×
17.07.2019
219.017.b501

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ТОЛСТОСЛОЙНЫХ ТЕПЛОЗАЩИТНЫХ ПОКРЫТИЙ МЕТОДОМ МИКРОДУГОВОГО ОКСИДИРОВАНИЯ НА ВЫСОКОКРЕМНИСТОМ АЛЮМИНИЕВОМ СПЛАВЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области гальванотехники и может быть использовано для тепловой защиты деталей объектов машиностроения, например поршней и головок блоков цилиндров двигателей внутреннего сгорания. Способ включает установку детали в электролите на токопроводящем держателе, покрытом изоляционным материалом, создание рабочего напряжения между деталью и электролитом, представляющим собой водный раствор едкого калия и жидкого стекла при концентрации каждого вещества 4 г/л, повышение напряжения до возникновения микродугового разряда на поверхности детали, при этом микродуговое оксидирование проводят в течение 1,5-2,0 часов при силе тока I=10-17 А, соотношении анодного и катодного тока 1:1 и напряжении на аноде Ua=250-350 В. Технический результат: повышение толщины оксидного керамического покрытия и, соответственно, его теплозащитных свойств, на высококремнистых заэвтектических алюминиевых сплавах с содержанием кремния более 12%. 1 пр.

Изобретение относится к области электрохимической обработки поверхностей деталей из высококремнистых алюминиевых сплавов методом микродугового оксидирования (МДО) для создания толстослойных теплозащитных покрытий и может быть использовано для тепловой защиты деталей объектов машиностроения, например, поршней и головок блоков цилиндров двигателей внутреннего сгорания.

Известен способ микродугового оксидирования металлов и сплавов для получения декоративных и электроизоляционных покрытий, заключающийся в том, что оксидируемую деталь помещают в ванну-электролизер с перемешиваемым электролитом и подвергают обработке микродуговым оксидированием, перемешивание электролита производят мешалкой-электродом (патент РФ №2251595, МПК C25D 11/02, опубл. 10.05.2005 г). Этот способ при скорости перемешивания электролита 0,8-1 м/с и плотности тока 20 А/дм2 позволяет получить покрытия толщиной 225 мкм за 100 мин.

Недостатком этого способа является необходимость использования специальной мешалки-электрода, при этом скорость вращения мешалки должна быть определенной и подбираться в соответствии с конфигурацией покрываемой детали.

Известен способ получения толстослойных износостойких покрытий методом МДО для пар трения объектов машиностроения с целью увеличения их ресурса с повышенными значениями микротвердости и толщины(патент РФ №2541246, МПК C25D 11/02, опубл. 10.02.2015 г). Этот способ обеспечивае тполучение покрытия с большой толщиной с одновременным снижением трудоемкости и энергоемкости за счет оптимально подобранной концентрации веществ, входящих в состав электролита, и оптимальных параметров процесса МДО. В этом методе, в качестве электролита используют водный раствор едкого калия и жидкого стекла при концентрации каждого вещества 2,5 г/л, процесс микродугового оксидирования ведут в течение 2,5-3,5 часов при силе тока I=4,5÷42 А, соотношении анодного и катодного тока 1:1 и напряжении на аноде Ua=200÷415 В. На алюминиевом сплаве АК12Д при таких режимах удается получить покрытие с микротвердостью Нμ=16 ГПа, и толщиной - 160 мкм.

Недостатком аналога является высокая трудоемкость процесса и невозможность получения толстослойных покрытий на заэвтектических алюминиевых сплавах с содержанием кремния более 12%.

Наиболее близким к заявляемому является способ получения толстослойных защитных покрытий с высокой адгезией на деталях из вентильных металлов или их сплавов в режиме микродугового оксидирования, включающий установку детали в электролите на токопроводящем держателе, покрытом изоляционным материалом, создание рабочего напряжения между деталью и электролитом, повышение напряжения до возникновения микродугового разряда на поверхности детали. Держатель детали снаружи, на границе «воздух - электролит»покрыт электроизоляционным материалом. В одном из вариантов осуществления изобретения используют электролит, содержащий смесь едкого калия и жидкого стекла при концентрации каждого вещества 4 г/л с напряжением 700 В (патент РФ №2228973, МПК C25D 11/02, опубл. 20.05.2004 г).

Недостатком прототипа является высокая энергоемкость получения покрытия большой толщины ввиду необходимости обеспечения высокого напряжения, вплоть до 700 В, что увеличивает энергопотребление.

Задачей изобретения является получение толстослойных теплозащитных покрытий методом МДО для деталей объектов машиностроения с целью увеличения их теплостойкости, а также снижение трудоемкости и энергоемкости за счет оптимально подобранной концентрации веществ, входящих в состав электролита, и оптимальных параметров процесса МДО.

Технический результат - повышение толщины оксидного керамического покрытия и, соответственно, его теплозащитных свойств, на высококремнистых заэвтектических алюминиевых сплавах с содержанием кремния более 12%.

Поставленная задача решается, а технический результат достигается способом получения толстослойных теплозащитных покрытий на высококремнистом сплаве микродуговым оксидированием, по которому устанавливают деталь в электролите на токопроводящем держателе, покрытом изоляционным материалом, создают рабочее напряжение между деталью и электролитом, представляющем собой водный раствор едкого калия и жидкого стекла при концентрации каждого вещества 4 г/л, повышают напряжение до возникновения микродугового разряда на поверхности детали, согласно изобретению, микродуговое оксидирование проводят в течение 1,5-2,0 часов при силе тока I=10÷17 А, соотношении анодного и катодного тока 1:1 и напряжении на аноде Ua=250÷350 В.

Технический результат заявляемого изобретения достигается благодаря следующему. Концентрация едкого калия и жидкого стекла 4 г/л выбрана исходя из результатов проведенных исследований по оптимизации процесса МДО, которые показали, что максимальную толщину и микротвердость МДО-слоя можно получить при указанной концентрации веществ, при длительности процесса 1,5-2 часа, при силе тока I=10÷17 А, соотношении анодного и катодного тока 1:1 и напряжении на аноде Ua=250÷350 В.

Кроме того, выбранные параметры процесса МДО и концентрации веществ, входящих в состав электролита, обеспечивают снижение трудоемкости и энергоемкости получения покрытия.

Осуществление изобретения раскрыто в примере конкретной реализации.

Пример конкретной реализации способа.

Методом МДО было сформировано теплозащитное покрытие на лабораторном образце, изготовленном из заэвтектического алюминиевого сплава AlSi25CuNiMg (содержание кремния 25-26%).

Предлагаемый способ получения толстослойного теплозащитного покрытия реализован с использованием установки МДО, которая состоит из ванны, заполненной электролитом, в которую погружают катод и анод (функцию анода выполняет лабораторный образец из алюминиевого сплава), затем через них пропускают электрический ток.

Электролит состоит из дистиллированной воды с добавлением 4 г/л КОН и 4 г/л Na2SiO3(жидкое стекло). МДО - обработку ведут в течение 1,5-2 часов. Процесс оксидирования протекает при силе тока на аноде и катоде I=10÷17 А. В процессе обработки контролируются следующие параметры процесса:

Ia - сила тока на аноде,

Ik - сила тока на катоде,

Ua - падение напряжения на аноде,

Uk-падение напряжения на катоде,

t - температура электролита.

В процессе обработки эти параметры имели следующие значения:

Ia=10÷17 А

Ik=10÷17 A

Ua=270÷292 B

Uk=50÷105 B

t=25÷48°C.

После обработки образца по заявляемому способу максимальная толщина слоя составила 283 мкм. По сравнению с прототипом, у которого толщина слоя составляет 140 мкм, по заявляемому способу получено покрытие большей толщины и, соответственно, теплостойкости.

Таким образом, предложенное изобретение позволяет получить толстослойное теплозащитное покрытие методом МДО с повышенными значениями толщины, а также снизить энергоемкость за счет оптимально подобранной концентрации веществ, входящих в состав электролита, и оптимальных параметров процесса МДО.

Способ получения толстослойных теплозащитных покрытий на высококремнистом алюминиевом сплаве микродуговым оксидированием, включающий установку детали в электролите на токопроводящем держателе, покрытом изоляционным материалом, создание рабочего напряжения между деталью и электролитом, представляющим собой водный раствор едкого калия и жидкого стекла при концентрации каждого вещества 4 г/л, повышение напряжения до возникновения микродугового разряда на поверхности детали, отличающийся тем, что микродуговое оксидирование проводят в течение 1,5-2,0 часов при силе тока I=10-17 А, соотношении анодного и катодного тока 1:1 и напряжении на аноде Ua=250-350 В.
Источник поступления информации: Роспатент

Показаны записи 71-80 из 146.
27.04.2019
№219.017.3ce5

Система автоматического управления углом тангажа и ограничения угла атаки летательного аппарата

Система автоматического управления углом тангажа и ограничения угла атаки летательного аппарата содержит задатчик угла тангажа, вычислитель автопилота угла тангажа, задатчик максимального угла атаки, два вычислителя автомата ограничения угла атаки, алгебраические селекторы максимального и...
Тип: Изобретение
Номер охранного документа: 0002686378
Дата охранного документа: 25.04.2019
17.05.2019
№219.017.532b

Способ низкотемпературного ионного азотирования титановых сплавов с постоянной прокачкой газовой смеси

Изобретение относится к металлургической промышленности, а именно к химико-термической обработке поверхности изделий из титановых сплавов, и может быть использовано при изготовлении деталей двигателей, работающих в условия износа, в медицине и других отраслях промышленности. Способ...
Тип: Изобретение
Номер охранного документа: 0002687616
Дата охранного документа: 15.05.2019
29.05.2019
№219.017.6395

Способ и устройство монтажа ротора в статор электрической машины

Изобретение относится к области машиностроения, в частности к устройствам, обеспечивающим технологическую сборку электрических машин, позволяющих осуществить установку ротора с постоянными магнитами и с установленными подшипниками в магнитопровод статора. Технический результат - упрощение...
Тип: Изобретение
Номер охранного документа: 0002688186
Дата охранного документа: 21.05.2019
30.05.2019
№219.017.6b8a

Способ получения покрытия на основе интерметаллидов системы ti-al, синтезированного в среде азота

Изобретение относится к способу получения покрытия на основе интерметаллидов системы Ti-Al. Осуществляют синтезирование покрытия в среде азота. Обрабатываемую деталь помещают в вакуумную камеру, предварительно обезжирив поверхность. В камере создают рабочее давление 8⋅10-5⋅10 Па. Проводят...
Тип: Изобретение
Номер охранного документа: 0002689474
Дата охранного документа: 28.05.2019
30.05.2019
№219.017.6b9b

Способ и устройство для запуска газотурбинного двигателя

Изобретение относится к области авиастроения, в частности к устройствам, обеспечивающим запуск газотурбинного двигателя. Предлагается способ запуска газотурбинного двигателя посредством стартера. Вращают собственную турбину магнитоэлектрического генератора, приводя во вращение и сам...
Тип: Изобретение
Номер охранного документа: 0002689499
Дата охранного документа: 28.05.2019
31.05.2019
№219.017.70d6

Время-импульсный универсальный интегрирующий преобразователь напряжения

Изобретение относится к импульсной электронике. Технический результат: преобразование входного сигнала в частоту следования импульсов или во временной интервал выходного импульсного напряжения, а также выполнение операции деления входных сигналов. Для этого предложен время-импульсный...
Тип: Изобретение
Номер охранного документа: 0002689805
Дата охранного документа: 29.05.2019
14.06.2019
№219.017.8315

Смесь для изготовления литейных керамических стержней полых лопаток из жаропрочных сплавов литьем по выплавляемым моделям

Изобретение относится к литейному производству, а именно к смеси для изготовления литейных керамических стержней, преимущественно используемых при литье лопаток газотурбинных двигателей из жаропрочных сплавов. Смесь содержит, мас.%: электрокорунд (AlO) 77,0-85,0, плавленую двуокись кремния...
Тип: Изобретение
Номер охранного документа: 0002691435
Дата охранного документа: 13.06.2019
22.06.2019
№219.017.8e52

Способ определения толщины покрытия в ходе процесса плазменно-электролитического оксидирования

Использование: для определения толщины покрытия в процессе плазменно-электролитического оксидирования. Сущность изобретения заключается в том, что способ определения толщины покрытия при плазменно-электролитическом оксидировании включает измерение остаточного значения напряжения, отличающийся...
Тип: Изобретение
Номер охранного документа: 0002692120
Дата охранного документа: 21.06.2019
23.07.2019
№219.017.b78d

Способ электрополирования лопаток блиска и рабочий контейнер для его реализации

Изобретение относится к электрополированию лопаток блисков и может быть использовано в турбомашиностроении при обработке лопаток блиска компрессоров газотурбинных двигателей, для обеспечения необходимых физико-механических и эксплуатационных свойств деталей турбомашин, а также в качестве...
Тип: Изобретение
Номер охранного документа: 0002694941
Дата охранного документа: 18.07.2019
23.07.2019
№219.017.b78f

Способ нанесения износостойкого покрытия ионно-плазменным методом

Изобретение относится к способу нанесения ионно-плазменного покрытия на инструмент, такой как долбежные резцы, долбежные сверла. Технический результат заключается в повышении износостойкости долбежного инструмента. Обрабатываемый инструмент устанавливают в вакуумную камеру, в которой...
Тип: Изобретение
Номер охранного документа: 0002694857
Дата охранного документа: 18.07.2019
Показаны записи 1-5 из 5.
10.02.2015
№216.013.2641

Способ получения толстослойных износостойких покрытий методом микродугового оксидирования

Изобретение относится к области гальванотехники, а именно к электрохимической обработке поверхностей металлов и сплавов методом микродугового оксидирования (МДО), для создания толстослойных износостойких покрытий и может быть использовано для упрочнения деталей из алюминиевых сплавов объектов...
Тип: Изобретение
Номер охранного документа: 0002541246
Дата охранного документа: 10.02.2015
27.06.2015
№216.013.5b43

Ведомый шкив клиноремённого вариатора

Изобретение относится к машиностроению и может быть использовано в бесступенчатых регулируемых передачах с гибкой связью. Ведомый шкив клиноременного вариатора содержит вал, подвижный и неподвижный в осевом направлении конические диски, имеющие возможность совместного окружного перемещения,...
Тип: Изобретение
Номер охранного документа: 0002554904
Дата охранного документа: 27.06.2015
20.08.2015
№216.013.7262

Стенд для исследования теплового состояния поршней двухтактных двигателей внутреннего сгорания

Изобретение относится к испытательным стендам и может быть использовано преимущественно в ходе научно-исследовательских и опытно-конструкторских работ, а также в период доводки двигателей внутреннего сгорания. Стенд для исследования теплового состояния поршней двигателей внутреннего сгорания...
Тип: Изобретение
Номер охранного документа: 0002560852
Дата охранного документа: 20.08.2015
20.04.2016
№216.015.3327

Устройство наблюдения за распределением тепловых потоков в днище поршня для оценки эффективности теплозащитных покрытий на нем

Изобретение относится к устройствам, предназначенным для теплофизических исследований теплозащитных покрытий на днище поршня и наблюдения за распределением тепловых потоков в днище поршня по скорости повышения температуры его внутренней поверхности при нагреве с внешней стороны, и может быть...
Тип: Изобретение
Номер охранного документа: 0002582153
Дата охранного документа: 20.04.2016
25.08.2017
№217.015.bc8f

Способ тепловой защиты поршня двигателя внутреннего сгорания из алюминиевых сплавов

Изобретение относится к области двигателестроения и может быть использовано в двигателях внутреннего сгорания для создания теплозащитных покрытий на поршнях из алюминиевых сплавов. Способ тепловой защиты поршня двигателя внутреннего сгорания включает нанесение теплоизолирующего покрытия на...
Тип: Изобретение
Номер охранного документа: 0002616146
Дата охранного документа: 12.04.2017
+ добавить свой РИД