×
10.07.2019
219.017.ada5

Результат интеллектуальной деятельности: СПОСОБ ПРОИЗВОДСТВА ШТРИПСОВ ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано для получения штрипсов для сероводородостойких газонефтепроводных труб, сваренных с использованием нагрева токами высокой частоты. Для повышения хладостойкости штрипсов и стойкости против сероводородного растрескивания осуществляют нагрев слябов, многопроходную черновую и чистовую прокатку, которую начинают при температуре не выше 980°С с суммарным относительным обжатием не менее 70% и завершают при температуре 830-870°С, охлаждение штрипсов водой ведут до температуры 520-620°С, причем сталь имеет следующий химический состав, мас.%: 0,04-0,09 С, 0,15-0,37 Si, 0,60-1,30 Mn, 0,05-0,50 Cr, 0,01-0,04 Nb, 0,01-0,03 Ti, 0,01-0,05 Al, не более: 0,04 V, 0,005 Са, 0,010 N, 0,005 В, 0,30 Ni, 0,30 Сu, 0,012 Р, 0,005 S, остальное Fe, при следующем соотношении компонентов: P=C+[Mn+Cr+Cu/20]+Si/30+Ni/60+V/10+5B≤0,20; Al/N>2,0, где: С, Mn, Cr, Сu, Si, Ni, V, В, Al, N - содержание в стали углерода, марганца, хрома, меди, кремния, никеля, ванадия, алюминия и азота соответственно, Р- параметр трещиностойкости. 1 з.п. ф-лы, 3 табл.

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано при получении штрипсов для производства сероводородостойких газонефтепроводных труб, сваренных с использованием нагрева токами высокой частоты.

Штрипсы для изготовления нефтегазопроводных труб, используемые для транспортирования сероводородсодержащих углеводородов в условиях Крайнего Севера, должны отвечать следующему комплексу свойств (табл.1):

Таблица 1.
Свойства штрипсов для сероводородостойких нефтегазопроводных труб
σв, Н/мм2 σт, Н/мм2 δ5, % KCU-60, Дж/см2 Q-20, % CLR, % CTR, % Свариваемость
не менее 470 295-450 не менее 23 не менее 69 не менее 60 не более 3 не более 0 удовл.
Примечания: CLR и CTR - относительная длина и ширина трещин при испытании на стойкость в сероводродной среде;
Q-20 - доля волокнистой составляющей в изломе образца.

Известен способ производства штрипсов из низколегированной стали, включающий нагрев слябов до температуры 1160-1190°С, черновую прокатку, чистовую прокатку с суммарным относительным обжатием не менее 70% при температуре конца прокатки не выше 820°С. После прокатки штрипсы подвергают закалке водой с температуры 900-950°С и отпуску при температуре 600-730°С. При этом низколегированная сталь имеет следующий химический состав, мас.%:

Углерод 0,07-0,12
Марганец 1,4-1,7
Кремний 0,15-0,50
Ванадий 0,06-0,12
Ниобий 0,03-0,05
Титан 0,01-0,03
Алюминий 0,02-0,05
Хром не более 0,3
Никель не более 0,3
Медь не более 0,3
Сера не более 0,005
Фосфор не более 0,015
Азот не более 0,010
Железо Остальное [1].

Недостатки известного способа состоят в том, что штрипсы имеют низкие хладостойкость, свариваемость и стойкость против сероводородного растрескивания. Кроме того, дополнительное термическое улучшение штрипсов удорожает их производство.

Известен также способ производства штрипсов категории прочности Х65 из низколегированной стали следующего состава, мас.%:

Углерод 0,06-0,12
Марганец 1,4-1,7
Кремний 0,20-0,45
Ванадий 0,06-0,10
Ниобий 0,04-0,08
Титан 0,005-0,035
Хром 0,01-0,30
Никель 0,01-0,30
Медь 0,01-0,30
Алюминий 0,02-0,05
Молибден 0,01-0,50
Сера не более 0,006
Фосфор не более 0,015
Бор не более 0,006
Азот не более 0,010
Железо Остальное,

при этом ,

и .

Способ включает нагрев слябов до температуры 1170-1420°С, их черновую прокатку до промежуточной толщины и чистовую прокатку в температурном интервале 910-710°С с суммарным относительным обжатием 60-80% [2].

Недостатки известного способа состоят в том, что он не обеспечивает высокой хладостойкости и стойкости против сероводородного растрескивания.

Наиболее близким аналогом по совокупности признаков и достигаемым результатам к предлагаемому изобретению является способ производства штрипсов из низколегированной стали следующего химического состава, мас.%:

Углерод 0,12-0,17
Марганец 1,3-1,6
Кремний 0,3-0,6
Алюминий 0,02-0,06
Ванадий и/или ниобий 0,01-0,05
Хром не более 0,3
Никель не более 0,3
Медь не более 0,3
Фосфор не более 0,015
Сера не более 0,006
Азот не более 0,010
Кальций не более 0,02
Железо Остальное.

Способ включает нагрев слябов до температуры 1220-1280°С, многопроходные черновую прокатку до промежуточной толщины, чистовую прокатку с температурой конца прокатки 820-880°С и ускоренное охлаждение штрипсов водой до температуры 580-660°С [3].

Недостатки известного способа состоят в том, что он не обеспечивает одновременного получения высокой хладостойкости и стойкости против сероводородного растрескивания штрипсов.

Техническая задача, решаемая изобретением, состоит в повышении хладостойкости и стойкости против штрипсов, против сероводородного растрескивания.

Для решения поставленной технической задачи в известном способе производства штрипсов из низколегированной стали, включающем нагрев слябов, многопроходную черновую и чистовую прокатку с регламентируемой температурой конца прокатки и охлаждение штрипсов водой, согласно предложению, чистовую прокатку начинают при температуре не выше 980°С, ведут с суммарным относительным обжатием не менее 70% и завершают при температуре 830-870°С, а охлаждение штрипсов водой ведут до температуры 520-620°С, причем низколегированная сталь имеет следующий химический состав, мас.%:

Углерод 0,04-0,09
Кремний 0,15-0,37
Марганец 0,60-1,30
Хром 0,05-0,50
Ниобий 0,01-0,04
Титан 0,01-0,03
Алюминий 0,01-0,05
Ванадий не более 0,04
Кальций не более 0,005
Азот не более 0,010
Бор не более 0,005
Никель не более 0,3
Медь не более 0,3
Фосфор не более 0,012
Сера не более 0,005
Железо Остальное.

Кроме того, содержание химических элементов в низколегированной стали удовлетворяет соотношениям:

где С, Мn, Сr, Сu, Si, Ni, V, В, Al, N - содержание в стали углерода, марганца, хрома, меди, кремния, никеля, ванадия, алюминия и азота соответственно.

Сущность предлагаемого технического решения состоит в следующем. Комплекс эксплуатационных и механических свойств штрипсов определяется микроструктурно-фазовым состоянием низколегированной стали, которое, в свою очередь, зависит от химического состава стали и режимов ее многоциклововой деформационно-термической обработки.

Известные способы производства штрипсов из низколегированной стали не обеспечивают одновременное сочетание высокой свариваемости и стойкости против сероводородного растрескивания, т.к. повышение стойкости против сероводородного растрескивания за счет увеличения степени легирования стали неизбежно ухудшает ее свариваемость, снижает пластические и вязкостные свойства штрипсов при отрицательных температурах. Предлагаемые деформационно-термические режимы производства штрипсов и химический состав низколегированной стали позволяют сформировать в процессе многопроходной прокатки и охлаждения водой оптимальный фазовый состав, микроструктуру и механические свойства стали, в особенности высокую пластичность и ударную вязкость при отрицательных температурах.

Легирование стали марганцем, хромом, ниобием, титаном, алюминием в заданных количествах и соотношениях и ограничение концентрации примесных элементов обеспечивает повышение стойкости против сероводородного растрескивания. При этом, поскольку легирование осуществлено в минимально достаточной степени, свариваемость штрипсов остается высокой.

При многопроходной чистовой прокатке в температурном диапазоне от температуры начала прокатки Тнп≤980°С до температуры конца прокатки Ткп=830-870°С с суммарным относительным обжатием εΣ≥70% обеспечивается диспергирование аустенитной микроструктуры низколегированной стали, благодаря чему сталь предложенного состава после ускоренного охлаждения водой приобретает высокие прочностные, пластические и вязкостные свойства при отрицательных температурах.

Экспериментально установлено, что при Тнп>980°С в процессе многопроходной чистовой прокатки интенсифицируются процессы динамической и статической рекристаллизации деформированного аустенита. В результате не обеспечивается измельчение аустенитных зерен и получение заданного комплекса механических свойств штрипсов.

При Ткп>870°С или εΣ<70% возрастает неравномерность размеров аустенитных зерен. Это снижает вязкостные и прочностные свойства готовых штрипсов, а также их стойкость против сероводородного растрескивания. Снижение Ткп менее 830°С приводит к формированию анизотропной микроструктуры стали предложенного состава, падению ударной вязкости KCU-60 и доли волокнистой составляющей Q-20 ниже допустимого уровня.

При охлаждении прокатанных штрипсов водой до температуры Т>620°С происходит самопроизвольное разупрочнение горячекатаной стали, что ведет к снижению прочностных свойств менее допустимых значений. Снижение Тсм менее 520°С не ведет к повышению механических и эксплуатационных свойств штрипсов, а лишь увеличивает расход охлаждающей воды и энергозатрат на работу насосов, что нецелесообразно.

Углерод в стали предложенного состава определяет ее прочностные свойства. Снижение содержания углерода менее 0,04% приводит к падению прочности ниже допустимого уровня. Увеличение содержания углерода сверх 0,09% ухудшает свариваемость и стойкости против сероводородного растрескивания.

Кремний раскисляет и упрочняет сталь. При содержании кремния менее 0,15% прочность и раскисленность стали недостаточны. Увеличение содержания кремния более 0,37% приводит к возрастанию количества силикатных неметаллических включений, ухудшает ее пластичность и ударную вязкость.

Марганец введен для раскисления и повышения прочности стали, связывания примесной серы в сульфиды. При содержании марганца менее 0,60% снижается прочность стали, доля вязкой составляющей в изломе и вязкость при отрицательных температурах. Повышение концентрации марганца сверх 1,30% приводит к снижению пластичности, ухудшению свариваемости и стойкости против сероводородного растрескивания.

Хром играет важную роль в обеспечении одновременно высокой прочности, вязкости, пластичности, коррозионной стойкости штрипсов. Благодаря наличию хрома в стали, при охлаждении после многоциклового деформирования, в ней формируется мелкодиспергированная микроструктура, обладающая высокими вязкостными свойствами при отрицательных температурах. Снижение содержания хрома менее 0,05% ухудшает стойкость против сероводородного растрескивания. Увеличение концентрации хрома более 0,50% ухудшает свариваемость штрипсов.

Ниобий образуют с углеродом карбиды NbC. Мелкие карбиды ниобия располагаются по границам зерен и субзерен, тормозят движение дислокации и, тем самым, упрочняют сталь. При содержании ниобия менее 0,01% его влияние недостаточно велико, прочностные свойства стали ниже допустимого уровня. Увеличение концентрации ниобия более 0,04% ухудшает свариваемость, вызывает дисперсионное твердение и охрупчивание границ зерен микроструктуры. Это приводит к снижению доли вязкой составляющей в изломе и потере ударной вязкости при отрицательных температурах, а также снижению стойкости против сероводородного растрескивания.

Титан является сильным карбидообразующим элементом, упрочняющим сталь. Снижение содержания титана менее 0,01% ухудшает прочность и пластичность стали. Однако при сварке титан полностью выгорает, поэтому его количество в стали не должно превышать 0,03%.

Алюминий является раскисляющим и модифицирующим элементом. При концентрации алюминия менее 0,01% его положительное влияние не проявляется. Вместе с тем, увеличение содержания алюминия более 0,05% приводит к ухудшению свариваемости штрипсов и труб.

Ванадий является сильным раскисляющим и карбидообразующим примесным элементом. Однако увеличение содержания ванадия более 0,04% нецелесообразно, т.к. ведет к ухудшению свариваемости штрипсов и стойкости против сероводородного растрескивания.

Кальций оказывает модифицирующее действие, что позволяет повысить эксплуатационные свойства штрипсов, повысить ударную вязкость при - 60°С. Тем не менее, увеличение содержания кальция более 0,005% приводит к росту количества и размеров неметаллических включений, снижению пластичности и ударной вязкости горячекатаных штрипсов.

Азот входит в состав карбонитридов и нитридов, упрочняющих сталь. Увеличение содержание азота более 0,010 приводит к резкому снижению пластичности и вязкости стали при отрицательных температурах.

Бор упрочняет твердый раствор по механизму внедрения, повышает прочность и вязкость стали, измельчает микроструктуру. Увеличение влияния бора более 0,005% приводит к появлению по границам зерен избыточных фаз (боридов), что снижает ударную вязкость стали при отрицательных температурах.

Примеси никеля и меди способствуют повышению прочностных свойств, но при содержании более 0,3% никеля и более 0,3% меди имеет место снижение хладостойкости штрипсов, свариваемости и стойкости против сероводородного растрескивания.

Сера и фосфор являются вредными примесями, снижающими пластические и вязкостные свойства. При концентрации фосфора более 0,012% и серы более 0,005% ухудшаются механических свойств штрипсов, особенно ударная вязкость, снижается стойкости против сероводородного растрескивания.

Показатель Рсм характеризует степень легирования стали и ее стойкость против сероводородного растрескивания. Если

то в большинстве случаев показатели CLR или CTR превышают допустимое значение, низколегированную сталь такого состава нельзя назначать на производство штрипсов, стойких против сероводородного растрескивания.

При низколегированная сталь содержит несвязанный азот, и готовые штрипсы имеют недостаточную хладостойкость.

Примеры реализации способа

В кислородном конвертере осуществляют выплавку низколегированных сталей для производства штрипсов. Выплавку производят из передельного чугуна с добавками отобранного металлического лома. Полученные расплавы раскисляют ферросилицием, ферромарганцем, легируют феррованадием, феррониобием, ферротитаном, ферробором, вводят металлический алюминий и хром, силикокальций. Производят десульфурацию и дефосфорацию расплава, продувку аргоном. Химический состав низколегированных сталей для штрипсов приведен в таблице 2.

Слябы с химическим составом №3 (табл.2) загружают в методическую печь непрерывного широкополосного стана 2000 и осуществляют их нагрев до температуры аустенитизации Та=1160°С.

Таблица 2.
Химический состав низколегированных сталей для производства штрипсов
№ состава Содержание химических элементов, мас.%
С Si Mn Cr Nb Ti Al V Ca N В Ni Сu Р S Fe Pсм
1. 0,030 0,14 0,5 0,04 0,009 0,009 0,009 0,01 0,001 0,0045 0,001 0,1 0,1 0,010 0,002 Ост. 0,074 2,00
2. 0,040 0,15 0,6 0,05 0,010 0,010 0,010 0,02 0,003 0,0048 0,003 0,1 0,2 0,010 0,003 -:- 0,106 2,08
3. 0,060 0,21 0,9 0,27 0,025 0,020 0,030 0,03 0,004 0,009 0,004 0,2 0,2 0,011 0,004 -:- 0,162 3,33
4. 0,049 0,37 1,3 0,50 0,040 0,030 0,050 0,04 0,005 0,010 0,005 0,3 0,3 0,012 0,005 -:- 0,200 5,00
5. 0,090 0,16 0,7 0,15 0,030 0,015 0,040 0,03 0,002 0,010 0,002 0,1 0,1 0,010 0,005 -:- 0,157 5,27
6. 0,100 0,38 1,4 0,60 0,050 0,040 0,060 0,05 0,006 0,011 0,006 0,4 0,4 0,013 0,006 -:- 0,274 5,45
7. 0,150 0,50 1,6 0,25 0,02 - 0,040 0,02 0,015 0,010 - 0,3 0,3 0,014 0005 -:- 0,281 4,00

Разогретые слябы прокатывают за 5 проходов в черновой группе клетей в раскаты толщиной Н=40,0 мм.

Полученные раскаты при температуре Тнп=°С задают в непрерывную 7-клетевую чистовую группу и прокатывают в штрипсы конечной толщины h=8,0 мм с температурой конца прокатки Ткп=850°С. Суммарное относительное обжатие при чистовой прокатке εΣ составляет:

Заданную температуру Ткп обеспечивают за счет применения межклетевого охлаждения раскатов водой.

Прокатанные штрипсы подвергают ускоренному охлаждению до температуры Тсм=600°С ламинарными струями воды в процессе транспортирования по отводящему рольгангу к моталкам. Охлажденные полосы сматывают в рулоны.

Варианты реализации способа производства штрипсов из низколегированной стали и показатели их эффективности приведены в таблице 3.

Таблица 3.
Режимы производства штрипсов и их эксплуатационные свойства
№ п/п № состава Тнп, °С εΣ,% Ткп, °С Тсм, °C σв,
Н/мм2
σт,
Н/мм2
δ5,% KCU-60, Дж/см2 Q-20,% CLR,% CTR,% Сварива-
емость
1. 1 990 90 820 630 460 280 23 67 55 4,5 1,1 неудовл.
2. 2 980 85 870 620 470 295 32 72 65 2,5 0 удовл.
3. 3 970 80 850 600 490 370 33 74 80 1,8 0 удовл.
4. 4 960 70 830 520 530 450 32 70 64 2,0 0 удовл.
5. 5 965 75 840 590 500 390 32 72 75 1,9 0 удовл.
6. 6 950 68 820 510 690 570 19 54 55 3,5 2,9 неудовл.
7. 7 970 65 850 620 560 420 30 48 59 4,2 3,5 удовл.

Из данных, приведенных в таблице 3, следует, что в случаях реализации предложенного способа (варианты №2-5) достигается повышение хладостойкости штрипсов, свариваемости и стойкости против сероводородного растрескивания. При запредельных значениях заявленных параметров (варианты №1 и №6) имеет место снижение хладостойкости, свариваемости и стойкости против сероводородного растрескивания штрипсов. Также низкая хладостойкость и стойкость против сероводородного растрескивания присущи штрипсам, произведенным согласно способу-прототипу (вариант №7).

Технико-экономические преимущества предложенного способа заключаются в том, что нагрев слябов из низколегированной стали предложенного состава и соотношением содержаний химических элементов до температуры аустенитизации, последующая их многопроходная черновая

прокатка и многопроходная чистовая прокатка с суммарным относительным обжатием не менее 70%, с температурой конца прокатки 830-870°С и охлаждением штрипсов водой до температуры 520-620°С обеспечивают формирование заданного диспергированного микроструктурно-фазового состава штрипсов. Благодаря этому штрипсы имеют повышенные хладостойкость, свариваемость и стойкость против сероводородного растрескивания.

Использование предложенного способа обеспечит повышение рентабельности производства штрипсов повышенной прочности для труб нефтегазопроводов, сваренных с использованием ТВЧ, на 15-20%.

Источники информации

1. Патент Российской Федерации №2255123, МПК C21D 8/02, С22С 38/58, 2005 г.

2. Патент Российской Федерации №2241769, МПК C21D8/02, С22С 38/58, В21В 1/26, 2004 г.

3. Патент Российской Федерации №2262537, МПК C21D 8/02, С22С 38/46, 2005 г. - прототип.

Источник поступления информации: Роспатент

Показаны записи 81-90 из 104.
18.05.2019
№219.017.5b87

Способ формирования шихты для получения металлургического кокса

Изобретение относится к коксохимическому производству и касается способа формирования шихты для получения металлургического кокса. Составляют шахтогруппы в зависимости от показателя отражения витринита (Ro, %), выхода летучих веществ (V, %) и толщины пластического слоя (У, мм). Формируют...
Тип: Изобретение
Номер охранного документа: 0002461602
Дата охранного документа: 20.09.2012
18.05.2019
№219.017.5ba1

Способ получения известково-магнезиального агломерата для сталеплавильного производства

Изобретение относится к области черной металлургии, в частности к окускованию железо-флюсосодержащего сырья для конвертерного производства с использованием вторичных ресурсов. Шихта содержит конвертерный шлам, окалину, флюс, топливо и возврат. В качестве флюса в шихту вводят шлаковую смесь...
Тип: Изобретение
Номер охранного документа: 0002460812
Дата охранного документа: 10.09.2012
29.06.2019
№219.017.99fe

Способ листовой прокатки и устройство для его реализации

Изобретение относится к области обработки металлов давлением, в частности к технологии листовой прокатки на широкополосовом стане. Задача, решаемая изобретением, - повышение качества готовой полосы. В способе листовой прокатки, включающем нагрев заготовки в методической печи, при котором ось...
Тип: Изобретение
Номер охранного документа: 0002268790
Дата охранного документа: 27.01.2006
29.06.2019
№219.017.9c65

Способ производства штрипса для труб магистральных трубопроводов

Изобретение относится к области металлургии, в частности к производству штрипса толщиной 15- 28 мм ответственного назначения. Для повышения прочности, хладостойкости и низкотемпературной вязкости в зоне термического влияния при сварке штрипса получают сталь, содержащую, мас.%: С - 0,03-0,07, Мn...
Тип: Изобретение
Номер охранного документа: 0002397254
Дата охранного документа: 20.08.2010
29.06.2019
№219.017.9c6e

Способ производства толстолистового проката

Изобретение относится к области металлургии, в частности к производству проката ответственного назначения. Для получения проката ответственного назначения с повышенными показателями прочности, при одновременном повышении хладостойкости и низкотемпературной вязкости в зоне термического влияния...
Тип: Изобретение
Номер охранного документа: 0002393236
Дата охранного документа: 27.06.2010
29.06.2019
№219.017.9c74

Способ изготовления сварных замкнутых профилей прямоугольного сечения

Изобретение относится к прокатному производству, конкретнее к изготовлению гнутых профилей и, в частности, прямоугольных сварных замкнутых профилей. Способ включает профилирование прямоугольной заготовки с вытяжкой в шовообжимном переходе, высокочастотную сварку с заданным углом схождения...
Тип: Изобретение
Номер охранного документа: 0002393036
Дата охранного документа: 27.06.2010
29.06.2019
№219.017.9d53

Способ производства листов

Изобретение относится к металлургии, конкретнее к производству толстых листов из низколегированной хромосодержащей стали, используемых при изготовлении сварных кузовов большегрузных самосвалов. Для повышения механических свойств, снижения неплоскостности и увеличения выхода годных листов слябы...
Тип: Изобретение
Номер охранного документа: 0002350662
Дата охранного документа: 27.03.2009
29.06.2019
№219.017.9f2e

Сталь конструкционная с высокой ударной вязкостью при криогенных температурах

Изобретение относится к области металлургии, к особохладостойким конструкционным сталям, используемым для изготовления оборудования, предназначенного для хранения и транспортировки сжиженного природного газа. Сталь содержит углерод, марганец, кремний, никель, ниобий, титан, кальций, кобальт,...
Тип: Изобретение
Номер охранного документа: 0002414520
Дата охранного документа: 20.03.2011
29.06.2019
№219.017.a059

Способ непрерывной холодной прокатки полосы с натяжением

Изобретение предназначено для исключения реверсивных горизонтальных перемещений подушек рабочих валков в пределах зазоров между подушками и окнами станин в многоклетевых широкополосных станах холодной прокатки. Способ включает обжатие полосы в несколько проходов с сопутствующим контролем путем...
Тип: Изобретение
Номер охранного документа: 0002409432
Дата охранного документа: 20.01.2011
29.06.2019
№219.017.a05a

Способ изготовления и ремонта травильных ванн непрерывных травильных агрегатов

Изобретение относится к прокатному производству, преимущественно к ремонту непрерывных травильных агрегатов цехов холодной прокатки стальных полос. Способ включает изготовление стальных корпусов секций ванн и карманов, подготовку наклеиваемых поверхностей корпусов, карманов и элементов...
Тип: Изобретение
Номер охранного документа: 0002409459
Дата охранного документа: 20.01.2011
Показаны записи 81-90 из 154.
09.06.2018
№218.016.5d7a

Маломагнитная сталь и изделие, выполненное из нее

Изобретение относится к сталям, используемым в качестве конструкционных материалов в судостроении, энергетике, машиностроении. Сталь содержит 0,1-0,8 мас.% углерода, 0,001-0,9 мас.% кремния, 10,0-22,0 мас.% марганца, 1,5-4,5 мас.% алюминия, не более 0,8 мас.% хрома, не более 0,8 мас.% никеля,...
Тип: Изобретение
Номер охранного документа: 0002656323
Дата охранного документа: 04.06.2018
07.12.2018
№218.016.a491

Способ производства штрипсов из низколегированной стали

Изобретение относится к области производства листового проката из штрипсовых сталей. Способ включает нагрев слябов, их черновую прокатку до промежуточной толщины и температуры, чистовую прокатку с регламентированной толщиной подката, количеством чистовых проходов и регламентированной...
Тип: Изобретение
Номер охранного документа: 0002674188
Дата охранного документа: 05.12.2018
10.01.2019
№219.016.ae44

Способ производства горячекатаного проката из конструкционной стали

Изобретение относится к области металлургии. Для получения листового проката категории прочности 345 с соотношением предела текучести к временному сопротивлению не более 0,75, используемого при строительстве резервуаров для хранения нефтепродуктов, выплавляют сталь, содержащую, мас. %: углерод...
Тип: Изобретение
Номер охранного документа: 0002676543
Дата охранного документа: 09.01.2019
18.01.2019
№219.016.b131

Способ производства горячекатаного проката из конструкционной стали

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано для получения рулонного проката для изготовления нефтепроводных труб группы Кс по ГОСТ 52203-04 без дополнительной термообработки. Для получения проката с феррито-перлитной структурой, в...
Тип: Изобретение
Номер охранного документа: 0002677426
Дата охранного документа: 16.01.2019
05.02.2019
№219.016.b723

Способ производства проката из низколегированной стали для изготовления износостойких деталей

Изобретение относится к металлургии, в частности к производству листового проката из углеродистых сталей, предназначенных для изготовления износостойких деталей в машиностроении, вагоностроении. Способ производства проката из низколегированной стали для изготовления износостойких деталей...
Тип: Изобретение
Номер охранного документа: 0002678854
Дата охранного документа: 04.02.2019
14.02.2019
№219.016.b9f0

Способ производства конструкционного проката из низколегированной стали

Изобретение относится к области металлургии. Для получения проката с прочностными характеристиками: σт≥490 МПа, σв≥570 МПа, ударной вязкостью KCU-40 не менее 40 Дж/см, и исключения образования торцевых трещин при изготовлении деталей операцией вырубки способ производства коррозионно-стойкого...
Тип: Изобретение
Номер охранного документа: 0002679675
Дата охранного документа: 12.02.2019
20.02.2019
№219.016.be84

Коррозионно-стойкая высокопрочная немагнитная сталь и способ ее термодеформационной обработки

Изобретение относится к металлургии конструкционных сталей и сплавов, содержащих в качестве основы железо с заданным соотношением легирующих и примесных элементов и предназначено для использования в различных областях промышленности. Нагревают слиток из коррозионно-стойкой высокопрочной...
Тип: Изобретение
Номер охранного документа: 0002392348
Дата охранного документа: 20.06.2010
01.03.2019
№219.016.c93a

Низколегированная сталь

Изобретение относится к области металлургии, в частности, к экономнолегированным сталям, предназначенным для изготовления изделий, эксплуатирующихся в агрессивных высокоминерализованных средах, содержащих сероводород и углекислый газ. Предложена низколегированная сталь, содержащая, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002283362
Дата охранного документа: 10.09.2006
01.03.2019
№219.016.cb15

Сталь повышенной коррозионной стойкости

Изобретение относится к металлургии, а именно к производству углеродистых и низколегированных сталей повышенной коррозионной стойкости для производства трубопроводов, транспортирующих агрессивные в коррозионном отношении жидкости. Сталь содержит углерод, марганец, кремний, хром, никель, медь,...
Тип: Изобретение
Номер охранного документа: 0002344194
Дата охранного документа: 20.01.2009
01.03.2019
№219.016.cb1a

Способ производства толстых листов

Изобретение относится к металлургии, конкретнее к производству листов толщиной 20-50 мм из углеродистых и низколегированных сталей конструкционного назначения. Способ включает нагрев заготовок, горячую прокатку с обжатием по толщине в регламентированном температурном интервале и охлаждение...
Тип: Изобретение
Номер охранного документа: 0002348702
Дата охранного документа: 10.03.2009
+ добавить свой РИД