×
10.07.2019
219.017.b082

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ РАДИОНУКЛИДА ВИСМУТ-212

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии получения радионуклидов для ядерной медицины, в частности для терапии онкологических заболеваний. Описан способ получения радионуклида висмут-212 из азотнокислого раствора, содержащего смесь радионуклидов торий-228, торий-229 и их дочерних продуктов распада, и выделения конечного продукта на ионообменной колонке с катионитом. Азотнокислый раствор, содержащий смесь радионуклидов торий-228 и торий-229 и их дочерних продуктов распада, смешивают с этиловым спиртом, элюируют эту смесь через ионообменную колонку с катионитом, на котором сорбируют все содержащиеся в смеси катионы и по мере накопления висмута-212 смывают висмут-212 разбавленной соляной кислотой. Изобретение направлено на упрощение технологического процесса получения радионуклида висмута-212. 2 з.п. ф-лы.

ОБЛАСТЬ ТЕХНИКИ

Изобретение относится к технологии получения радионуклидов для ядерной медицины, в частности для терапии онкологических заболеваний.

При терапии онкологических заболеваний все более широкое применение находят α-излучающие радионуклиды. Это связано с большой начальной энергией (5-8 МэВ) и коротким пробегом (десятки микрон) α-частиц в биологических тканях и, следовательно, высоким уровнем энерговыделения в области локализации распадающихся нуклидов. Носители α-излучающих радионуклидов (моноклональные антитела, пептиды и др.) с высокой специфичностью позволяют доставлять их точно в опухолевый узел или метастатический очаг. Благодаря малым пробегам α-частиц возможно селективное воздействие излучения на патологические объекты с минимальной лучевой нагрузкой на окружающие здоровые ткани.

Настоящее изобретение может быть использовано для создания генераторов α-излучателей торий-228/висмут-212 (228Th/212Bi), торий-228/свинец-212 (228Th/212Pb) и торий-229/висмут-213 (229Th/213Bi), конечные элементы цепочки распадов которых - радионуклиды свинец-212, висмут-212 и висмут-213 - могут использоваться в составе медицинских радиофармпрепаратов.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

Одним из наиболее перспективных направлений в ядерной медицине является радиоиммунотерапия с использованием α-излучателей. Применение короткоживущих α-излучающих радионуклидов для терапии онкологических заболеваний представляет интерес с радиобиологической точки зрения, поскольку является наиболее эффективным способом летального поражения опухолевых клеток благодаря высокой ионизирующей способности α-частиц в ткани.

В настоящее время ведется поиск α-излучателей, обладающих приемлемыми ядерно-физическими свойствами. Радионуклид висмут-212, образующийся при распаде изотопа уран-232, считается одним из наиболее перспективных для использования в терапии онкологических заболеваний.

Период полураспада висмута-212 составляет 60,6 мин, средняя энергия α-частиц 7,8 МэВ. При распаде висмута-212 последовательно образуются радионуклиды полоний-212, таллий-208 и стабильный нуклид свинец-208. Пробег α-частиц в биологической ткани менее 100 мкм, что соответствует всего лишь нескольким диаметрам раковой клетки, а линейная передача энергии (ЛПЭ) достигает ~80 кэВ/мкм. Схема образования висмута-212 показана ниже.

Начальный элемент цепочки уран-232 - искусственный изотоп урана, образование которого происходит в ядерном реакторе при облучении природного тория в результате следующих реакций взаимодействия нейтронов и гамма-квантов с нуклидом торий-232:

232Th(n,γ)233Th→233Pa(γ,n)232Pa→232U

232Th(n,2n)231Th→231Pa(n,γ)232Pa→232U

232Th(γ,n)231Th→231Pa(n,γ)232Pa→232U.

В зависимости от условий облучения тория в реакторе равновесная концентрация урана-232 лежит в пределах 1000-6000 ppm [В.М.Мурогов, М.Ф.Троянов, А.Н.Шмелев. «Использование тория в ядерных реакторах». Энергоатомиздат. М., 1983].

При облучении тория в реакторе одновременно с ураном-232 происходит образование урана-233 по следующей реакции:

232Th(n,γ)→233Th→233Pa→233U.

В результате α-распада урана-233 образуется торий-229, который в свою очередь после ряда распадов переходит в радионуклид висмут-213.

Радионуклид висмут-213 имеет преимущество, основанное на заметно меньшей мощности дозы сопутствующего γ-излучения по сравнению с висмутом-212. Однако висмут-212 нарабатывается значительно быстрее благодаря относительно короткому периоду полураспада своего предшественника - тория-228. Отношение периодов полураспада тория-229 и тория-228 составляет ≈3800. На первых этапах медико-биологических исследований (исследование устойчивости биоконструкций, их мечение альфа-излучающим препаратом), предклинических испытаний медицинских препаратов и других предварительных экспериментов можно использовать висмут-212.

В плане долгосрочной перспективы производства α-излучателей для ядерной медицины ключевое значение приобретает наработка радионуклидов торий-228 и торий-229. Предложено несколько способов получения этих радионуклидов [Изотопы: свойства, получение, применение. В 2 томах. Том. Под ред. В.Ю.Баранова. М., ФИЗМАТЛИТ, 2005, стр.372-389]:

- из старых запасов изотопа урана 233U;

- в ядерном реакторе в результате многократных захватов нейтронов изотопом радия 226Ra по реакции 226Ra(3n,2β)229Th;

- в ядерном реакторе при облучении изотопа тория 230Th быстрыми нейтронами в результате реакции 230Th(n,2n)229Th;

- в результате облучения 230Th протонами на циклотроне по реакциям 230Th(p,pn)229Th и 230Th(p,2n)229Pa(1,4 сут, β-)229Th.

Во всех указанных способах при облучении природного тория одновременно с торием-229 накапливается и радионуклид торий-228. Например, при облучении в реакторе радия-226 доля тория-228 в мишени достигает огромных значений - в зависимости от условий облучения от 25 до 50 мас.% [В.Ю.Баранов, Н.С.Марченков. Нуклидная программам РНЦ «Курчатовский институт»: прошлое, настоящее, будущее // Конверсия в машиностроении. №3, 2000, стр.38-47].

В настоящее время доступным источником сырья для производства висмута-213 и висмута-212 являются старые запасы урана-233, содержащего примесь урана-232. Учитывая большую разницу в периодах полураспада тория-229 и тория-228, из такого сырья в зависимости от продолжительности его выдержки можно получить практически чистый торий-228 (выдержка 0,5-1 год) или после более длительной выдержки получить смесь тория-228 и тория-229, в которой после выдержки в 15-20 лет практически останется только торий-229.

Висмут-212 является типичным генераторным радионуклидом и находит применение в радиоиммунотерапии, главным образом, в виде меченных им моноклональных антител и других молекулярных носителей. Сегодня для получения висмута-212 используют две генераторные системы - 228Th/224Ra и 224Ra/212Bi. В первой из них радий-224 отделяется от тория-228 за счет анионообменного разделения этих радионуклидов из раствора азотной кислоты. Во втором генераторе с использованием катионообменных смол и минеральных кислот из радия-224 выделяют висмут-212 [R.W.Atcher, A.M.Friedman, J.J.Hines «An improved generator for the production of 212Pb and 212Bi from 224Ra». International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes, Volume 39, Issue 4, 1988, Pages 283-286].

За прототип выбран способ получения висмута-212, описанный в работе [В.М.Савинов, В.Б.Павлович, А.А.Котовский и др. «Контроль технологических процессов при разработке медицинских генераторов 225Ac/213Bi и 224Ra/212Bi альфа- и гамма-спектрометрическими методами» // Ядерная энергетика, №3, 2003, стр.116-126].

В качестве исходного сырья для получения радионуклида висмут-212 авторы использовали раствор, содержащий смесь радионуклидов торий-228, торий-229 и их дочерних продуктов распада. Для получения висмута-212 выполняли следующие процедуры:

- радионуклиды торий-229, торий-228 и образующиеся дочерние продукты распада этих радионуклидов выдерживали (не менее 14 дней) в растворе азотной кислоты для накопления радионуклида радий-224;

- после выдержки раствор (8M HNO3), содержащий радионуклиды торий-229, торий-228, а также радий-224 и другие дочерние продукты распада, пропускали через колонку с анионитом;

- радионуклиды торий-229 и торий-228 оставались в колонке с анионитом, а радий-224 и другие дочерние продукты распада тория-229 и тория-228 собирались на выходе из колонки. Для полного вымывания радия-224 и других дочерних продуктов распада тория-229 и тория-228 с колонки она промывалась небольшим объемом раствора азотной кислоты (8M HNO3);

- полученный раствор, содержащий радий-224 и другие дочерние продукты распада радионуклидов торий-229 и торий-228, упаривали досуха;

- сухой остаток, содержащий радионуклид радий-224, растворяли в соляной кислоте;

- солянокислотный раствор радия-224 пропускали через колонку с катионитом;

- радионуклид радий-224 оставался в колонке с катионитом;

- колонку, содержащую радионуклид радий-224, промывали раствором соляной кислоты;

- на выходе из колонки с катионитом собирали раствор с радионуклидом висмут-212.

Однако этот способ получения висмута-212 имеет существенный недостаток:

- многостадийный процесс получения висмута-212 из смеси радионуклидов торий-228 и торий-229 является трудоемким и длительным по сравнению с периодом полураспада висмута-212, осуществляется путем последовательного радиохимического выделения радионуклида радий-224 методом сорбции из исходного раствора тория-228 и тория-229 и на следующей стадии выделения из раствора радия-224 радионуклида висмут-212.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Задачей изобретения является упрощение технологического процесса получения радионуклида висмут-212.

Для этого предложен способ получения радионуклида висмут-212 из азотнокислого раствора, содержащего смесь радионуклидов торий-228, торий-229 и их дочерних продуктов распада, и выделения конечного продукта на ионообменной колонке с катионитом, при этом азотнокислый раствор, содержащий смесь радионуклидов торий-228 и торий-229 и их дочерних продуктов распада, смешивают с этиловым спиртом, элюируют эту смесь через ионообменную колонку с катионитом, на котором сорбируют все содержащиеся в смеси катионы и по мере накопления висмута-212 смывают висмут-212 разбавленной соляной кислотой. При этом содержание этилового спирта в азотнокислом растворе составляет 70-95%. Кроме того, концентрация соляной кислоты составляет 0,1-0,5 М.

Известна возможность изменять величину коэффициента распределения в ионообменных процессах, используя кислые растворы, смешанные с ректификатом метилового или этилового спирта (Гусева Л.И., Тихомирова Г.С., Догадкин Р.Н. Отделение радия от щелочно-земельных и актино-йодных элементов на анионите и водно-метанольных растворах HNO3. Генератор 227Ac-223Ra // Радиохимия, 2004, т.46, №1, с.54-58). Такая возможность может быть реализована как на анионитах, так и на катионитах. Отмечены некоторые закономерности изменения коэффициентов распределения при элюировании растворов, содержащих спирт:

- коэффициенты распределения растут с увеличением доли спирта в растворе;

- заметное увеличение (1-3 порядка) коэффициентов распределения начинается с примерно с 70% содержания спирта в растворе;

- по скорости роста коэффициента распределения в зависимости от увеличения концентрации спирта в растворе участвующие в процессе элементы можно расположить в ряд Th, Ra, Ac, Pb, Bi (Th - высокая скорость роста, Bi - низкая скорость роста);

- концентрация используемой кислоты в спиртовом растворе слабо влияет на изменение коэффициента распределения всех участвующих в процессе элементов, кроме тория.

Опираясь на эти закономерности, были определены следующие параметры процесса:

- исходный раствор для элюирования содержит 70-95% этилового спирта (96,8%) и 30-5% раствора радионуклидов в 8М азотной кислоты;

- вымывание висмута-212 проводят разбавленной соляной кислотой (0,1-0,5М HCl);

- с повышением концентрации кислоты можно последовательно вымывать Pb, Ac, Ra, Th.

Предлагаемый способ получения радионуклида висмут-212 обладает преимуществами по сравнению с описанным прототипом:

- исключается многостадийный радиохимический передел раствора, содержащего смесь радионуклидов торий-228 и торий-229 и дочерних продуктов распада этих радионуклидов, в результате чего упрощается технологический процесс получения висмута-212.

ПРИМЕР ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

В качестве исходного сырья для получения радионуклида висмут-212 был использован раствор азотной кислоты, содержащий смесь радионуклидов торий-228, торий-229 и их дочерних продуктов распада. Раствор был приведен к объему 10 мл в 8М HNO3. Затем этот раствор был доведен до объема 100 мл 96,8% этиловым спиртом. Полученный азотнокислый спиртовой раствор был элюирован через колонку с катионитом Dowex 50×4. Размеры колонки 0,6×10 см, объем 3,3 см3. После элюирования колонка была промыта 20 мл смеси азотной кислоты (8М HNO3) и этилового спирта (соотношение 1:10). Подготовленная таким образом ионообменная колонка служит при определенных параметрах элюирования генератором радионуклидов висмута или свинца.

Для получения висмута-212 смесь радионуклидов торий-229, торий-228 и их дочерних продуктов распада на колонке промывают разбавленной соляной кислотой (0,3М HCl). Через колонку порциями по 5-10 мл было пропущено ≈100 мл разбавленной соляной кислоты (0,3M HCl), что составило примерно 32 колоночных объема. В 15 отобранных пробах не было обнаружено следов тория, радия и актиния. Пробы содержали радионуклиды висмута и следы свинца-212 на уровне 0,2-0,05% в разных пробах. В проведенном эксперименте в элюате была смесь радионуклидов висмута (висмут-212 и висмут-213), причем висмут-212 составлял примерно 95-85% активности пробы. Присутствие в элюате висмута-213 связано с использованием в качестве исходного сырья в эксперименте смеси тория-228 и тория-229 в соотношении 12:1.

При повышении концентрации соляной кислоты вплоть до 0,5М HCl состав элюата не отличается от описанного выше (0,3М HCl), затем при повышении концентрации соляной кислоты начинает вымываться свинец-212, но вплоть до 2М HCl в растворе регистрируется только висмут и свинец.

Предложенный способ получения висмута-212 позволяет, по сравнению со способом, выбранным за прототип, существенно уменьшить трудоемкость процесса.

Источник поступления информации: Роспатент

Показаны записи 81-90 из 259.
20.07.2015
№216.013.62fd

Электрохимический преобразователь энергии

Изобретение относится к автономным системам и установкам энергообеспечения, использующим различные виды топлива. Электрохимический преобразователь энергии содержит электроды, электрический соединитель и слой твердого электролита, выполненный из смеси оксидов металлов, включающих диоксид...
Тип: Изобретение
Номер охранного документа: 0002556888
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.64ef

Способ восстановления физико-механических свойств внутрикорпусных устройств водо-водяного энергетического реактора ввэр-1000

Изобретение относится к восстановительной термической обработке узлов водо-водяных энергетических реакторов (ВВЭР) и направлено на повышение ресурса и обеспечение безопасной эксплуатации реакторов ВВЭР-1000. Указанный результат достигается тем, что способ восстановления физико-механических...
Тип: Изобретение
Номер охранного документа: 0002557386
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.64f7

Способ выращивания эпитаксиальных пленок монооксида европия на кремнии

Изобретение относится к способам получения эпитаксиальных тонкопленочных материалов, в частности тонких пленок на основе монооксида европия, и может быть использовано для создания устройств спинтроники, например спиновых транзисторов и инжекторов спин-поляризованного тока. Способ выращивания...
Тип: Изобретение
Номер охранного документа: 0002557394
Дата охранного документа: 20.07.2015
27.07.2015
№216.013.67c4

Комбинированный сверхпроводник

Изобретение относится к области прикладной сверхпроводимости и может быть использовано при изготовлении сверхпроводящих обмоток, сверхпроводящих накопителей энергии, дипольных и квадрупольных магнитов для ускорителей заряженных частиц. Комбинированный сверхпроводник содержит провода 1,...
Тип: Изобретение
Номер охранного документа: 0002558117
Дата охранного документа: 27.07.2015
10.08.2015
№216.013.69df

Тепловыделяющая сборка стержневых твэлов (варианты) и способ ее работы

Изобретение относится к области атомной энергетики и может быть использовано в реакторах типа ВВЭР (PWR) и кипящих реакторах типа ВК (BWR). Предложена конструктивная схема ТВС со стержневыми твэлами, расположенными наклонно к вертикальной оси и образующими конусные и щелевые коллекторы для...
Тип: Изобретение
Номер охранного документа: 0002558656
Дата охранного документа: 10.08.2015
27.08.2015
№216.013.744a

Способ генерации энергии в анаэробной системе

Изобретение относится преимущественно к области энергетики, в частности анаэробной энергетики, и может быть использовано в воздухонезависимых энергоустановках (ЭУ) с тепловыми двигателями и электрохимическими генераторами. Способ генерации энергии в анаэробной системе включает реакцию водорода...
Тип: Изобретение
Номер охранного документа: 0002561345
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.746b

Способ получения радионуклида никель-63

Изобретение относится к реакторной технологии получения радионуклидов и может быть использовано для производства радионуклида Ni, являющегося основой для создания миниатюрных автономных источников электрической энергии с длительным сроком службы, работающих на бета-вольтаическом эффекте. Способ...
Тип: Изобретение
Номер охранного документа: 0002561378
Дата охранного документа: 27.08.2015
20.10.2015
№216.013.84d2

Способ управления энергетической установкой

Изобретение относится к области управления энергетическими установками, включая стационарные и транспортные ядерные энергетические установки, в том числе с жидко-металлическим теплоносителем ядерного реактора и закритическими параметрами пара. Давление пара регулируют управлением положения...
Тип: Изобретение
Номер охранного документа: 0002565605
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8579

Способ управления ядерной энергетической установкой

Изобретение относится к области управления энергетическими установками (ЯЭУ), включая стационарные и транспортные ядерные энергетические установки, в том числе с жидкометаллическим теплоносителем ядерного реактора и закритическими параметрами пара. Технический результат - повышение точности...
Тип: Изобретение
Номер охранного документа: 0002565772
Дата охранного документа: 20.10.2015
20.11.2015
№216.013.8fd1

Подводная ядерная термоэлектрическая установка

Изобретение относится к ядерным термоэлектрическим установкам. Для достижения этого результата предложена подводная ядерная термоэлектрическая установка, содержащая расположенные в газоплотной защитной оболочке легководный ядерный реактор и блоки термоэлектрические (БТЭ), равномерно...
Тип: Изобретение
Номер охранного документа: 0002568433
Дата охранного документа: 20.11.2015
Показаны записи 11-15 из 15.
20.02.2019
№219.016.c392

Способ получения радионуклида висмут-212

Изобретение относится к технологии получения радионуклидов для ядерной медицины, в частности для терапии онкологических заболеваний. Раствор, содержащий смесь радионуклидов торий-228 и торий-229, а также дочерние продукты распада этих радионуклидов, барботируют газом, удаляя при этом из...
Тип: Изобретение
Номер охранного документа: 0002430440
Дата охранного документа: 27.09.2011
29.03.2019
№219.016.f3ee

Способ получения радионуклида уран-230 для терапии онкологических заболеваний

Изобретение относится к получению радионуклида U для терапии онкологических заболеваний. Изобретение позволяет упростить процесс производства радиофармпрепарата на основе короткоживущих α-нуклидов благодаря использованию природного радионуклида Th. Способ включает облучение в пучке протонов...
Тип: Изобретение
Номер охранного документа: 0002362588
Дата охранного документа: 27.07.2009
29.03.2019
№219.016.f6d2

Устройство для доставки ультрахолодных нейтронов по гибким нейтроноводам

Изобретение относится к области ядерной физики, в частности к устройствам доставки низкоэнергетических нейтронов от источников нейтронов до объектов исследований или экспериментальных установок. Изобретение может быть использовано при транспортировке нейтронов низких энергий, включая...
Тип: Изобретение
Номер охранного документа: 0002433492
Дата охранного документа: 10.11.2011
07.06.2019
№219.017.7537

Способ изготовления наноструктурированной мишени для производства радионуклида мо-99

Изобретение относится к реакторной технологии получения радионуклидов и может быть использовано для производства радионуклида молибден-99 (Мо) высокой удельной активности (без носителя), являющегося основой создания радионуклидных генераторов технеция-99m (Tc), нашедших широкое применение в...
Тип: Изобретение
Номер охранного документа: 0002690692
Дата охранного документа: 05.06.2019
27.07.2019
№219.017.b9ba

Способ получения радионуклеида лютеций-177

Изобретение относится к способу получения радионуклида Lu без носителя для использования в ядерной медицине. Способ включает в себя облучение мишени, содержащей Yb, потоком нейтронов в ядерном реакторе, в процессе облучения по реакции Yb(n,γ) Yb (1,9 час) β-→Lu в мишени нарабатывается целевой...
Тип: Изобретение
Номер охранного документа: 0002695635
Дата охранного документа: 25.07.2019
+ добавить свой РИД