×
10.07.2019
219.017.b091

Результат интеллектуальной деятельности: СПОСОБ ОБНАРУЖЕНИЯ ДЕФЕКТОВ В ТРУБОПРОВОДАХ

Вид РИД

Изобретение

Аннотация: Использование: для обнаружения дефектов в трубопроводах. Сущность: заключается в том, что устанавливают акустические датчики, фиксируют акустические колебания, определяют местоположение дефекта на контролируемом участке трубопровода и регистрируют его, при этом акустические колебания фиксируют на моде радиальных колебаний круговых полых цилиндров на поперечном пьезоэффекте в полосе частот спектра 1-25 кГц, при этом токосъемные электроды нанесены на боковых поверхностях полого цилиндра, внутри трубопровода размещен диагностический модуль, также снабженный акустическими датчиками, посредством которых определяют нелинейные свойства контролируемой среды путем определения функции, связывающей давление реакции среды с давлением возмущения, при этом излучающие и приемные датчики устанавливают на расстояниях l/l=1 друг от друга, излучают акустические сигналы на частотах 140 и 150 кГц, определяют нормированные гистограммы плотности вероятности для каждого сигнала, путем полиноминального приближения определяют аналитическое выражение для каждой гистограммы, вычисляют функцию нелинейности и значения моментных функций, которые характеризуют изменение формы закона нормального распределения, по изменению формы закона распределения определяют инородные включения в контролируемой среде. Технический результат: повышение надежности обнаружения дефектов трубопроводов. 2 ил.

Предлагаемый способ относится к контрольно-измерительной технике и может быть использован для обнаружения дефектов в трубопроводах, преимущественно коррозионных дефектов в трубопроводах центрального отопления, горячего и холодного водоснабжения коммунальных хозяйств городов и магистральных трубопроводов для транспортировки углеводородов.

К коррозионным дефектам относятся:

- локальное утончение стенки трубы до толщины менее 50% от номинала;

- серия язв, охватывающих площадь с осевым простиранием более 100 мм;

- дефекты сварных швов;

- раскрытие трещин, через которые идет истечение транспортируемых продуктов, в том числе и малой интенсивности и другие.

Известны способы обнаружения дефектов в трубопроводах [авторские свидетельства SU №380909, 411268, 642575, 934269, 1216551, 1283566, 1610347, 1657988, 1672105, 1679232, 1705709, 1733837, 1777014, 1778597, 1812386; патенты RU №2135887, 2138037; патенты US №4289019, 4570477, 5038614; патент GB №1349129; патент FR №2498325; патенты JP №59-38537, 60-24900, 63-22531], которые могут быть использованы для контроля состояния трубопроводов центрального отопления, горячего и холодного водоснабжения коммунальных хозяйств городов. В известном способе обнаружения дефектов [патент JP №63-22531] упрощение процесса определения местоположения дефекта и его характера, а также независимость процесса определения от свойств материала контролируемой среды достигается тем, что по концам исследуемого участка трубопровода устанавливают пары акустических датчиков, один из которых в каждой паре регистрирует продольные колебания, а другой - поперечные колебания. После обработки сигналов от датчиков определяют местоположение и характер обнаруженного дефекта.

Недостатками известного способа являются низкая производительность, обусловленная необходимостью прокладывать кабель между датчиками, устанавливаемыми на концах контролируемого участка трубопровода, и невозможность его применения в ряде ситуаций, например на переходах через транспортные магистрали кабельная связь не используется.

Технической задачей известного способа обнаружения дефектов в трубопроводах [патент RU №2229708] является повышение производительности и увеличение длин надежно диагностируемых секций трубопроводов центрального отопления, горячего и холодного водоснабжения коммунальных хозяйств городов.

При этом поставленная задача решается за счет того, что для обнаружения дефектов в трубопроводах на концах контролируемого участка трубопровода устанавливают пары акустических датчиков, в каждой паре одним датчиком фиксируют продольные колебания, а другим - поперечные колебания, при этом регистрацию колебаний, генерируемых дефектом, осуществляют всеми датчиками одновременно с последующей их фильтрацией для выделения сигналов с частотой 1000-2500 Гц и сравнивают сигналы акустических датчиков в каждой паре между собой для выделения сигналов от дефекта, сигналы от датчиков продольных колебаний, генерируемых дефектом, преобразуют в цифровые коды, цифровым кодом одного из датчиков манипулируют высокочастотное колебание по фазе, усиливают полученный фазоманипулируемый сигнал по мощности, излучают его в эфир, принимают фазоманипулированный сигнал на другом конце контролируемого участка трубопровода, умножают и делят его фазу на два, выделяют гармоническое напряжение, стабилизируют его начальную фазу, перемножают с принимаемым фазоманипулированным сигналом, выделяют модулирующий цифровой код, задерживают его по времени, перемножают с другим цифровым кодом, выделяют взаимную корреляционную функцию цифровых кодов, изменяют время задержки до получения максимального значения взаимной корреляционной функции, поддерживают максимальное значение взаимной корреляционной функции автоматическим изменением времени задержки, фиксируют время задержки, определяют местоположение дефекта на контролируемом участке трубопровода и регистрируют его, что выгодно отличает данный способ от известных способов, рассмотренных выше.

Известный способ обнаружения дефектов в трубопроводах [патент RU №2229708], реализован в известном устройстве [патент RU №2196312], которое включает два датчика вибрации, два усилителя, два фильтра, цифровой коррелятор, дисплей, передатчик, приемник, два аналого-цифровых преобразователя, шифратор, дешифратор, генератор высокой частоты, фазовый манипулятор, усилитель мощности, селектор фазоманипулированных сигналов, удвоитель фазы, два измерителя ширины спектра, блок сравнения, пороговый блок, ключ, демодулятор фазоманипулированных сигналов, два перемножителя, узкополосный фильтр и фильтр низких частот, что позволяет повысить надежность радиоканала путем использования сложных сигналов с фазовой манипуляцией.

Однако данный способ позволяет достичь технического результата только в условиях открытых трубопроводов, так как передача зарегистрированных сигналов на диспетчерский пункт осуществляется по радиоканалу.

Как известно, трассы большинства магистральных трубопроводов пролегают по местности со сложным рельефом, включая дно водоемов, в том числе и морей. При этом для исключения влияния внешних условий на эксплуатационные характеристики магистрального трубопровода его, как правило, заглубляют, а на самых неблагоприятных участках местности размещают в бетонном «саркофаге», что практически исключает применение известного способа [патент RU №2229708] для обнаружения дефектов в закрытых трубопроводах.

Кроме того, использование низких частот с выделением сигналов с частотой 1000-2500 Гц отягощается возрастанием влияния шумовой помехи, что для исключения влияния шумовой помехи требует усложнения аппаратуры и позволяет регистрировать акустические сигналы с достаточной надежностью при определении только линейных свойств среды.

Задачей предлагаемого технического решения является повышение надежности обнаружения дефектов трубопроводов.

Поставленная задача решается за счет того, что в способе обнаружения дефектов в трубопроводах, преимущественно коррозионных дефектов в трубопроводах, по которому устанавливают акустические датчики, фиксируют акустические колебания, определяют местоположение дефекта на контролируемом участке трубопровода и регистрируют его, в отличие от прототипа [патент RU №2229708] акустические колебания фиксируют на моде радиальных колебаний круговых полых цилиндров на поперечном пьезоэффекте в полосе частот спектра 1-25 кГц, при этом токосъемные электроды нанесены на боковых поверхностях полого цилиндра, внутри трубопровода размещен диагностический модуль, также снабженный акустическими датчиками, посредством которых определяют нелинейные свойства контролируемой среды путем определения функции, связывающей давление реакции среды с давлением возмущения, при этом излучающие и приемные датчики устанавливают на расстояниях l/lσ=1 друг от друга, излучают акустические сигналы на частотах 140 и 150 кГц, определяют нормированные гистограммы плотности вероятности для каждого сигнала, путем полиноминального приближения определяют аналитическое выражение для каждой гистограммы, вычисляют функцию нелинейности и значения моментных функций, которые характеризуют изменение формы закона нормального распределения, по изменению формы закона распределения определяют инородные включения в контролируемой среде.

Совокупность новых отличительных признаков, заключающихся в том, что акустические колебания фиксируют на моде радиальных колебаний круговых полых цилиндров на поперечном пьезоэффекте в полосе частот спектра 1-25 кГц, при этом токосъемные электроды нанесены на боковых поверхностях полого цилиндра, внутри трубопровода размещен диагностический модуль, также снабженный акустическими датчиками, посредством которых определяют нелинейные свойства контролируемой среды путем определения функции, связывающей давление реакции среды с давлением возмущения, при этом излучающие и приемные датчики устанавливают на расстояниях l/lσ=1 друг от друга, излучают акустические сигналы на частотах 140 и 150 кГц, определяют нормированные гистограммы плотности вероятности для каждого сигнала, путем полиноминального приближения определяют аналитическое выражение для каждой гистограммы, вычисляют функцию нелинейности и значения моментных функций, которые характеризуют изменение формы закона нормального распределения, по изменению формы закона распределения определяют инородные включения в контролируемой среде, из известного уровня техники не выявлена, что позволяет сделать вывод о соответствии предлагаемого технического решения условию патентоспособности «изобретательский уровень».

Сущность предлагаемого технического решения поясняется чертежами.

Фиг.1. Структурная схема устройства акустических датчиков для реализации способа, размещенных на диагностическом модуле, включает: микропроцессор 1, буферное устройство 2, внешнюю память 3, устройство управления 4, регулируемый предварительный усилитель 5, усилитель мощности 6, излучатель 7, приемник 8, полосовой фильтр 9, предварительный усилитель 10, АЦП 11, устройство нормировки 12, устройство определения гистограммы 13, блок 14 расчета коэффициентов полинома, устройство 15 оценки точности аппроксимации, устройство 16 задания степени аппроксимирующего полинома, устройство принятия решения 17, блок 18 деления, интегрирующее устройство 19, блок 20 выделения коэффициентов при первых двух членах разложения 20, блок 21 вычисления частного.

Излучатель 7 излучает волну накачки с частотой fн. Поскольку частота накачки довольно высока, то волна накачки отражается от границы раздела транспортируемый продукт - внутренняя поверхность трубопровода и распространяется в сторону приемника 8. Волна накачки будет взаимодействовать вследствие нелинейности среды распространения с низкочастотными сигналами с частотой F, отраженными от участков трубопровода с дефектами. Результатом взаимодействия будут волны с комбинационными частотами fн±F либо изменения фазы волны накачки.

Фиг.2. Блок-схема алгоритма обработки сигналов и принятия решения.

В микропроцессоре 1 формируются излучающие сигналы и параметры работы. Через буферное устройство 2 информация с микропроцессора 1 поступает на внешнюю память 3 и устройство управления 4. Устройство управления 4 управляет работой внешней памяти и регулируемым предварительным усилителем 5. Усилитель мощности 6 усиливает сигнал и подает его на излучатель 7.

Расстояние между излучателем 7 и приемником 8 равно l/lσ=1. Сигналы с приемника 8 поступают на полосовой фильтр 9 и предварительный усилитель 10, которые образуют блок предварительной обработки. Сигналы оцифровываются посредством АЦП 11. Далее цифровой сигнал поступает на устройство нормировки 12 и устройство определения гистограммы 13. Устройство 16 задает степень аппроксимирующего полинома и управляет работой блока расчета коэффициентов полинома 14. Далее производится оценка точности аппроксимации 15 и данные передаются на устройство принятия решения 17, которое управляется блоком управления 4. При этом, если точность не удовлетворяет заданному порогу, то увеличивается степень полинома. Увеличение происходит до тех пор, пока точность аппроксимации не будет удовлетворительной. В блоке 18 производится деление выражения для плотности вероятности излучаемого сигнала, которая считывается из внешней памяти 3, и полученной плотности вероятности в блоке 14.

Интегрирующее устройство 19 представляет полученный результат на блок выделения коэффициентов при первых двух членах разложения 20, и в блоке 21 производится вычисление частного. Полученный результат через буферный элемент выводится на микропроцессор 1.

Блоки 12-21 могут быть реализованы в виде программного обеспечения для обработки принятых сигналов. Для этого варианта работы алгоритм обработки принятых данных приведен на фиг.2.

Сигналы с АЦП 11 записываются на жесткий диск микропроцессора 1. Каждый отчет кодируется в 14 разрядном формате. На вход алгоритма поступают данные, на основе которых производится определение нормированных гистограмм плотности вероятности для каждого сигнала. Затем, используя полиноминальное приближение, определяется аналитическое выражение плотности вероятности для каждой гистограммы. В зависимости исследования (обнаружение дефектов в трубопроводах или поиск мест утечек транспортируемого продукта) вычисляется либо функция нелинейности, либо значения моментных функций, которые характеризуют изменение формы закона распределения (в случае детектирования инородных включений в среде).

Предлагаемый способ основан на определении нелинейных свойств среды (внутренняя поверхность трубопровода+транспортируемый продукт) путем решения обратной задачи преобразования статистических характеристик нелинейных волн.

Как известно, прямая задача преобразования закона распределения при прохождении через нелинейную систему имеет вид

W(p2; x, t)=W(p1(p2); x, t)/|Ψ(р12))|, где р2=Ψ(p1) - нелинейное детерминированное безинерционное преобразование, заданное детерминированной функцией Ψ(p1); p1=Ф(р2) - ветвь функции, обратной к p2 =Ψ(pl).

Тогда решение для обратной задачи, которая заключается в отыскании выражения для функции Ψ(p1), принимает вид интеграла Стильтьеса

.

Данная формула описывает подход к определению функции, связывающей давление реакции среды p2 с давлением возмущения p1. Она лежит в основе метода определения нелинейных свойств среды, которые описываются нелинейной функцией Ψ(p1).

Экспериментально полученные изменения плотности вероятности акустического давления в зависимости от интенсивности излучения показали, что изменения формы закона распределения проявляются в нарушении симметрии. Ввиду увеличения мощности излучения, абсолютное значение плотности вероятности уменьшается.

Проверка законов распределения низкочастотных компонент на отличных друг от друга расстояниях l/lσ от излучателя, при частотах накачки 140 и 150 кГц, что закон распределения практически не меняется и его изменение обусловлено только изменением структуры среды (появлением разрывов, неоднородностей, механических дефектов).

Снятые экспериментальные осциллограммы сигналов и соответствующие гистограммы, полученные на различных расстояниях от излучателя показали, что основные изменения, связанные с нелинейными свойствами среды распространения, происходят в ближней зоне. Поэтому наиболее значительное изменение формы закона распределения происходит также в ближней зоне излучателя. Дальнейшее изменение формы закона распределения связано с перераспределением энергии в волне и генерацией более высокочастотных компонент.

Анализ распределения плотности вероятности акустического давления волн накачки на разных расстояниях от излучателя. При увеличении расстояния от излучателя процесс нормализуется, и в случае для двух компонент он стремится к треугольной форме.

При распространении волны разностной частоты закон распределения мгновенных значений акустического давления практически не изменяется, а его изменение обусловлено только изменением структуры среды.

Местоположение дефекта устанавливается по скорости распространения звука и времени распространения звука до места дефекта.

Конструктивное исполнение излучателя 7 обеспечивает дискретное сканирование внутреннего пространства, которое осуществляется путем шагового обзора за счет облучения узкой характеристикой направленности излучателя ограниченной зоны пространства и приема эхо-сигналов в пределах всего сектора, в котором осуществляется обзор. Цикл обзора равен промежутку времени между двумя последовательными излучениями: Тобз=2хmax/с, где xmax - максимальная дальность излучения. Перед каждым излучением сигнала характеристика направленности излучателя 7 поворачивается на угол, равный ее ширине (шаг поиска). Полное время обзора заданного сектора определяется циклом обзора и отношением величины сектора к ширине характеристики направленности.

При обнаружении дефекта микропроцессором 1 формируется команда на формирование высокой направленности, что обеспечивает более надежное определение местоположения выявленного дефекта.

При использовании способа в сухопутных условиях информация может транслироваться на диспетчерские пункты, как и в прототипе, по каналам радиосвязи.

При использовании способа для обнаружения дефектов трубопроводов, уложенных на дне водоемов, информация может транслироваться по гидроакустическому каналу связи.

Излучатель 7 представляет собой фазированную антенную решетку, на которую подаются сигналы излучения от 12 усилителей мощности при размере активной поверхности: 60×105 мм.

Приемник 8 имеет широкую диаграмму направленности с одноканальным приемом при размере активной поверхности 300×152 мм и чувствительности 500 мкВ/Па и выполнен в виде набора полых цилиндрических пьезоэлементов с акустическим мягким экраном, с размером активной поверхности 300×152 мм, имеющих следующие параметры: высота - 12 мм, диаметр - 15 мм, толщина - 1 мм, выполненных из сплава ЦТС-19М. Чувствительность для отдельного элемента приемной антенны составляет 85 мкВ/Па.

Ввиду того, что непосредственный акустический контакт активных элементов приемника 8 с нагружающей средой и элементами конструкции может привести к их демпфированию и уменьшению чувствительности, то с целью минимизации демпфирующего действия указанных факторов применены полые цилиндры с акустически мягким экраном. В качестве акустического экрана возможно применение полиуретановых пенопластов, обладающих достаточно высокой механической жесткостью, которая позволяет избежать недопустимых деформаций датчика на рабочих глубинах. В то же время удельный акустический импеданс полиуретановых пенопластов z=300-400 кг/(м2c) значительно меньше его характерных значений у пьезокерамических материалов z=3·107 кг/(м2с), что позволяет считать акустические экраны, выполненные из таких материалов, близкими к идеальным.

Применение акустического экрана в конструкции приемника 8 позволяет избавиться от нежелательного тыльного лепестка в ее диаграмме направленности.

Излучающий датчик, установленный на корпусе трубопровода, представляет собой фазированную антенную решетку, на которую подаются сигналы излучения от 12-ти усилителей мощности при размере активной поверхности 60×105 мм.

Приемный датчик, установленный на корпусе трубопровода, имеет широкую диаграмму направленности с одноканальным приемом при размере активной поверхности 300×152 мм и чувствительности 500 мкВ/Па.

Предлагаемый способ обнаружения дефектов в трубопроводе реализуется следующим образом.

На корпусе трубопровода устанавливают акустические датчики, фиксируют акустические колебания, определяют местоположение дефекта на контролируемом участке трубопровода и регистрируют его. При этом акустические колебания фиксируют на моде радиальных колебаний круговых полых цилиндров на поперечном пьезоэффекте, в полосе частот спектра 1-25 кГц. При этом токосъемные электроды нанесены на боковых поверхностях полого цилиндра.

Внутри трубопровода размещен диагностический модуль, также снабженный акустическими датчиками, посредством которых определяют нелинейные свойства контролируемой среды путем определения функции, связывающей давление реакции среды с давлением возмущения. При этом излучающие и приемные датчики устанавливают на расстояниях l/lσ=1 друг от друга, излучают акустические сигналы на частотах 140 и 150 кГц, определяют нормированные гистограммы плотности вероятности для каждого сигнала. Путем полиноминального приближения определяют аналитическое выражение для каждой гистограммы, вычисляют функцию нелинейности и значения моментных функций, которые характеризуют изменение формы закона нормального распределения, по изменению формы закона распределения определяют инородные включения в контролируемой среде.

Диагностический модуль представляет собой устройство с активным управлением скоростью движения внутри трубопровода, снабженное бесплатформенной инерциальной навигационной системой и системой управления и стабилизации. Аналогом диагностического модуля является измерительный снаряд типа Geopig (BJ, Канада).

Диагностический модуль с установленными на нем акустическими датчиками при совместной обработке информации от акустических датчиков, установленных на корпусе и параметров, вырабатываемых бесплатформенной инерциальной навигационной системой позволяет измерить даже небольшие смещения и изгибы трубопровода, причем с одинаково высокой точностью на протяжении всей длины трубопровода. При этом в качестве реперных точек, по которым в основном будут корректироваться показания других диагностических средств, например одометров, могут быть приняты поперечные сварные швы с известными географическими координатами, полученными при прокладке.

Способ обнаружения дефектов в трубопроводах, преимущественно коррозионных дефектов в трубопроводах, по которому устанавливают акустические датчики, фиксируют акустические колебания, определяют местоположение дефекта на контролируемом участке трубопровода и регистрируют его, отличающийся тем, что акустические колебания фиксируют на моде радиальных колебаний круговых полых цилиндров на поперечном пьезоэффекте в полосе частот спектра 1-25 кГц, при этом токосъемные электроды нанесены на боковых поверхностях полого цилиндра, внутри трубопровода размещен диагностический модуль, также снабженный акустическими датчиками, посредством которых определяют нелинейные свойства контролируемой среды путем определения функции, связывающей давление реакции среды с давлением возмущения, при этом излучающие и приемные датчики устанавливают на расстояниях l/l=1 друг от друга, излучают акустические сигналы на частотах 140 и 150 кГц, определяют нормированные гистограммы плотности вероятности для каждого сигнала путем полиноминального приближения определяют аналитическое выражение для каждой гистограммы, вычисляют функцию нелинейности и значения моментных функций, которые характеризуют изменение формы закона нормального распределения, по изменению формы закона распределения определяют инородные включения в контролируемой среде.
Источник поступления информации: Роспатент

Показаны записи 41-50 из 124.
20.04.2015
№216.013.4283

Способ сжигания предварительно подготовленной "бедной" топливовоздушной смеси в двухконтурной малоэмиссионной горелке с применением диффузионного стабилизирующего факела

Изобретение относится к области машиностроения, энергетики, транспорта и к другим областям, где имеют место процессы смешения различных жидкостей и газов, в том числе процессы смесеобразования различных топлив с воздухом и сжигания «бедной» топливовоздушной смеси. Сущность изобретения...
Тип: Изобретение
Номер охранного документа: 0002548525
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4410

Установка для калибровки скважинных термометров-манометров

Изобретение предназначено для калибровки скважинных приборов, применяемых при контроле разработок газовых месторождений и при эксплуатации подземных хранилищ газа. Установка для калибровки скважинных термометров-манометров содержит термокамеру, управляемый нагреватель, размещенный в полости...
Тип: Изобретение
Номер охранного документа: 0002548922
Дата охранного документа: 20.04.2015
10.05.2015
№216.013.48df

Установка для калибровки скважинных газовых расходомеров

Изобретение предназначено для калибровки скважинных приборов, применяемых для контроля над разработкой газовых месторождений и эксплуатацией подземных хранилищ газа. В установке для калибровки газовых расходомеров магистраль выполнена U-образной формы, в нижней части которой расположен...
Тип: Изобретение
Номер охранного документа: 0002550162
Дата охранного документа: 10.05.2015
27.06.2015
№216.013.5a6b

Установка для калибровки скважинных жидкостных расходомеров

Изобретение относится к измерительной технике и может быть использовано при метрологическом обеспечении скважинной геофизической аппаратуры, в качестве образцового средства измерения при градуировке и калибровке скважинных жидкостных расходомеров. Техническим результатом изобретения является...
Тип: Изобретение
Номер охранного документа: 0002554688
Дата охранного документа: 27.06.2015
27.07.2015
№216.013.65d0

Сорбент для очистки и обезвреживания от нефтезагрязнений

Изобретение относится к охране окружающей среды и может быть использовано для очистки и обезвреживания нефтезагрязненных отходов. Предложен сорбент, содержащий негашеную известь в количестве 81,1-83,3%, диатомит в количестве 7,4-12,5% и гидрофобизатор. В качестве гидрофобизатора сорбент...
Тип: Изобретение
Номер охранного документа: 0002557617
Дата охранного документа: 27.07.2015
10.08.2015
№216.013.6c0c

Способ прокладки газонефтепровода

Изобретение относится к нефтегазовой промышленности и может быть использовано при проведении строительных и ремонтных работ на газонефтепроводах. В способе прокладки газонефтепровода осуществляют укладку изолированного газонефтепровода в траншею на слой подготовки, обработанный модификатором,...
Тип: Изобретение
Номер охранного документа: 0002559218
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6c10

Способ прокладки трубопровода

Изобретение относится к строительству трубопроводов, в частности в нефтегазовой промышленности, и может быть использовано при проведении строительных и ремонтных работ на газонефтепроводах. В способе прокладки трубопровода осуществляют укладку изолированного трубопровода в траншею на слой...
Тип: Изобретение
Номер охранного документа: 0002559222
Дата охранного документа: 10.08.2015
10.09.2015
№216.013.75d5

Кольцевая камера сгорания газотурбинного двигателя и способ её эксплуатации

Кольцевая камера сгорания газотурбинного двигателя содержит группу горелок, расположенных в одной плоскости на передней стенке камеры сгорания, по меньшей мере, двумя соосными кольцами. В пределах каждого кольца установлено одинаковое и четное число малоэмиссионных горелок. Горелки внутреннего...
Тип: Изобретение
Номер охранного документа: 0002561754
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.75d6

Способ работы и устройство газотурбинной установки

Группа изобретений относится к энергетике Способ работы газотурбинной установки предусматривает подачу в камеру сгорания сжатого воздуха и паро-метановодородной смеси, расширение продуктов ее сгорания в газовой турбине, охлаждение путем испарения или перегрева водяного пара, направляемого в...
Тип: Изобретение
Номер охранного документа: 0002561755
Дата охранного документа: 10.09.2015
20.02.2019
№219.016.be2b

Устройство для контроля и регулирования процесса добычи газа в газовых и/или газоконденсатных скважинах

Изобретение относится к управлению расходом газообразных и жидких веществ с помощью элементов, чувствительных к давлению среды, и может быть использовано на газодобывающих промыслах, оборудованных ингибиторопроводом от установки комплексной подготовки газа до куста скважин при освоении газовых...
Тип: Изобретение
Номер охранного документа: 0002340771
Дата охранного документа: 10.12.2008
Показаны записи 41-50 из 163.
27.09.2014
№216.012.f92d

Устройство для определения поправок к глубинам, измеренным эхолотом при съемке рельефа дна акватории

Изобретение относится к области использования навигационных и промерных эхолотов и может быть применено для их тарировки. Техническим результатом изобретения является повышение точности тарирования эхолотов и снижение трудозатрат на ее проведение. Технический результат достигается тем, что для...
Тип: Изобретение
Номер охранного документа: 0002529626
Дата охранного документа: 27.09.2014
27.11.2014
№216.013.09e7

Спасательное средство для человека, терпящего бедствие на воде

Изобретение относится к индивидуальным спасательным средствам на воде, преимущественно, на море. Спасательное средство выполнено из водогазонепроницаемого синтетического материала, имеет в исходном состоянии форму спасательного жилета с нагрудными полочками, снабженными камерами плавучести, и...
Тип: Изобретение
Номер охранного документа: 0002533943
Дата охранного документа: 27.11.2014
10.01.2015
№216.013.19dd

Генератор зондирующих сигналов

Изобретение относится к генераторным трактам акустических эхоимпульсных локаторов. Преимущественная область использования - гидроакустика, ультразвуковая дефектоскопия. Генератор зондирующих сигналов содержит синхронизатор и импульсный генератор, соединенный с D-входом D-триггера, выход...
Тип: Изобретение
Номер охранного документа: 0002538049
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1b64

Система для освещения подводной обстановки

Система для освещения подводной обстановки относится к специальной технике и может быть использована для обнаружения и опознания подводных объектов, а также для сигнализации и оповещения о появлении на акваториях морских объектов хозяйственной деятельности (акватории портов, морские терминалы...
Тип: Изобретение
Номер охранного документа: 0002538440
Дата охранного документа: 10.01.2015
20.02.2015
№216.013.2824

Параметрический профилограф

Изобретение относится к акустическим локационным системам и может быть использовано для определения структуры дна и донных осадков. Параметрический профилограф содержит синхронизатор, блок индикации, приемный тракт, излучающий тракт, выход которого соединен с акустической излучающей антенной,...
Тип: Изобретение
Номер охранного документа: 0002541733
Дата охранного документа: 20.02.2015
27.03.2015
№216.013.356b

Заякоренная профилирующая подводная обсерватория

Изобретение относится к устройствам для подводных геофизических исследований морей и океанов. Заякоренная профилирующая подводная обсерватория сочленена с диспетчерской станцией и состоит из: подповерхностного буя, заякоренного с помощью стального буйрепа, который служит ходовым тросом для...
Тип: Изобретение
Номер охранного документа: 0002545159
Дата охранного документа: 27.03.2015
10.04.2015
№216.013.3a15

Спасательный экраноплан

Изобретение относится к морским летательным аппаратам и касается экранопланов, использующихся при поисково-спасательных работах. Спасательный экраноплан является тримаранным судном и содержит три фюзеляжа-корпуса, соединенные между собой прямоугольными крыльями. Центральный фюзеляж-корпус...
Тип: Изобретение
Номер охранного документа: 0002546357
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3bc0

Подводная обсерватория

Изобретение относится к области геофизики и может быть использовано для измерения геофизических и гидрофизических параметров в придонной зоне морей и океанов. Сущность: подводная обсерватория (1) содержит сейсмометр, состоящий из сейсмического и сейсмоакустического модулей, гидрофизический...
Тип: Изобретение
Номер охранного документа: 0002546784
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3d39

Способ обустройства морских глубоководных нефтегазовых месторождений

Изобретение относится к освоению подводных месторождений полезных ископаемых, преимущественно жидких и газообразных, а именно к сооружению технологических комплексов, предназначенных для обустройства морских глубоководных нефтегазовых месторождений и работающих в экстремальных условиях. Способ...
Тип: Изобретение
Номер охранного документа: 0002547161
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.4049

Судно на воздушной подушке

Изобретение относится к судостроению и касается судов на воздушной подушке (СВП). СВП содержит корпус, движительную и нагнетательную установки, ограждение области воздушной подушки с носовыми и кормовыми подвижными элементами, с бортовыми скегами и средним скегом, секционирующим область...
Тип: Изобретение
Номер охранного документа: 0002547945
Дата охранного документа: 10.04.2015
+ добавить свой РИД