×
11.07.2019
219.017.b262

Результат интеллектуальной деятельности: Способ изготовления фотовольтаических элементов с использованием прекурсора для жидкофазного нанесения полупроводниковых слоев р-типа

Вид РИД

Изобретение

Аннотация: Изобретение относится технологии изготовления фотовольтаических преобразователей. Согласно изобретению предложен способ изготовления фотовольтаических (ФВЭ) элементов с использованием прекурсора для жидкофазного нанесения полупроводниковых слоев р-типа, включающий получение прекурсора [Сu(NН)](ОН) растворением Сu(ОН) в насыщенном растворе аммиака в этиленгликоле с концентрациями от 5 до 100 мг/мл, прогрев подложки, формирование слоя нестехиометрического оксида меди путем жидкофазного нанесения раствора методом вращения подложки (центрифугирования) на слой оксида индия, допированного фтором, на стекле в режиме вращения, от 2500 до 3500 об/мин в течение 30-90 секунд, с последующим отжигом при температуре 150-300°С в течение 1 часа, нанесение методом центрифугирования подложки слоя перовскита, нанесение аналогичным образом на слой перовскита полупроводящего органического слоя метилового эфира фенил-С61-масляной кислоты, а затем батокупроина, терморезистивное напыление проводящих контактов на основе серебра. Изобретение обеспечивает возможность варьировать толщину получаемого слоя ФВЭ за счет изменения концентрации медьсодержащего прекурсора, а также снижение температуры получения полупроводникового дырочно-транспортного слоя, что обеспечивает возможность их применения в рамках таких технологических процессов как струйная печать на гибких подложках и нанесения методом вращения подложки. 1 табл., 2 ил.

Изобретение относится к технологии изготовления фотовольтаических элементов с жидкофазным нанесением полупроводниковых слоев р-типа на основе оксида меди и может быть использовано при создании тонкопленочных полупроводниковых дырочно-транспортных слоев (ДТС) в фотовольтаических преобразователях (ФВП).

Известны различные подходы к размещению транспортных слоев в устройствах. Наиболее полным образом для планарной архитектуры они суммированы в работе [US 20160005987 A1 опублик.01.07.2014. Planar Structure Solar Cell with Inorganic Hole ransporting Material / Alexey Koposov, Changqing Zhan, Wei Pan.]. В данном случае речь идето полупроводниковых слоях на основе стехиометрических и нестехиометрических оксидов, используемых в перовскитных фотовольтаических элементах. Для формирования планарной структуры солнечного элемента предложен к использованию в том числе и оксид меди. Основными подходами к построению данной архитектуры, описанными в патенте являются следующие методы: формирование дырочно-транспортного слоя поверх металлического электрода, с последующим нанесением поверх него перовскита; нанесение на прозрачный электрод последовательно электрон-транспортного, перовскитного и после чего дырочно-транспортного слоя, с дальнейшим формированием металлического электрода поверх последнего. Описанный в патенте метод нанесения позволяет достичь толщины от 1 до 150 нм.

Данный метод имеет следующие недостатки: использование планарной архитектуры приводит к снижению стабильности и деградации ФВП. Одним из путей, позволяющим избежать описанных выше ограничений, является реализация инвертированной архитектуры ФВП.

Известен метод получения дырочно-транспортных слоев на основе оксида меди (I) в рамках планарной архитектуры ФВП [WO 2016/080854 A2 опублик.26.05.2016. Hybrid organic-inorganic perovskite-based solar cell with copper oxide as a hole transport material / Nouar Amor, Alharbi Fahhad Hussain, Hossain Mohammad Istiaque.]. В данном случае слой из оксида меди формируется на поверхности перовскита, предварительно полученного на слое электронотранспортного слоя, нанесенного на прозрачный электрод на стекле. Проводящий контакт наносится на непосредственно на ДТС.

Данный метод имеет следующие недостатки: как уже было сказано выше, использование планарной архитектуры приводит к снижению стабильности и деградации ФВП, помимо этого, Сu2О является нестабильным веществом подверженным окислению до оксида меди (II). Одним из путей, позволяющим избежать описанных выше ограничений, является реализация инвертированной архитектуры ФВП и использование нестехиометрического оксида меди.

Известен метод получения дырочно-транспортных мезопористых слоев на основе оксида меди для перовскитных солнечных элементов [CN 104409636A опублик. 18.11.2014. Perovskite thin-film solar cell with three-dimensional ordered mesopore support layer/ Yang Liying]. В данном случае для формирования ДТС используются заранее полученные наночастицы оксида меди организующиеся в сплошным слой самосборкой.

Данный метод имеет следующие недостатки: получаемые слои не имеют достаточной сплошности, что приводит к появлению тока утечек.

Наиболее близким к предложенному методу является подход, снованный на использовании комплексных металло органических соединений, меди [US 6086957 опублик 11.07.2000. Method of producing solution-derived metal oxide thin films / Boyle Timothy J., Ingersoll David]. В данном случае раствор ацетат меди (II) растворяют в смеси пиридана с усксусной кислотой в течение суток до полной гомогенности раствора, после чего провдят осаждение при текмпературе 300°С с дальнейшим нагревом до 650°С для окончательного формирования пленки оскида.

Данный метод имеет следующие недостатки: высокие температуры, используемые в процессе синтеза, в значительной степени увеличивают стоимость производства тонкопленочных покрытий на основе оксида меди.

Для устранения недостатков описанных выше подходов было предложено использование комплексного медь содержащего соединения состава [Сu(NН3)4](ОН)2 получаемого in situ растворением гидроксида меди в насыщенном растворе аммиака в этиленгликоле. Его применение позволит избежать взаимодействия прекурсора с прозрачным электродом, снизить температуру разложения до 150°С, тем самым снизив энергозатраты на производство. Вместе с тем, высокая сплошность слоя, позволит исключить ток утечек.

Техническим результатом заявляемого изобретения является возможность варьировать толщину получаемого слоя за счет изменения концентрации медьсодержащего прекурсора, а так же снижение температуры получения полупроводникового дырочно-транспортного слоя, что обеспечивает возможность их применения в рамках таких технологических процессов как струйная печать на гибких подложках и нанесения методом вращения подложки.

Технический результат достигается следующим образом: получение органометалического прекурсора состава [Cu(NH3)4](OH)2 растворением свежеосажденного Cu(OH)2 в насыщенном растворе аммиака в этиленгликоле с концентрациями от 15 до 100 мг/мл, формирование слоя нестехиометрического оксида меди путем жидкофазного нанесения предварительно полученного раствора методом вращения подложки (центрифугирования) на слой предварительно очищенного FTO (ультразвуковая обработка в ацетоне, толуоле, изопропиловом спирте, активация под действием озона в течение 20 минут) на стекле со скоростью от 2500 до 3500 об/мин 30-90 секунд с последующим отжигом при от 150 до 300°С 1 час, формирование перовскитного фотоактивного слоя на оксиде меди в перчаточном боксе в атмосфере аргона, формирование электрон-транспортного слоя, формирование электродного слоя

Данная солнечная ячейка может быть изготовлена с помощью стандартных технологических операций. В данном патенте представлена технология, базирующаяся на методе нанесения на вращающуюся подложку (центрифугирования), однако для оксида меди она может быть расширена для использования в струйной печати. Также достигнутое снижение температуры процесса разложения позволит в дальнейшем использовать данную технологию и для полимерных субстратов в рамках гибких ФВП.

Изобретение поясняется изображениями, где на фигуре 1 показана зонная диаграмма устройства фотовольтаического преобразователя с дырочно-транспортным слоем на основе нестехиометрического оксида меди. На фигуре 2 приведена общая схема устройства где: 1 - металлический электрод, 2 - электрон-транспортный слой, 3 - слой фуллерена С60, 4 - фотоактивный перовскитный слой, 5 - дырочно-транспортный слой, 6 - прозрачный электрод, 7 - стекло.

При жидкофазном нанесении подложки методом центрифугирования критическую роль играет скорость вращения подложки. Так при скоростях менее 2500 об/мин излишки прекурсора не успевают покинуть подложку в результате чего формируется слой с толщиной превосходящей оптимальную для транспорта заряда (>50 нм). Скорость вращения более 3500 об/мин низкая сплошность получаемого слоя отрицательно сказывается на выходных характеристиках устройств. Т.о. наиболее оптимальным для нанесения является режим со скоростью вращения подложки около 3000 об/мин.

Фотовольтаические преобразователи были реализованы в рамках нижеприведенного маршрута. На предварительно очищенный слой оксида индия допированного фтором на стекле методом центрифугирования подложки был нанесен прекурсор оксида меди, полученный растворением Сu(ОН)2 в этиленгликоле насыщенном аммиаком с концентрацией 5 мг/мл, с последующим отжигом при температуре 300°С в течение 1 часа. Затем, на сформировавшийся слой нестехиометрического оксида меди методом центрифугирования подложки был нанесен слой перовскита, аналогичным образом уже на слой перовскита был нанесен полупроводящий органический слой РСВМ, а затем ВСР. Проводящие контакты на основе серебра были получены терморезистивным напылением металла.

На предварительно очищенный слой оксида индия допированного фтором на стекле методом центрифугирования подложки был нанесен прекурсор оксида меди, полученный растворением Сu(ОН)2 в этиленгликоле насыщенном аммиаком с концентрацией 15 мг/мл, с последующим отжигом при температуре 300°С в течение 1 часа. Затем, на сформировавшийся слой нестехиометрического оксида меди методом центрифугирования подложки был нанесен слой перовскита, аналогичным образом уже на слой перовскита был нанесен полупроводящий органический слой РСВМ, а затем ВСР. Проводящие контакты на основе серебра были получены терморезистивным напылением металла.

На предварительно очищенный слой оксида индия допированного фтором на стекле методом центрифугирования подложки был нанесен прекурсор оксида меди, полученный растворением Сu(ОН)2 в этиленгликоле насыщенном аммиаком с концентрацией 50 мг/мл, с последующим отжигом при температуре 300°С в течение 1 часа. Затем, на сформировавшийся слой нестехиометрического оксида меди методом центрифугирования подложки был нанесен слой перовскита, аналогичным образом уже на слой перовскита был нанесен полупроводящий органический слой РСВМ, а затем ВСР. Проводящие контакты на основе серебра были получены терморезистивным напылением металла.

При изготовлении солнечных элементов по с представленной архитектурой на фигуре 3 с различной толщиной слоя оксида никеля были получены следующие значения параметров ФВП, приведенные в таблице 1.

Способ изготовления фотовольтаических элементов с использованием прекурсора для жидкофазного нанесения полупроводниковых слоев р-типа, включающий получение прекурсора [Сu(NН)](ОН) растворением Сu(ОН) в насыщенном растворе аммиака в этиленгликоле с концентрациями от 5 до 100 мг/мл, прогрев подложки, формирование слоя нестехиометрического оксида меди путем жидкофазного нанесения раствора методом вращения подложки (центрифугирования) на слой оксида индия, допированного фтором, на стекле в режиме вращения, от 2500 до 3500 об/мин в течение 30-90 секунд, с последующим отжигом при температуре 150-300°С в течение 1 часа, нанесение методом центрифугирования подложки слоя перовскита, нанесение аналогичным образом на слой перовскита полупроводящего органического слоя метилового эфира фенил-С61-масляной кислоты, а затем батокупроина, терморезистивное напыление проводящих контактов на основе серебра.
Способ изготовления фотовольтаических элементов с использованием прекурсора для жидкофазного нанесения полупроводниковых слоев р-типа
Источник поступления информации: Роспатент

Показаны записи 31-40 из 322.
13.01.2017
№217.015.6d89

Нанокомпозиционный электроконтактный материал и способ его получения

Изобретение относится к области электротехники и нанотехнологии, в частности к нанокомпозитному материалу на основе меди (Cu) для производства силовых разрывных электрических контактов в переключателях мощных электрических сетей и вакуумных дугогасительных камерах и способу его получения....
Тип: Изобретение
Номер охранного документа: 0002597204
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7009

Способ винтовой прокатки полых заготовок с дном

Изобретение относится к области прокатки из заготовок сплошного сечения деталей с дном. Способ включает следующие операции: отделение мерных штучных заготовок, зацентровку их по торцу, нагрев, подачу во вводной желоб стана винтовой прокатки, перемещение по желобу заталкивателем до касания...
Тип: Изобретение
Номер охранного документа: 0002596519
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.707c

Материал на основе объемных металлических стекол на основе циркония и способ его получения в условиях низкого вакуума

Изобретение относится к области металлургии, а именно к материалу на основе объемных металлических стекол на основе циркония, и может быть использовано для производства деталей микромашин и механизмов с требованиями высокой износостойкости и прочности. Сплав на основе циркония для изготовления...
Тип: Изобретение
Номер охранного документа: 0002596696
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7678

Способ создания тонких слоев оксидов ni и nb с дырочной проводимостью для изготовления элементов сверхбольших интегральных схем

Изобретение относится к области электронной техники и описывает возможность получения дырочной проводимости аморфной оксидной пленки на поверхности металлического стекла системы Ni-Nb путем искусственного оксидирования. Способ создания тонких слоев оксидов Ni и Nb с дырочной проводимостью для...
Тип: Изобретение
Номер охранного документа: 0002598698
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.793c

Планарный преобразователь ионизирующих излучений и способ его изготовления

Изобретение относится к области преобразователей энергии оптических и радиационных излучений в электрическую энергию. Предложена конструкция планарного преобразователя ионизирующих излучений, содержащая слаболегированную полупроводниковую пластину n (p) типа проводимости, в которой расположена...
Тип: Изобретение
Номер охранного документа: 0002599274
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7c30

Способ нанесения биоактивного покрытия на основе хитозана на полимерные пористые конструкции

Изобретение относится к способу нанесения покрытия на полимерные пористые конструкции и может быть использовано для формирования композиционных полимерных пористых конструкций на основе полилактида медицинского назначения с размером пор от 300 мкм, отличающихся повышенной биоактивностью и...
Тип: Изобретение
Номер охранного документа: 0002600652
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7df0

Способ выбора мест размещения углепородных отвалов

Изобретение относится к горной промышленности, может быть использовано при выборе мест для расположения углепородных отвалов и предназначено для предотвращения самовозгорания складируемой горной массы. Техническим результатом изобретения является предотвращение самовозгорания складируемой...
Тип: Изобретение
Номер охранного документа: 0002600948
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.862c

Способ стерилизации сверхвысокомолекулярного полиэтилена, предназначенного для применения в медицине (варианты)

Областью применения заявляемого изобретения являются медицина и ветеринария, в частности реконструктивная хирургия, ортопедия и травматология, а также экспериментальная биология. Сутью заявляемого изобретения является способ стерилизации СВМПЭ, предназначенного для применения в медицине, путем...
Тип: Изобретение
Номер охранного документа: 0002603477
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.863f

Способ получения сплава неодим-железо и устройство для его осуществления

Изобретение относится к электролитическому получению сплавов. Получают сплав неодим-железо, содержащий 78-96 мас.% неодима. В электролизер загружают оксид неодима, железо в виде стружки, расплав солевой смеси в качестве электролита через загрузочный карман, в котором устанавливают температуру...
Тип: Изобретение
Номер охранного документа: 0002603408
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8730

Способ интенсификации процесса кучного выщелачивания золота из руд

Изобретение относится к извлечению благородных металлов кучным выщелачиванием из руд. Способ включает дробление руды, складирование штабеля руды на гидроизолированное основание, монтирование системы орошения и орошение щелочным раствором цианида натрия штабеля руды. При этом штабель руды...
Тип: Изобретение
Номер охранного документа: 0002603411
Дата охранного документа: 27.11.2016
Показаны записи 31-40 из 42.
19.12.2018
№218.016.a87d

Способ производства низколегированных рулонных полос с повышенной коррозионной стойкостью

Изобретение относится к области металлургии, конкретнее, для получения рулонного полосового проката с низкой скоростью коррозии при сохранении уровня прочностных и пластических характеристик, соответствующего категории прочности К52, осуществляют аустенизацию заготовки при 1200-1280°С, черновую...
Тип: Изобретение
Номер охранного документа: 0002675307
Дата охранного документа: 18.12.2018
09.02.2019
№219.016.b86d

Способ производства низкоуглеродистой стали с повышенной коррозионной стойкостью

Изобретение относится к области черной металлургии и может быть использовано для получения низкоуглеродистых сталей с повышенной коррозионной стойкостью для производства полосового проката. В способе осуществляют выплавку металла в сталеплавильном агрегате, выпуск жидкого металла в...
Тип: Изобретение
Номер охранного документа: 0002679375
Дата охранного документа: 07.02.2019
10.04.2019
№219.017.07f3

Способ некаталитической очистки дымовых газов от оксидов азота

Изобретение может быть использовано в химической и нефтехимической промышленности. В высокотемпературную зону потока дымовых газов с температурой 700-1200°С подают восстановительную смесь, которую получают смешением водяного пара с раствором карбамида. Одновременно в, по меньшей мере, одну...
Тип: Изобретение
Номер охранного документа: 0002403081
Дата охранного документа: 10.11.2010
19.04.2019
№219.017.3171

Интегральная ячейка детектора излучения на основе биполярного транзистора с сетчатой базой

Изобретение относится к полупроводниковым координатным детекторам радиационных частиц. Пиксельная биполярная структура с сетчатой базой, согласно изобретению, содержит полупроводниковую подложку, в которой расположена область коллектора 1-го типа проводимости, на которой имеется электрод...
Тип: Изобретение
Номер охранного документа: 0002427942
Дата охранного документа: 27.08.2011
11.07.2019
№219.017.b2d7

Гибридный фотопреобразователь, модифицированный максенами

Изобретение относится к технологии полупроводниковых тонкопленочных гибридных фотопреобразователей. Гибридные, тонкопленочные фотопреобразователи с гетеропереходами и слоями, модифицированными максенами TiCT, работающие в видимом спектре солнечного света, а также ближних УФ и ИК областей...
Тип: Изобретение
Номер охранного документа: 0002694086
Дата охранного документа: 09.07.2019
12.08.2019
№219.017.be4e

Способ проведения испытаний проката для нефтепромысловых труб на коррозионно-абразивный износ

Изобретение относится к области испытаний и может быть использовано для проведения испытаний эксплуатационных свойств проката, используемого для нефтепромысловых труб. Способ проведения испытаний проката для нефтепромысловых труб на коррозионно-абразивный износ, включающий взвешивание...
Тип: Изобретение
Номер охранного документа: 0002697030
Дата охранного документа: 08.08.2019
16.08.2019
№219.017.c080

Способ производства трубного проката повышенной коррозионной стойкости на реверсивном стане

Изобретение относится к области металлургии. Для повышения коррозионной стойкости трубного проката при сохранении высокой прочности, пластичности и ударной вязкости получают непрерывно-литую заготовку из стали, содержащей, мас.%: С 0,04-0,08, Si 0,15-0,35, Mn 0,7-1,0, Ni 0,2-0,5, Cu 0,4-0,6, Nb...
Тип: Изобретение
Номер охранного документа: 0002697301
Дата охранного документа: 13.08.2019
01.12.2019
№219.017.e90e

Тест-система для визуального полуколичественного иммунохроматографического анализа

Изобретение относится к устройствам для иммунохроматографического анализа и может быть использовано в биотехнологии и медицинской диагностике для полуколичественного визуального определения биологически активных веществ. Раскрыта тест-система для визуального полуколичественного...
Тип: Изобретение
Номер охранного документа: 0002707526
Дата охранного документа: 27.11.2019
21.12.2019
№219.017.efcc

Газовый сенсор, мультисенсорная линейка хеморезистивного типа на основе окисленного двумерного карбида титана (максена) и способ их изготовления

Изобретение относится к области сенсорной техники и нанотехнологий, в частности к разработке газовых сенсоров хеморезистивного типа, используемых для детектирования газов. Способ изготовления газового сенсора включает в себя синтез структур двумерного карбида титана TiСТ (максена), где Т=О, ОН,...
Тип: Изобретение
Номер охранного документа: 0002709599
Дата охранного документа: 18.12.2019
06.02.2020
№220.017.ffdb

Способ получения коллоидного раствора трисульфида титана с противомикробными свойствами

Изобретение может быть использовано при обработке почв, пористых структур и сточных вод с целью подавления активности патогенных микроорганизмов. Для получения коллоидных растворов трисульфида титана в деионизированной воде, обладающих противомикробной активностью, проводят синтез трисульфида...
Тип: Изобретение
Номер охранного документа: 0002713367
Дата охранного документа: 04.02.2020
+ добавить свой РИД