×
10.07.2019
219.017.b060

Результат интеллектуальной деятельности: СПОСОБ ДИАГНОСТИКИ РАДИАЛЬНОГО ЗАЗОРА В ШАРИКОПОДШИПНИКАХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области машиностроения и может быть использовано в технологических процессах виброконтроля и вибродиагностики состояния шарикоподшипников машин, например газотурбинных двигателей. Изобретение направлено на повышение производительности, информативности и качества диагностики величины радиального зазора в условиях вращения и действии осевой нагрузки, что обеспечивается за счет того, что закрепляют на валу внутреннее кольцо испытуемого подшипника, прикладывают к наружному кольцу постоянную осевую нагрузку, вращают внутреннее кольцо с постоянной скоростью, измеряют и анализируют радиальную вибрацию наружного кольца подшипника. При этом измеряют частоты прокатывания шариков по наружной и внутренней дорожкам качения или их гармоники, а также комбинационные частоты, определяемые путем сложения или вычитания гармоник частоты прокатывания шарика по внутренней дорожке с частотой вращения вала согласно соотношению f=kf±f, где f - комбинационная частота, связанная с частотой прокатывания шариков по внутренней дорожке, k - целое число (1, 2, 3…), f - частота прокатывания шариков по внутренней дорожке, f - частота вращения вала, а по величине сближения частот прокатывания шариков по дорожкам Δf=f-f, где f - частота прокатывания шариков по внутренней дорожке, f - частота прокатывания шариков по наружной дорожке, судят о состоянии подшипника и величине радиального зазора. 3 ил.

Изобретение относится к области машиностроения и может быть использовано в технологических процессах виброконтроля и вибродиагностики состояния шарикоподшипников машин, например газотурбинных двигателей.

Известен способ контроля состояния подшипников качения, при котором измеряют радиальный зазор в подшипнике с помощью измерительных инструментов (Бейзельман Р.Я., Цыпкин В.В., Перель Л.А. «Подшипники качения». Справочник. - Машиностроение. 1967 г. стр.608).

Недостатком этого способа является его сложность и невозможность контроля радиального зазора в процессе вращения подшипника.

Известен также способ определения радиального зазора в подшипниках (а.с. 1673907, кл. G01М 13/04 от 30.08.91 г.), согласно которому закрепляют на валу внутреннее кольцо, прикладывают к подшипнику переменную по направлению радиальную нагрузку, перед приложением радиальной нагрузки закрепляют жестко относительно внутреннего наружное кольцо, а переменную по направлению радиальную нагрузку изменяют по величине и по времени, затем регистрируют вибрационные шумы подшипника.

Однако этот способ не обладает высокой производительностью и качеством диагностики шарикоподшипников при одновременном действии радиальной и осевой нагрузок.

Известна также схема измерений вибрации шариковых подшипников в условиях контролируемого нагружения осевой силой (Бальмонт В.Б., Варламов Е.Б., Горелик Н.Г. «О структурной вибрации шарикоподшипников». - Машиноведение, 1987 г., №1, стр.91-97).

Внутреннее кольцо испытуемого шарикоподшипника устанавливается с небольшим зазором на оправку, расположенную в свободном от вибрации шпинделе. По наружному кольцу подшипник нагружается осевой силой с помощью узла нагружения, минимально искажающего динамические характеристики свободного подшипника. Нагрузка равномерно распределяется по всем шарикам. Радиальная составляющая вибрации наружного кольца регистрируется с помощью малогабаритного датчика, поджимаемого к кольцу пневматически.

С помощью данной схемы может быть реализован известный способ диагностики зазоров и угла контакта при наличии осевой нагрузки на шарикоподшипник («Приборные шариковые подшипники», Справочник. - М.: Машиностроение, 1981 г., стр.239-240), взятого за прототип. По этому способу в спектре вибрации подшипника измеряют комбинационные частоты, определяемые путем сложения или вычитания гармоник частоты вращения вала и гармоник частоты вращения сепаратора и по полученной величине расчитывают значение радиального зазора.

Недостаток этого способа проявляется в том, что требуются повышенной чувствительностью средства измерения вибрации с повышенной точностью их замера, так как частота вращения сепаратора и ее гармоники слабо изменяются при небольших отклонениях величины зазора от номинальных значений. В справочниках отсутствуют конструктивные параметры подшипника и данные о деформации контактирующих тел качения под действующей нагрузкой.

Технической задачей заявляемого решения является повышение производительности, информативности и качества диагностики величины радиального зазора в шариковом подшипнике в условиях вращения и действии осевой нагрузки.

Технический результат в заявляемом способе диагностики радиального зазора в шарикоподшипниках достигается тем, что закрепляют на валу внутреннее кольцо подшипника, прикладывают к наружному кольцу постоянную осевую нагрузку, вращают внутреннее кольцо с постоянной скоростью, измеряют и анализируют радиальную вибрацию наружного кольца подшипника. При этом измеряют частоты прокатывания шариков по наружной и внутренней дорожкам или их гармоники, а также комбинационные частоты, определяемые путем сложения или вычитания гармоник частоты прокатывания шарика по внутренней дорожке с частотой вращения вала согласно соотношению fквн=kвн·fвн±fв, где fквн - комбинационная частота, связанная с частотой прокатывания шариков по внутренней дорожке, kвн - целое число (1, 2, 3…), fвн - частота прокатывания шариков по внутренней дорожке, fв - частота вращения вала, а по величине сближения частот прокатывания шариков по дорожкам Δf=fвн-fн, где fвн - частота прокатывания шариков по внутренней дорожке, fн - частота прокатывания шариков по наружной дорожке, судят о состоянии подшипника и величине радиального зазора.

На фиг.1 представлена схема измерения вибрации, принятая в подшипниковой промышленности.

На фиг.2 представлена спектрограмма вибрации подшипника.

На фиг.3 представлена тарировочная зависимость величины сближения частот от радиального зазора для конкретного типа подшипника.

Подшипник подготавливают для измерений путем очистки, смазывания и прокрутки в целях достижения равномерного распределения смазочного материала в подшипнике. Подшипник монтируют на шпинделе для вращения внутреннего кольца. Конструкцией шпинделя с оправкой, применяемой для крепления и приведения во вращение внутреннего кольца подшипника, должно быть предусмотрено, чтобы, кроме передачи вращательного движения, шпиндель представлял бы жесткую базовую систему для оси внутреннего кольца. Передача вибрации между узлом шпинделя с оправкой и внутренним кольцом подшипника в применяемом диапазоне частот должна быть незначительной по сравнению с вибрацией подшипника. Цилиндрическая поверхность оправки, на которой монтируют внутреннее кольцо подшипника, должна обеспечить скользящую посадку в отверстии подшипника.

На наружной поверхности наружного кольца подшипника устанавливают датчик вибрации. Датчик должен быть расположен так, что его положение вдоль оси подшипника должно быть в плоскости, соответствующей середине контактов нагруженной дорожки качения наружного кольца с шариками. Направление оси чувствительности датчика должно быть перпендикулярно оси подшипника.

Осуществляют вращение подшипника с постоянной скоростью.

В процессе вращения к наружному кольцу подшипника прикладывают постоянную осевую нагрузку сначала с одной стороны наружного кольца, и затем повторно с другой стороны наружного кольца.

Радиально-упорные шариковые однорядные подшипники испытывают только в направлении, воспринимающем осевую нагрузку.

Конструкцией системы нагружения, применяемой для приложения нагрузок к наружному кольцу подшипника, должна быть обеспечена возможность свободного вибрирования кольца в радиальных, осевых, угловых и изгибных формах колебаний, в зависимости от типа подшипника.

Искажение формы колец подшипника, вызываемое контактом с элементами механического узла, должно быть незначительным по сравнению с геометрической точностью испытуемого подшипника.

Выполняют узкополосный спектральный анализ сигнала датчика вибрации в диапазоне частот, охватывающем частоты прокатывания шариков по дорожкам качения и/или их нескольких гармоник.

С учетом ожидаемого изменения радиального зазора определяют ориентировочные интервалы частот прокатывания шариков по дорожкам каченич и/или их нескольких гармоник.

Измеряемыми параметрами вибрации являются частота и среднеквадратическое значение виброскорости или среднеквадратическое значение виброускорения дискретных составляющих спектра, преобладающих по амплитуде в ожидаемых интервалах частот прокатывания шариков по дорожкам качения и/или их нескольких гармоник.

О состоянии подшипника судят по величине сближения измеренных частот прокатывания шариков по дорожкам качения и/или их гармоник, а также комбинационных частот, по величине сближения частот судят о состоянии подшипника и величине радиального зазора, а в качестве допустимого значения сближения частот используют настроечные значения, определенные по тарировочной зависимости. Комбинационные частоты используют в том случае, когда составляющие на этих частотах в спектре вибрации выделяются более четко, чем на основной частоте и ее гармониках.

Схема измерений вибрации подшипников, представленная на фиг.1, содержит оправку, расположенную в свободном от вибрации шпинделе 5, на которой установлено на скользящей посадке внутреннее кольцо 4 испытуемого шарикоподшипника. По наружному кольцу 3 подшипник нагружается осевой силой Q с помощью узла нагружения 2, минимально искажающего динамические характеристики свободного подшипника. Нагрузка Q равномерно распределяется по всем шарикам. Радиальная составляющая вибрации наружного кольца регистрируется с помощью малогабаритного датчика 1, поджимаемого к кольцу пневматически. Сигнал датчика 1 подается на блок согласования 6, выход которого соединен с аналого-цифровым устройством 7 обработки и спектрального анализа сигнала и измерения его параметров. В устройстве 7 проводят спектральный анализ сигнала, выделяют и идентифицируют в спектре информативные частоты, измеряют их значения и определяют величину сближения информативных частот.

Способ базируется на известных зависимостях частоты прокатывания шариков по наружной дорожке качения fн и частоты прокатывания шариков по внутренней дорожке качения fвн от числа шариков z, диаметра тела качения d, среднего диаметра подшипника D, угла контакта α и частоты вращения вала fв («Неразрушающий контроль», Справочник, т.7, Книга 2, Вибродиагностика. - Машиностроение, 2005 г., стр.574).

Частота прокатывания шариков по наружному кольцу в случае вращения внутреннего кольца и неподвижном наружном кольце

,

где fн - частота прокатывания шариков по наружной дорожке качения,

fв - частота вращения вала,

D - средний диаметр подшипника,

d - диаметр тела качения,

α - угол контакта.

Частота прокатывания шариков по внутреннему кольцу

,

где fвн - частота прокатывания шариков по внутренней дорожке качения, z - число шариков.

Разность частот Δf=fвн-fн характеризует их сближение и при постоянных условиях испытаний зависит только от угла контакта , где z - число шариков.

В случае наличия радиального зазора угол контакта в результате действия осевой нагрузки изменится. Так угол контакта α в радиальном однорядном шарикоподшипнике в случае предварительного натяга под действием небольшой осевой нагрузки при свободном перемещении в пределах осевой игры зависит от радиального зазора g, радиусов дорожек качения соответственно внутреннего rв и наружного rн колец в направлении, перпендикулярном качению, и диаметра тела качения d (смотри Перель Л.Я., Филатов А.А. «Подшипники качения». Справочник. - Машиностроение, 1992 г., стр.455):

,

где В=(rв+rн-d), а rв - радиус внутренней дорожки качения и rн - радиус наружной дорожки качения.

Поэтому, измеряя сближение частот Δf, можно оценить радиальный зазор.

Способ осуществляется путем контроля частот прокатывания шариков по наружной fн и внутренней fвн дорожкам или их гармоник f и fквн или комбинационных частот, связанных с частотой прокатывания шариков по внутренней дорожке:

f=kнfн,

fквн=kвнfвн±sfв, где kн, kвн и s - целые числа, а также может быть s=0.

Пример спектрограммы вибрации подшипника представлен на фиг.2. Параметры подшипника: d=8 мм, D=35 мм, z=9. Частота вращения вала fв=30 Гц. На спектрограмме выделяются составляющие с частотой прокатывания шариков по наружной дорожке fн=110 Гц и частотой f=195 Гц. Эта частота f есть комбинационная частота f=fвн+fв. Отсюда в данном примере сближение частот прокатывания шариков по внутренней и наружной дорожкам Δf=fвн-fн=55 Гц.

Тарировочная зависимость величины сближения частот от радиального зазора для данного типа подшипника представлена на фиг.3. По ней видно, что в рассмотренном примере величина Δf=fвн-fн=55 Гц соответствует радиальному зазору 0,043 мм.

Способ диагностики радиального зазора в шарикоподшипниках, заключающийся в том, что закрепляют на валу внутреннее кольцо испытуемого подшипника, прикладывают к наружному кольцу постоянную осевую нагрузку, вращают внутреннее кольцо с постоянной скоростью, измеряют и анализируют радиальную вибрацию наружного кольца подшипника, отличающийся тем, что измеряют частоты прокатывания шариков по наружной и внутренней дорожкам качения или их гармоники, а также комбинационные частоты, определяемые путем сложения или вычитания гармоник частоты прокатывания шарика по внутренней дорожке с частотой вращения вала согласно соотношению f=kf±f, где f - комбинационная частота, связанная с частотой прокатывания шариков по внутренней дорожке, k - целое число (1, 2, 3…), f - частота прокатывания шариков по внутренней дорожке, f - частота вращения вала, а по величине сближения частот прокатывания шариков по дорожкам Δf=f-f, где f - частота прокатывания шариков по внутренней дорожке, f - частота прокатывания шариков по наружной дорожке, судят о состоянии подшипника и величине радиального зазора.
Источник поступления информации: Роспатент

Показаны записи 151-160 из 204.
10.04.2019
№219.017.0486

Присадка для повышения термоокислительной стабильности углеводородного реактивного топлива и реактивное топливо

Изобретение относится к области нефтепереработки и нефтехимии. Присадка для повышения термоокислительной стабильности углеводородного реактивного топлива на основе прямогонного керосинового дистиллята содержит 2,2-метилен-бис(4-метил-6-трет-бутилфенол), масляный раствор алкенилсукцинимида и...
Тип: Изобретение
Номер охранного документа: 0002372382
Дата охранного документа: 10.11.2009
10.04.2019
№219.017.04f9

Способ определения параметров течения в компрессоре и устройство для его осуществления

Изобретение относится к авиационной технике, а именно к способам определения динамики изменения газодинамических параметров потока в компрессоре в заданных областях течения потока, и может быть использовано при их испытании. Достигнутым результатом является повышение точности и информативности...
Тип: Изобретение
Номер охранного документа: 0002309390
Дата охранного документа: 27.10.2007
10.04.2019
№219.017.053d

Биротативный винтовентилятор

Изобретение относится к авиационному двигателестроению, конкретно к вентиляторам авиационных газотурбинных двигателей. Биротативный винтовентилятор состоит из расположенных друг за другом первого рабочего колеса и второго рабочего колеса с лопатками, имеющими возможность поворачиваться в дисках...
Тип: Изобретение
Номер охранного документа: 0002367823
Дата охранного документа: 20.09.2009
10.04.2019
№219.017.08e2

Способ определения прочностных свойств теплозащитных покрытий и устройство для его осуществления

Изобретение относится к лабораторной испытательной технике для определения прочностных свойств теплозащитных покрытий (ТЗП), применяемых в нагруженных деталях машин, преимущественно в авиакосмической технике. Техническим результатом является увеличение функциональной возможности имитации...
Тип: Изобретение
Номер охранного документа: 0002430351
Дата охранного документа: 27.09.2011
20.04.2019
№219.017.35e7

Способ определения циклической долговечности вращающейся детали

Изобретение относится к двигателестроению, в частности к способам определения ресурса вращающихся деталей. Сущность: проводят расчеты напряженно-деформированного состояния и циклической долговечности при типовом цикле работы вращающейся детали с учетом ее конструктивных особенностей, создающих...
Тип: Изобретение
Номер охранного документа: 0002685438
Дата охранного документа: 18.04.2019
01.05.2019
№219.017.47ca

Плоское выходное устройство трехконтурного газотурбинного двигателя изменяемого цикла

Изобретение относится к авиационной технике, в частности к конструкциям плоских многофункциональных выходных устройств для трехконтурного газотурбинного двигателя изменяемого цикла. Плоское выходное устройство трехконтурного газотурбинного двигателя изменяемого цикла содержит корпус основного...
Тип: Изобретение
Номер охранного документа: 0002686535
Дата охранного документа: 29.04.2019
09.05.2019
№219.017.4d73

Способ диагностики колебаний рабочего колеса турбомашины

Изобретение предназначено для использования в энергомашиностроении. Изобретение относится к энергомашиностроению и может найти широкое применение при прочностной и аэродинамической доводке осевых турбин и компрессоров, а также при создании систем диагностики турбомашин в авиации и...
Тип: Изобретение
Номер охранного документа: 0002374615
Дата охранного документа: 27.11.2009
09.05.2019
№219.017.505c

Стенд для высотных испытаний двухконтурных турбореактивных двигателей и способ его функционирования (варианты)

Изобретение относится к области испытаний турбореактивных двигателей на стенде в условиях, близких к полетным. Стенд для высотных испытаний двухконтурных турбореактивных двигателей содержит термостатическую и эксгаустерную установки, термобарокамеру с размещенным внутри нее испытуемым...
Тип: Изобретение
Номер охранного документа: 0002467302
Дата охранного документа: 20.11.2012
09.05.2019
№219.017.509c

Камера сгорания непрерывного действия

Камера сгорания непрерывного действия содержит жаровую трубу кольцевой формы и ограничивающий ее перфорированный наружный экран, размещенные соосно в кольцевом корпусе. Экран выполнен с кольцевыми передней, наружной и внутренней стенками, образующими кольцевую полость. Перфорация экрана...
Тип: Изобретение
Номер охранного документа: 0002461780
Дата охранного документа: 20.09.2012
18.05.2019
№219.017.55f9

Способ и устройство для инициации свч-разряда и генерации высокотемпературной струи плазмы (варианты)

Изобретение относится к авиационному и энергетическому двигателестроению и химическому машиностроению. Способ для инициации СВЧ-разряда и генерации высокотемпературной струи плазмы заключается в том, что в газовой среде в электромагнитном поле СВЧ-излучения между цилиндрическими коаксиальными...
Тип: Изобретение
Номер охранного документа: 0002342811
Дата охранного документа: 27.12.2008
Показаны записи 11-11 из 11.
10.07.2019
№219.017.aeb9

Отражательная призма для поворота плоскости поляризации

Изобретение относится к отражательным призмам для поворота плоскости поляризации и может быть использовано в проекционных дисплеях и других оптических приборах. Отражательная призма для поворота плоскости поляризации изготовлена из оптически прозрачного материала и имеет форму прямоугольного...
Тип: Изобретение
Номер охранного документа: 0002321031
Дата охранного документа: 27.03.2008
+ добавить свой РИД