Однако ферментативный катализ характеризуется невозобновляемостью используемых катализаторов и многоступенчатостью процесса синтеза.

Известны некаталитические способы окисления алканов кислородом воздуха с участием уксусной кислоты (US 3,993,676 23.11.1976). В качестве алканов предпочтительно использование С14-С20 фракции, продуктами окисления являются кислоты с меньшим количеством С-атомов.

Известен способ окисления алканов пероксидом водорода, катализируемого комплексами марганца, нанесенными на различные подложки, в температурном интервале -10-50°С (US 9,024,076 05.05.2015). В качестве продуктов образуются спирты, кетоны и алкилгидроперикиси.

Однако данный способ не предусматривает возможности использования воздуха в качестве окислителя.

Описан способ окисления гексана до гексановой кислоты с использованием в качестве катализаторов металлозамещенных алюмофосфатов (J.M. Thomas. On the nature of isolated active sites in open-structure catalysts for the aerial oxidation of alkanes // Topics in Catalysis., 2001, v. 15 (2-4), p. 85-91). Процесс проводят при 100°C и 30 атм О2, однако конверсия гексана не превышает 8%.

Задачей настоящего изобретения является разработка каталитического способа окисления н-гексана кислородом воздуха, обеспечивающего высокую селективность по кислотам при мольном выходе продуктов окисления гексана от 20%.

Поставленная задача решается описываемым способом окисления н-гексана. Способ заключается в том, что осуществляют каталитическое окисление н-гексана, в качестве катализатора в процессе используют твердофазные катализаторы из ряда: кристаллические металлозамещенные алюмофосфаты со структурой цеолитов AEI и AFI, смешанные оксиды d-элементов VII-IX групп IV периода, нанесенные на подложку силикагеля или мезопористого молекулярного сита SBA-15. Окисление проводят в при 120-150°С, давлении 35-75 атм, потоке воздуха 30-60 мл/мин.

Способ предусматривает, что используемые катализаторы могут содержать кремнеоксидное или алюмооксидное связующее.

Согласно способу, окисление осуществляют в реакторе автоклавного типа при перемешивании с постоянной подачей воздуха.

Техническим результатом осуществления способа в объеме независимого пункта формулы является высокая селективность по кислотам при высоком мольном выходе продуктов от 20%.

В качестве гетерогенных катализаторов в заявленном процессе были опробованы кристаллические металлозамещенные алюмофосфаты со структурой цеолитов AEI и AFI, смешанные оксиды d-элементов VII-IX групп IV периода, нанесенные на подложку силикагеля или мезопористого молекулярного сита SBA-15.

При всех вышеуказанных катализаторах достигался заявленный технический результат.

Преимуществом предложенного способа является также возможность регулирования состава продуктов синтеза за счет выбора того или иного катализатора из ряда заявленных.

Возможность осуществления способа с достижением заявленного технического результата подтверждена данными, приведенными в таблице 1. В таблицу включены наиболее перспективные из опробованных катализаторов.

Предлагаемый способ окисления гексана кислородом воздуха в общем виде осуществляют следующим образом.

Н-гексан и гетерогенный катализатор загружают в реактор автоклавного типа с постоянным перемешиванием и с постоянной подачей воздуха. После проведения окисления в реактор заливают растворитель для смешения двух фаз продуктов. Компонентный состав веществ определяют хроматографическим методом.

Нижеследующие примеры иллюстрируют осуществление изобретения и демонстрируют достижение технического результата.

Пример 1.

В качестве катализатора используют металлозамещенный алюмофосфат MnАРО-5. Навеску катализатора 2 мг и 20 г н-гексана помещают в автоклавный реактор с постоянным перемешиванием и постоянной подачей воздуха. В реактор подают воздух со скоростью 30 мл/мин до давления 35 атм и нагревают до 150°С. Реакцию проводят в течение 24-х часов. После завершения эксперимента реактор охлаждают до комнатной температуры, вскрывают, добавляют н-бутанол в качестве растворителя, чтобы смешать полярный и неполярный слой, и н-нонан в качестве внешнего стандарта. Хроматографический анализ реакционной смеси показал образование уксусной, пропановой, бутановой кислот, а также гексанона. Мольный выход продуктов реакции составляет 24%. Результаты представлены в таблице 1.

Пример 2.

Процесс ведут как в примере 1, отличие состоит в том, что температура эксперимента составляет 140°С. Показатели процесса представлены в таблице 1.

Пример 3 (сравнительный).

Процесс в условиях примера 1, отличие состоит в том, что температура эксперимента составляет 120°С. Показатели процесса представлены в таблице 1. Для данного примера характерно меньшая степень конверсии за счет большего индукционного периода реакции.

Пример 4.

Процесс ведут в условиях примера 1, отличие состоит в том, что навеска катализатора составляет 10 мг. Показатели процесса представлены в таблице 1.

Пример 5.

Процесс ведут как в примере 4, отличие состоит в том, что давление в системе составляет 70 атм, а скорость потока воздуха составляет 60 мл/мин. Показатели процесса представлены в таблице 1.

Пример 6.

Процесс ведут как в примере 5, отличие состоит в том, что время эксперимента составляет 48 часов. Показатели процесса представлены в таблице 1.

Анализ результатов, полученных в примерах 1-6, показывает возможность достижения требований технического задания в широком диапазоне условий, при этом основными параметрами, оказывающими влияние на показатели процесса, являются температура, поток воздуха и время проведения эксперимента.

Пример 7.

Процесс ведут как в примере 3, отличие состоит в том, что в реакционную смесь добавляют инициатор - третбутилгидропероксид (ТБГП) (0.2 г). Показатели процесса представлены в таблице 1.

Анализ результатов полученных в примерах 3 (сравнительный) и 7 демонстрирует влияние инициирующей добавки на показатели процесса: введение инициирующей добавки приводит к увеличению мольного выхода продуктов на 7%.

Далее, в примерах, показана возможность осуществления процесса с некоторыми катализаторами из ряда заявленных при оптимальных условиях проведения процесса.

Пример 8.

Процесс ведут как в примере 5, отличие состоит в том, что в качестве катализатора используют металлозамещенный алюмофосфат СоАРО-5, навеска катализатора составляет 10 мг. Показатели процесса представлены в таблице 1.

Пример 9.

Процесс ведут как в примере 5, отличие состоит в том, что в качестве катализатора используют металлозамещенный алюмофосфат МпАРО-18, навеска катализатора составляет 10 мг. Показатели процесса представлены в таблице 1.

Пример 10.

Процесс ведут как в примере 5, отличие состоит в том, что в качестве катализатора используют металлозамещенный алюмофосфат СоАРО-18, навеска катализатора составляет 10 мг. Показатели процесса представлены в таблице 1.

Пример 11.

Процесс ведут как в примере 5, отличие состоит в том, что в качестве катализатора используют нанесенный на подложку смешанный оксид кобальта и марганца CoMn2O4/SiO2, навеска катализатора составляет 10 мг. Показатели процесса представлены в таблице 1.

Пример 12.

Процесс ведут как в примере 5, отличие состоит в том, что в качестве катализатора используют нанесенный на подложку смешанный оксид кобальта и марганца Co2MnO4/SiO2, навеска катализатора составляет 10 мг. Показатели процесса представлены в таблице 1.

Пример 13.

Процесс ведут как в примере 5, отличие состоит в том, что в качестве катализатора используют нанесенный на подложку смешанный оксид кобальта и марганца CoMn2O4/SBA-15, навеска катализатора составляет 10 мг. Показатели процесса представлены в таблице 1.

Пример 14.

Процесс ведут как в примере 5, отличие состоит в том, что в качестве катализатора используют нанесенный на подложку смешанный оксид кобальта и марганца Co2MnO4/SBA-15, навеска катализатора составляет 10 мг. Показатели процесса представлены в таблице 1.

Таким образом, примеры 8-14 иллюстрируют возможность окисления н-гексана кислородом воздуха на заявленных катализаторах с высокой селективностью в кислоты при мольном выходе продуктов выше 20%.

Таким образом, все представленные примеры указывают на то, что осуществление способа в присутствии заявленных твердофазных катализаторов, позволяет достигнуть высоких селективностей образования кислот фракции С1-С4 при мольном выходе продуктов окисления н-гексана кислородом воздуха более 20%.

Способ окисления н-гексана кислородом воздуха в оксопроизводные гексана и органические кислоты фракции С1-С4 в присутствии твердофазного катализатора, отличающийся тем, что в качестве катализатора используют один из металлозамещенных алюмофосфатов МnАРО-5, СоАРО-5, МnАРО-18, СоАРО-18 или в качестве катализатора используют один из смешанных оксидов кобальта и марганца CoMnO или CoMnO, нанесенных на подложку силикагеля SiO или на подложку мезопористого молекулярного сита SBA-15, при этом окисление проводят в течение 24 часов при температуре 150°С, давлении 70 атм и потоке воздуха 60 мл/мин.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 27.
10.01.2013
№216.012.19f7

Ячейка для осуществления спектральных измерений методом спектроскопии ядерного магнитного резонанса при вращении образца вещества под магическим углом

Использование: для осуществления спектральных измерений методом спектроскопии ядерного магнитного резонанса при вращении образца вещества под магическим углом. Сущность: ячейка выполнена в виде двух цилиндрических стаканов с герметично закрывающимися крышками, установленных один в другом без...
Тип: Изобретение
Номер охранного документа: 0002472139
Дата охранного документа: 10.01.2013
20.02.2013
№216.012.26de

Способ скелетной изомеризации н-бутенов в изобутилен

Изобретение относится к способу скелетной изомеризации н-бутенов в изобутилен в газовой среде. Способ характеризуется тем, что процесс проводят в присутствии катализатора с микро-мезопористой структурой, характеризующейся долей микропор от 0,10 до 0,90 и долей мезопор от 0,90 до 0,10 при общем...
Тип: Изобретение
Номер охранного документа: 0002475470
Дата охранного документа: 20.02.2013
20.06.2013
№216.012.4b74

Способ повышения времени стабильной работы катализатора в реакции гидроалкилирования бензола ацетоном с получением кумола и способ получения кумола гидроалкилированием бензола ацетоном

Изобретение относится к каталитическим процессам получения кумола. Описан способ повышения времени стабильной работы катализатора, содержащего гидрирующий и алкилирующий компоненты, в реакции получения кумола гидроалкилированием бензола ацетоном, включающим послойное размещение гидрирующего и...
Тип: Изобретение
Номер охранного документа: 0002484898
Дата охранного документа: 20.06.2013
27.01.2014
№216.012.9ae2

Способ получения катализатора и способ синтеза олефинов c-c в присутствии катализатора, полученного этим способом

Изобретение относится к нефтеперерабатывающей промышленности и, более конкретно к катализатору и к способу синтеза олефинов С2-С4. Способ получения катализатора включает модифицирование катализатора на основе силикоалюмофосфатов методом пропитки по влагоемкости из раствора источника кремния или...
Тип: Изобретение
Номер охранного документа: 0002505356
Дата охранного документа: 27.01.2014
27.05.2014
№216.012.c994

Способ диагностики нарушений вегетативной регуляции сердечного ритма у детей с гастроэзофагеальной рефлюксной болезнью

Изобретение относится к медицине, а именно к педиатрии. Проводят суточное мониторирование внутрипищеводного pH и холтеровское мониторирование. Вариабельность сердечного ритма оценивают в совокупности с анализом тренда частоты сердечных сокращений в период ночного сна. При обнаружении более 5...
Тип: Изобретение
Номер охранного документа: 0002517370
Дата охранного документа: 27.05.2014
20.07.2014
№216.012.ddd6

Способ каталитического пиролиза хлористого метила

Изобретение относится к способу каталитического пиролиза хлористого метила в процессе получения низших олефинов C-C, преимущественно этилена и пропилена, в присутствии силикоалюмофосфатного катализатора типа SAPO. Способ характеризуется тем, что пиролиз хлористого метила проводят на...
Тип: Изобретение
Номер охранного документа: 0002522576
Дата охранного документа: 20.07.2014
27.10.2014
№216.013.025f

Способ получения изопрена

Изобретение относится к способу получения изопрена, путем взаимодействия компонентов сырья, содержащего формальдегид, изобутилен, производные изобутилена и, предшественники изопрена, в присутствии кислого твердофазного катализатора, содержащего фосфат ниобия с последующим выделением целевого...
Тип: Изобретение
Номер охранного документа: 0002532005
Дата охранного документа: 27.10.2014
20.01.2016
№216.013.a3bf

Катализатор гидрообессеривания, способ его приготовления и процесс глубокой гидроочистки углеводородного сырья

Изобретение относится к катализатору гидрообессеривания углеводородного сырья, состоящему из гетерополисоединения, содержащего как минимум один из следующих гетерополианионов [CoMoOH], [Co(OH)MoO], [Ni(OH)MoO], [NiMoOH], [PMoO], [РМоО], [SiMoO], [Co(OH)WO], [PWO], [SiWO], [PMoWO] (где n=1-11),...
Тип: Изобретение
Номер охранного документа: 0002573561
Дата охранного документа: 20.01.2016
10.02.2016
№216.014.c2cb

Способ получения метилэтилкетона и бутадиена-1,3

Изобретение относится к синтезу метилэтилкетона и бутадиена-1,3 в одном процессе. Метилэтилкетон используется в качестве растворителя различных лакокрасочных материалов, клеев, а также для депарафинизации смазочных масел и обезмасливания парафинов. Бутадиен-1,3 является одним из основных...
Тип: Изобретение
Номер охранного документа: 0002574060
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c442

Способ получения носителя на основе активного оксида алюминия для катализаторов гидроочистки

Изобретение относится к способу получения носителя на основе активного оксида алюминия для катализаторов гидроочистки. Данный способ включает осаждение гидроксида алюминия из раствора алюмината натрия азотной кислотой, его стабилизацию, обработку кислотой, формовку, сушку и прокаливание. При...
Тип: Изобретение
Номер охранного документа: 0002574583
Дата охранного документа: 10.02.2016
+ добавить свой РИД