×
19.07.2019
219.017.b611

Результат интеллектуальной деятельности: Способ контроля содержания глинозема при электролизе криолит-глиноземного расплава

Вид РИД

Изобретение

Аннотация: Изобретение относится к получению алюминия электролизом криолит-глиноземного расплава, в частности к способу контроля содержания глинозема при электролизе криолит-глиноземного расплава. Способ включает определение эмпирической линейной зависимости концентрации глинозема в криолит-глиноземном расплаве от анодного перенапряжения, которую корректируют при помощи системы автоматической подачи глинозема в электролизер, настроенной на изменение анодного перенапряжения, измеряемого с помощью газового электрода из смеси CO и CO. Обеспечивается возможность быстро и точно определить и проконтролировать концентрацию глинозема в криолит-глиноземном расплаве за счет стабильности, точности и надежности измерения величины анодного перенапряжения. 2 ил.

Изобретение относится к металлургии цветных металлов, в частности, к получению алюминия электролизом криолит-глиноземного расплава.

Алюминий преимущественно получают путем электролитического разложения глинозема (Al2O3), растворенного в криолит-глиноземном расплаве при температуре 950-1000 ºС с использованием углеродных анодов [1]. Основными недостатками способа являются:

- высокие энергозатраты, из которых более половины тратится на разогрев электролизера с криолит-глиноземным расплавом, а также окружающего пространства;

- высокий расход углеродных анодов по причине химического и электрохимического окисления, приводящий к значительным объемам выделяющихся парниковых, а также отравляющих газов.

В качестве одного из способов снижения энергетических потерь при производстве алюминия является повышение мощности электролизеров. Если в настоящее время алюминий производится в электролизерах на силу тока от 150 до 350 кА, то в научно-технической литературе присутствуют работы по математическому моделированию электролизеров на силу тока до 750 кА. Однако большая токовая нагрузка требует для достижения стабильности электролитического получения алюминия более точного и оперативного управления процессом.

Минимизация энергозатрат и расхода углеродных анодов во многом определяется компонентным составом криолит-глиноземного расплава. В частности, при заданном технологическим регламентом и легко поддерживаемом соотношении фторидов натрия и алюминия, основным параметром становится содержание глинозема в криолит-глиноземном расплаве электролизера. Оно определяет величины электропроводности расплава и анодного перенапряжения, которые являются переменными составляющими падения напряжения в электролизере. Преимущественно при электролизе криолит-глиноземных расплавов принято поддерживать содержание глинозема в диапазоне от 2 до 4 мас. %. Содержание в данном диапазоне позволяет вести электролиз при оптимальном соотношении электропроводности и анодного перенапряжения.

В рамках промышленного использования известен способ контроля процесса электролитического получения алюминия, включающий периодическую загрузку глинозема в криолит-глиноземный расплав при электролизе с помощью системы автоматической подачи глинозема (далее АПГ), настроенной на изменение напряжения между анодом и катодом электролизера, либо на определенную скорость подачи глинозема в зависимости от силы тока на электролизере [2, 3]. Различные вариации такого способа достаточно хорошо отработаны на промышленных предприятиях, однако заданный алгоритм работы АПГ не позволяет разделить составляющие падения напряжения на электролизере и, соответственно, не позволяет оптимизировать скорость и моменты подачи глинозема в криолит-глиноземный расплав. Это приводит к снижению стабильности и энергоэффективности процесса электролитического получения алюминия за счет большей вероятности зашламления электролизера, снижения катодного выхода по току, необходимости проведения дополнительных мероприятий по удалению избыточного глинозема и снижению срока эксплуатации электролизеров.

Известны способы управления и контроля процесса электролитического получения алюминия, включающие периодическую загрузку глинозема в криолит-глиноземный расплав при электролизе и фиксацию изменения напряжения и тока в разных участках электрической цепи между анодом и катодом электролизера. По мнению авторов, последующая математическая обработка позволяет оптимизировать скорость подачи глинозема, стабилизировать процесс электролиза, повысить катодный выход по току и снизить энергозатраты в целом [4, 5]. Однако способ представляется сложным в практическом исполнении и мало отличающимся от выше перечисленных по достигаемому результату, поскольку измерения аналогичным образом сводятся к определению лишь омического падения напряжения в расплаве при электролизе.

Известен способ контроля процесса электролитического получения алюминия, включающий определение концентрации глинозема в криолит-глиноземном расплаве путем мгновенного измерения токовой характеристики анода - предельной анодной плотности тока непосредственно в расплаве [6] при помощи электрохимического устройства – потенциодинамического датчика с графитовыми анодом и катодом. Концентрация глинозема достаточно точно определяется по предварительно полученной эмпирической линейной зависимости от измеряемой величины предельной анодной плотности тока. Следовательно, процесс определения и корректировки концентрации глинозема в криолит-глиноземном расплаве может быть автоматизирован при помощи системы АПГ, настроенной при помощи соответствующего программного обеспечения на изменение предельной анодной плотности тока. Реагирование системы АПГ непосредственно на концентрацию глинозема является существенным преимуществом над вышеперечисленными известными способами. Недостатками способа являются относительно сложная конструкция используемого электрохимического устройства, состоящего из плотно притертых друг к другу стержней и трубок из графита, нитрида бора и стали, а также короткий срок корректной работы устройства из-за быстрого изменения поверхности графитового рабочего электрода при его электрохимическом окислении в моменты измерений.

Наиболее близким к заявляемому является способ контроля содержания глинозема при электролитическом получении алюминия, также включающий измерение токовой характеристики анода, определение из измеренной величины концентрации глинозема в криолит-глиноземном расплаве и ее корректировку при помощи системы АПГ. Токовой характеристикой в известном способе является потенциал анода под током, а его измерение проводят относительно электрохимического устройства – алюминиевого электрода с вольфрамовым потенциалосъемником в чехле из корунда или нитрида бора [7]. Аналогично предыдущему способу концентрация глинозема определяется по предварительно полученной эмпирической линейной зависимости от измеряемой величины потенциала анода, и корректируется при помощи системы АПГ, настроенной на изменение этой величины. Недостатками способа являются относительно длительное установление потенциала используемого алюминиевого электрода в корундовом чехле. Это приводит к дополнительным погрешностям измерений потенциала анода и последующего определения реальной концентрации глинозема в расплаве. Помимо этого недостатком является использование в конструкции алюминиевого электрода вольфрамового потенциалосъемника, который взаимодействует с алюминием. Это приводит к возникновению дополнительных погрешностей измерения потенциала анода, а также к снижению срока корректной работы электрода.

Общими недостатками известных способов являются относительно невысокая точность определения концентрации глинозема в криолит-глиноземном расплаве и наличие в конструкциях электрохимических устройствах потенциально нежелательных примесей: железо, бор, вольфрам. При разрушении данных устройств в криолит-глиноземном расплаве примеси будут переходить в катодный алюминий. Как было отмечено выше, неточность определения концентрации глинозема в криолит-глиноземном расплаве и несвоевременность ее корректировки будут приводить к снижению стабильности и энергоэффективности процесса, зашламлению электролизера, снижению катодного выхода по току и необходимости проведения дополнительных мероприятий по удалению избыточного глинозема и снижению срока эксплуатации электролизеров.

Задачей изобретения является повышение стабильности и энергоэффективности процесса электролитического получения алюминия, а также повышение надежности проведения измерений.

Для этого предложен способ контроля содержания глинозема при электролизе криолит-глиноземного расплава, который, как и прототип, включает определение эмпирической линейной зависимости концентрации глинозема в криолит-глиноземном расплаве от токовой характеристики анода с последующей корректировкой концентрации глинозема в криолит-глиноземном расплаве при помощи системы автоматической подачи глинозема в электролизер, настроенной на изменение этой характеристики, при этом для измерения этой характеристики используют электрохимическое устройство. Заявленный способ отличается тем, что определяют эмпирическую линейную зависимость концентрации глинозема в криолит-глиноземном расплаве от анодного перенапряжения, которую корректируют при помощи системы автоматической подачи глинозема в электролизер, настроенной на изменение анодного перенапряжения, измеряемого с помощью газового электрода из смеси CO и CO2.

Разность потенциалов между углеродным анодом под током и газовым электродом из смеси CO и CO2 представляет собой токовую характеристику анода, на которую оказывают влияние лишь анодная плотность тока и концентрация глинозема в расплаве. Стабильность, точность и надежность измерения величины анодного перенапряжения обуславливается тем, что используемое электрохимическое устройство не содержит в своем составе нежелательных примесей и характеризуется практически мгновенным установлением значением потенциала, относительно которого проводят измерение.

Технический результат, достигаемый заявленным способом, заключается в быстром и точном определении и контроле концентрации глинозема в криолит-глиноземном за счет стабильности, точности и надежности измерения величины анодного перенапряжения.

Заявляемый способ иллюстрируется рисунками, где на фиг.1 приведена зависимость анодного перенапряжения на стеклоуглероде от концентрации глинозема в криолит-глиноземном расплаве при температуре 950 ºС и анодной плотности тока 0.5 и 1.0 А/см2; на фиг.2 приведена зависимость анодного перенапряжения на электродном графите от концентрации глинозема в криолит-глиноземном расплаве при температуре 950 ºС и анодной плотности тока 0.5 и 1.0 А/см2.

Для иллюстрации была проведена серия испытаний по определению анодного перенапряжения на анодах из разных углеродных материалов в лабораторных установках, имитирующих промышленные электролизеры для электролитического получения алюминия. Лабораторные электролизеры представляли собой графитовые тигли вместимостью до 1 кг алюминия и криолит-глиноземного расплава. Для защиты от окисления тигли размещали в корундовых контейнерах. В тиглях наплавляли алюминий с криолитом, после чего в расплав погружали углеродный анод (стеклоуглерод, электродный графит) и заданное количество глинозема. Температуру криолит-глиноземного расплава поддерживали постоянной при помощи терморегулятора Варта и термопарного модуля USB-ТС01 (National Instruments, США). После растворения вели электролиз при анодной плотности тока от 0.1 до 1.0 А/см2. Токоподвод к жидкометаллическому алюминиевому катоду на дне электролизера осуществляли через дно графитового тигля. Для измерения анодного перенапряжения в расплав погружали углеродный стержень из спектрально-чистого графита, в контакте с которым мгновенно устанавливалась равновесная атмосфера, состоящая из смеси газов CO и CO2. Для поддержания постоянства состава атмосферы над криолит-глиноземным расплавом электролизер закрывали графитовой крышкой. Фиксацию разности потенциалов осуществляли при помощи мультиметра с точностью измерений ± 0.2 мВ.

По результатам измерений были построены градуировочные зависимости анодного перенапряжения от анодной плотности тока и концентрации глинозема в криолит-глиноземном расплаве. Примеры таких зависимостей для разных углеродных материалов приведены на фигурах 1 и 2. Видно, что в интервале от 1 до 6 мас. % глинозема зависимости анодного перенапряжения от концентрации глинозема являются линейными. При снижении концентрации глинозема в расплаве ниже 1 мас. % анодное перенапряжение начинает резко возрастать. Это является сигналом для подачи глинозема автоматической системой подачи глинозема.

Полученные результаты указывают на работоспособность заявленного способа. В рамках промышленного масштаба применение способа представляется следующим. Криолит-глиноземный расплав промышленного электролизера покрыт твердым электролитом или гарнисажем. Для выполнения измерений и подгрузки глинозема в гарнисаже проделывается отверстие при помощи специального устройства. Через отверстие в криолит-глиноземный расплав погружается устройство с углеродным стержнем, и фиксируется разность потенциалов между углеродным анодом под током и углеродным стержнем. Параллельно отбираются пробы расплава для определения реальной концентрации глинозема в расплаве при помощи химического анализа или анализатора LECO. По результатам измерений строится градуировочная зависимость перенапряжения анодного процесса на конкретном материале углеродного анода от концентрации глинозема в криолит-глиноземном расплаве для конкретной токовой нагрузки (анодной плотности тока). В соответствии с полученной зависимостью настраивают программное обеспечение системы автоматической подачи глинозема (АПГ) При достижении анодного перенапряжения величины, соответствующей минимально допустимой концентрации глинозема в криолит-глиноземном расплаве, система АПГ выдает сигнал для подгрузки глинозема.

Таким образом, заявленный способ позволяет быстро и точно определить и проконтролировать концентрацию глинозема в криолит-глиноземном за счет стабильности, точности и надежности измерения величины анодного перенапряжения.

Источники информации:

1. Thonstad J., Fellner P., Haarberg G.M., Hives J., Kvande H., Sterten A. Aluminium Electrolysis. Fundamentals of the Hall-Heroult Process. 3 ed. Dusseldorf, Aluminium-Verlag Marketing & Kommunikation GmbH, 2001, 354 p.

2. US3329592, публ. 04.07.1967.

3. RU2149223, публ. 20.05.2000.

4. RU2148108, публ. 27.04.2000.

5. RU2023058, публ. 15.11.1994.

6. RU2370573, публ. 20.10.2008.

7. Richards N., Gudbrandsen H., Rolseth S., Thonstad J. Characterization of the fluctuation in anode current density and “bubble events” in industrial reduction cells. Light metals, 2003, p.315-322.

Способ контроля содержания глинозема при электролизе криолит-глиноземного расплава, включающий определение эмпирической линейной зависимости концентрации глинозема в криолит-глиноземном расплаве от токовой характеристики анода, которую корректируют при помощи системы автоматической подачи глинозема в электролизер, настроенной на изменение этой характеристики, отличающийся тем, что в качестве токовой характеристики анода используют анодное перенапряжение, измеряемое с помощью газового электрода из смеси CO и CO.
Способ контроля содержания глинозема при электролизе криолит-глиноземного расплава
Способ контроля содержания глинозема при электролизе криолит-глиноземного расплава
Источник поступления информации: Роспатент

Показаны записи 41-50 из 94.
10.05.2016
№216.015.3b48

Материал для кислородного электрода электрохимических устройств

Изобретение относится к электрохимическим устройствам с твердым оксидным электролитом и может быть использовано в качестве кислородного электрода в электрохимических датчиках кислорода, работающих в окислительных средах в интервале температур 700-1000°C. Согласно изобретению, материал содержит...
Тип: Изобретение
Номер охранного документа: 0002583838
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3c7e

Способ измерения влажности воздуха

Изобретение относится к аналитической технике и может быть использовано для измерения влажности воздуха. Способ измерения влажности воздуха заключается в том, что помещают в поток анализируемого воздуха электрохимическую ячейку с полостью, образованной диском из протонпроводящего электролита и...
Тип: Изобретение
Номер охранного документа: 0002583164
Дата охранного документа: 10.05.2016
10.06.2016
№216.015.46b6

Химический способ получения искусственных алмазов

Изобретение относится к неорганическому синтезу искусственных алмазов размером до 150 мкм, которые могут найти промышленное применение в производстве абразивов и алмазных смазок, буровой технике. Синтез алмазов осуществляют в расплавленной металлической матрице при непосредственном...
Тип: Изобретение
Номер охранного документа: 0002586140
Дата охранного документа: 10.06.2016
13.01.2017
№217.015.79b0

Электролитический способ непрерывного получения алюминиевого сплава со скандием

Изобретение относится к области металлургии цветных металлов, в частности к получению сплава алюминия с редкоземельными металлами, и может быть использовано для получения алюминиевого сплава с 0,2-0,4 мас. % скандия в условиях промышленного производства алюминия. Способ электролитического...
Тип: Изобретение
Номер охранного документа: 0002599312
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7a9b

Способ электрохимического получения порошка иридия с удельной поверхностью более 5 м/г

Изобретение относится к электрохимическому получению порошкового иридия с высокой удельной поверхностью, который может быть использован в устройствах катализа горения многокомпонентных топлив при температурах до 2100°С без изменения химического состава и потери формы. Электролиз ведут в...
Тип: Изобретение
Номер охранного документа: 0002600305
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.86ff

Способ электролитического алитирования изделий из низкоуглеродистой стали

Изобретение относится к области гальванотехники и может быть использовано для нанесения защитного покрытия на изделия из низкоуглеродистой стали, которые могут эксплуатироваться при высоких температурах. Способ включает электролиз галогенидного алюминийсодержащего расплава при использовании...
Тип: Изобретение
Номер охранного документа: 0002603744
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.90cc

Способ переработки нитридного отработавшего ядерного топлива в солевых расплавах

Изобретение относится к способам переработки нитридного отработавшего ядерного топлива (ОЯТ). Способ переработки нитридного отработавшего ядерного топлива в солевых расплавах включает катодное восстановление ионов урана, подготовку электролита в аппарате для переработки нитридного...
Тип: Изобретение
Номер охранного документа: 0002603844
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.9b31

Способ получения лигатурного сплава алюминий-бор

Изобретение относится к получению лигатурного сплава на основе алюминия, который может быть использован для очистки алюминия, получаемого электролизом, от переходных элементов. Способ получения лигатурного сплава алюминий-бор включает алюмотермическое восстановление борсодержащего компонента в...
Тип: Изобретение
Номер охранного документа: 0002610182
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.a7dd

Способ обработки проволоки для катализатора, выполненной из металла платиновой группы

Изобретение относится к области электрохимической обработки металлов и может быть использовано при изготовлении катализаторов химических реакций. Способ обработки проволоки для катализатора, выполненной из металла платиновой группы, осуществляют переменным током в водном растворе минеральной...
Тип: Изобретение
Номер охранного документа: 0002611463
Дата охранного документа: 22.02.2017
25.08.2017
№217.015.aa94

Амперометрический способ измерения концентрации диоксида углерода в азоте

Изобретение относится к области газового анализа. Способ измерения содержания углекислого газа в азоте согласно изобретению заключается в том, что в поток анализируемого газа помещают электрохимическую ячейку с полостью, образованной двумя дисками из протонопроводящего твердого электролита...
Тип: Изобретение
Номер охранного документа: 0002611578
Дата охранного документа: 28.02.2017
Показаны записи 41-50 из 58.
02.10.2019
№219.017.cfc0

Способ переработки оксидного ядерного топлива

Изобретение относится к ядерной энергетике и может быть использовано преимущественно в замкнутом ядерном топливном цикле (ЗЯТЦ). Способ включает восстановление компонентов оксидного ядерного топлива при электролизе расплава хлорида лития с добавкой оксида лития в количестве не менее 1 мас. % с...
Тип: Изобретение
Номер охранного документа: 0002700934
Дата охранного документа: 24.09.2019
15.11.2019
№219.017.e214

Электрохимический способ формирования кристаллов оксидных вольфрамовых бронз из нановискеров (варианты)

Изобретение относится к вариантам электрохимического способа формирования кристаллов оксидных вольфрамовых бронз из нановискеров. Один из вариантов включает электролиз поливольфраматного расплава с использованием платинового анода, в котором электроосаждение ведут при 700°C в импульсном...
Тип: Изобретение
Номер охранного документа: 0002706006
Дата охранного документа: 13.11.2019
01.12.2019
№219.017.e966

Способ переработки тепловыделяющих элементов

Изобретение относится к ядерной энергетике. Способ переработки тепловыделяющих элементов с нитридным отработавшим ядерным топливом включает растворение их фрагментов до получения электролитного раствора, содержащего соединения актинидов, пригодного для их выделения. Растворение тепловыделяющих...
Тип: Изобретение
Номер охранного документа: 0002707562
Дата охранного документа: 28.11.2019
18.12.2019
№219.017.ee33

Устройство и способ определения фильтрующих свойств керамических фильтров по расплавленной смеси галогенидов щелочных металлов

Группа изобретений предназначена для определения фильтрующих свойств пористых керамических фильтров в форме цилиндров с боковой фильтрующей поверхностью по расплавленной смеси галогенидов щелочных металлов, например, хлоридов натрия и калия эквимолярного состава с содержанием нерасплавленных...
Тип: Изобретение
Номер охранного документа: 0002709092
Дата охранного документа: 13.12.2019
16.01.2020
№220.017.f560

Электролитический способ получения рениевых пленок

Изобретение относится к области гальванотехники и может быть использовано для изготовления тонких пленок рения, которые могут быть использованы в качестве подслоя для последующего электроосаждения. Электролиз ведут в растворе соляной кислоты с концентрацией 200-350 г/л, содержащем соединения...
Тип: Изобретение
Номер охранного документа: 0002710807
Дата охранного документа: 14.01.2020
18.03.2020
№220.018.0ca0

Устройство и способ определения фильтрующих свойств металлических фильтров по расплавленной смеси галогенидов щелочных металлов

Заявлена группа изобретений, предназначенная для определения фильтрующих свойств, а именно: тонкости (номинальной и абсолютной) фильтрации и производительности (номинального и удельного расхода фильтрата), пористых металлических материалов (фильтров) по расплавленной смеси галогенидов щелочных...
Тип: Изобретение
Номер охранного документа: 0002716793
Дата охранного документа: 16.03.2020
18.03.2020
№220.018.0ccc

Способ нанесения защитного покрытия на катоды электролизера для получения алюминия

Изобретение относится к способу нанесения защитного покрытия на катоды электролизера для получения алюминия из расплавленных электролитов, смачиваемого получаемым алюминием. Способ включает электроосаждение компонентов покрытия на катоды из расплавленного электролита, содержащего добавки,...
Тип: Изобретение
Номер охранного документа: 0002716726
Дата охранного документа: 16.03.2020
18.03.2020
№220.018.0cf5

Электролитический способ получения лигатур алюминия из оксидного сырья

Изобретение относится к способу электролитического получения лигатур алюминия из оксидного сырья. Способ включает электролиз оксидно-фторидного расплава, который ведут с использованием твердого катода при температуре выше 570 °С, а продукты электролиза с включениями компонентов расплава...
Тип: Изобретение
Номер охранного документа: 0002716727
Дата охранного документа: 16.03.2020
04.06.2020
№220.018.2405

Сенсор для измерения кислородосодержания расплава licl-lio-li и атмосферы над расплавом

Изобретение относится к аналитической технике и может быть использовано в технологиях переработки оксидного ядерного топлива преимущественно в замкнутом ядерном топливном цикле. Сенсор содержит пробирку из твердого электролита, эталонный электрод, токосъемник с эталонного электрода, токосъемник...
Тип: Изобретение
Номер охранного документа: 0002722613
Дата охранного документа: 02.06.2020
24.06.2020
№220.018.29ed

Способ переработки нитридного ядерного топлива

Изобретение относится к ядерной энергетике, в частности, к технологии переработки отработавшего нитридного ядерного топлива и может быть использовано преимущественно в замкнутом ядерном топливном цикле (ЗЯТЦ). Способ включает конверсию компонентов нитридного топлива в хлориды при температуре не...
Тип: Изобретение
Номер охранного документа: 0002724117
Дата охранного документа: 22.06.2020
+ добавить свой РИД