×
10.07.2019
219.017.ad62

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ИЗДЕЛИЙ ИЗ МОНОКРИСТАЛЛИЧЕСКИХ ЖАРОПРОЧНЫХ НИКЕЛЕВЫХ СПЛАВОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к металлургии, а именно к получению изделий из многокомпонентных монокристаллических жаропрочных сплавов на никелевой основе, преимущественно лопаток и других деталей ГТД и ГТУ в авиационной и энергетической промышленности. Отливки получают литьем методом направленной кристаллизации и проводят предварительный отжиг в интервале температур от неравновесного солидуса до температуры, на 5-20°С превышающей температуру полного растворения упрочняющей γ′-фазы. Затем проводят горячее изостатическое прессование отливок при давлении инертного газа 120-210 МПа и термическую обработку, включающую гомогенизирующий отжиг, состоящий из ступенчатых нагревов с изотермическими выдержками, закалку и старение. По крайней мере одну ступень гомогенизирующего отжига совмещают с горячим изостатическим прессованием. Изобретение позволяет повысить выход годных изделий без рекристаллизованных зерен, в которых практически отсутствует микропористость, при сокращении длительности технологического процесса. 1 з.п. ф-лы.

Изобретение относится к области металлургии, а именно к способу получения изделий из многокомпонентных монокристаллических жаропрочных сплавов на никелевой основе, предназначенных преимущественно для производства лопаток и других деталей ГТД и ГТУ в авиационной и энергетической промышленности.

Эксплуатация сложных и ответственных изделий предъявляет особые требования к их характеристикам и требует повышения показателей надежности и ресурса. Это достигается как за счет улучшения химического состава жаропрочных никелевых сплавов, так и за счет технологии, включающей горячее изостатическое прессование, термическую или химико-термическую обработки.

Термическая обработка отливок из многокомпонентных литейных жаропрочных сплавов с монокристаллической структурой в большой степени определяет уровень механических свойств сплавов. Сложность проведения термической обработки таких сплавов заключается в том, что в процессе неравновесной кристаллизации, которая имеет место практически во всех случаях производства отливок, отмечается сильно развитая химическая микронеоднородность, связанная с дендритной ликвацией.

Высокотемпературная термическая обработка монокристаллических сплавов должна обеспечить растворение первичной эвтектической γ-γ′ фазы, полную перекристаллизацию упрочняющей γ′-фазы и максимально устранить дендритную ликвацию.

Известны способы термической обработки многокомпонентных жаропрочных сплавов, предназначенных для получения лопаток ГТД, включающие многоступенчатые нагревы с продолжительными изотермическими выдержками при каждой ступени нагрева.

Первая ступенька изотермического отжига проводится, как правило, на ≈10-15°С ниже температуры начального плавления наиболее легкоплавкой эвтектической составляющей сплава; последняя ступенька - при температуре, обеспечивающей максимальное устранение дендритной химической микронеоднородности. Каждая изотермическая выдержка за счет диффузионных процессов приводит к локальному выравниванию химического состава или фазовым превращениям, которые повышают температуру начального плавления (патент США № 5151249, патент США № 5270123).

Типичный режим высокотемпературной термической обработки для отливок наиболее жаропрочного ренийсодержащего монокристаллического сплава CMSX-10 включает:

Нагрев до 1316°С - выдержка 1 час, далее

нагрев до 1329°С - выдержка 2 час, далее

нагрев до 1335°С - выдержка 2 час, далее

нагрев до 1340°С - выдержка 2 час, далее

нагрев до 1346°С - выдержка 2 час, далее

нагрев до 1352°С - выдержка 3 час, далее

нагрев до 1357°С - выдержка 3 час, далее

нагрев до 1360°С - выдержка 5 час, далее

нагрев до 1363°С - выдержка 10 час, далее

нагрев до 1365°С - выдержка 15 час,

далее принудительное охлаждение в аргоне.

Суммарная выдержка при гомогенизации для сплава CMSX-10 в температурном интервале 1316-1365°С составляет 45 часов (Materials Science and Engineering, Univesity of Florida, P/ Box 116400 /Rhines hall, Gainesville, FL 32611-64000, USA).

Аналогичные схемы ступенчатых нагревов и изотермических выдержек широко применяются для других жаропрочных сплавов с направленной и монокристаллической структурами, описаны в ряде патентов на сплавы и отличаются между собой температурными интервалами нагревов и временем изотермических выдержек (патент США № 4583608, патент РФ № 2230821).

Все эти режимы отличает большая длительность процесса термической обработки, необходимость строгого контроля выполнения заданного режима нагрева и высокая энергоемкость процесса, что удорожает стоимость изделий, полученных по этим режимам, а также не устраняет возникающую при литье микропористость.

Известен способ повышения качества и эксплуатационной надежности лопаток турбины путем устранения микропористости, повышения усталостной прочности и улучшения комплекса механических свойств, заключающийся в применении горячего изостатического прессования (ГИП). ГИП лопаток ГТД проводят в газостатах при высоких температурах и всестороннем давлении инертного газа (Жаропрочные сплавы для газовых турбин. - М.: Металлургия, 1981, с.15-38).

Недостаток этого способа заключается в окислении поверхности лопаток и проявлении поверхностной рекристаллизации, являющейся браком и снижающей выход годных по структуре изделий.

Известен способ повышения качества и эксплуатационной надежности лопаток ГТД из жаропрочных никелевых сплавов путем нанесения диффузионного защитного покрытия на внутреннюю и внешнюю поверхность предварительно механически обработанного профиля пера лопаток и последующее горячее изостатическое прессование (патент РФ № 2184178).

Способ решает проблему защиты от окисления при ГИП, но не применим к монокристаллическим жаропрочным никелевым сплавам, для которых невозможно механическое воздействие на изделие до проведения термической обработки из-за возникновения поверхностной рекристаллизации, являющейся браком.

Наиболее близким по технической сущности к заявляемому является способ получения изделий из монокристаллических жаропрочных никелевых сплавов, включающий литье методом направленной кристаллизации, горячее изостатическое прессование полученных отливок при давлении инертного газа и термическую обработку, включающую гомогенизирующий отжиг, состоящий из ступенчатых нагревов с изотермическими выдержками, последующие закалку и старение (патент США № 7115175).

Отливку, полученную любым способом направленной кристаллизации, подвергают ГИП, который проводят при Т=(1173,9-1440,6)°С, в течение 3,5-4,5 часов, при давлении инертного газа 91-116 МПа. После ГИП изделие охлаждают до комнатной температуры и помещают в печь для проведения термической обработки - многоступенчатого гомогенизирующего отжига по режиму: нагрев от комнатной Т=21°С до первого температурного интервала (885-1093)°С со скоростью 10-15°С/мин;

из 1-го во 2-ой (1135-1385)°С при скорости 2,5-3,0°С/мин;

из 2-го в 3-тий (1148,9-1412,8)°С при скорости 0,3-0,7°С/мин;

из 3-го в 4-ый (1165,6-1426,7)°С при скорости 0,3-0,4°С/мин;

из 4-го в 5-ый (1173,9-1440,6)°С при скорости 0,13-0,2°С/мин;

из 5-го в 6-ой (1176,7-1454,4)°С при скорости 0,06-0,013°С/мин;

из 6-го в 7-ой (1198,9-1468,3)°С при скорости 0,03-0,08°С/мин.

На 7-ой ступени изделие выдерживают 5-6,5 часов, затем проводят 8-ой температурный интервал (1079,4-1357,2)°С при скорости (0,3-0,4)°С/мин; затем от 8-ой температуры до комнатной охлаждают со скоростью (30-40)°С/мин. После гомогенизирующего отжига изделие подвергают закалке и старению.

Суммарное время технологического процесса, состоящего из ГИП и гомогенизирующего отжига, составляет 30 часов.

Недостатком данного способа-прототипа является достаточно низкий выход годного и большая продолжительность последовательного прохождения всех стадий технологического процесса. Низкий выход годного получается ввиду того, что отливки после удаления литниково-питающей системы и транспортировки имеют внутренние напряжения в местах удара, не выявляемые визуально и являющиеся центрами зарождения рекристаллизованных зерен при последующих ГИП и термической обработке.

Технической задачей настоящего изобретения является создание способа получения изделий из жаропрочных монокристаллических никелевых сплавов, обеспечивающего повышение выхода годных изделий при сокращении длительности технологического процесса.

Для достижения поставленной задачи предлагается способ получения изделий из монокристаллических жаропрочных никелевых сплавов, включающий литье методом направленной кристаллизации, горячее изостатическое прессование полученных отливок при давлении инертного газа и термическую обработку, включающую гомогенизирующий отжиг, состоящий из ступенчатых нагревов с изотермическими выдержками, последующие закалку и старение, отличающийся тем, что перед горячим изостатическим прессованием проводят предварительный отжиг отливок в интервале температур от неравновесного солидуса до температуры, на 5-20°С превышающую температуру полного растворения упрочняющей γ′-фазы, а по крайней мере одну ступень гомогенизирующего отжига совмещают с горячим изостатическим прессованием.

Горячее изостатическое прессование проводят при давлении инертного газа 120-210 МПа, от температуры, на 5-20°С превышающую температуру полного растворения упрочняющей γ′-фазы, не менее 1,5 часов.

Предварительный отжиг отливок проводят для снятия внутренних напряжений, которые могут, при последующих ГИП и гомогенизирующем отжиге, привести к рекристаллизации. Кроме того, в том случае, если эти напряжения не удается снять, то предварительный отжиг в указанном интервале температур позволяет выявить такие отливки до проведения дорогостоящего и энергоемкого процесса ГИП и последующей термообработки. То есть этот отжиг позволяет проводить предварительную отбраковку отливок. Выбранный интервал температур с верхним пределом на 5-20°С выше температуры полного растворения упрочняющей γ′-фазы позволяет выявить бракованные отливки за минимальное время.

Совмещение ГИП и одной или более ступеней гомогенизирующего отжига проводят для сокращения суммарного временного цикла технологического процесса, поскольку процесс ГИП начинают от конечной температуры предварительного отжига, в результате чего суммарное время термообработки отливок не увеличивается.

Давление инертного газа 120-210 МПа позволяет повысить скорость закрытия микропор и выравнивания микроструктуры в отливках.

Пример осуществления.

Пример 1.

Партию отливок турбинных лопаток, полученных из монокристаллического никелевого жаропрочного сплава ЖС36 (Тп.р. γ′=1290°С, Тнеравнов.солидуса = 1280°С, Травнов.солидуса = 1325°С) на установке направленной кристаллизации УВНК-8П в количестве 12 штук поместили в термовакуумную печь для проведения предварительного отжига в течение 1,5 часов в интервале температур от неравновесного солидуса (1280°С) до температуры 1295°С, превышающую температуру полного растворения упрочняющей γ′-фазы на 5°С. После предварительного отжига провели визуальный осмотр на предмет выявления рекристаллизованных зерен на поверхности отливки. Отбраковали 1 отливку. Годные отливки, в количестве 11 штук, поместили в газостат для проведения ГИП и одной ступени гомогенизирующего отжига при давлении инертного газа 210 МПа и температуре от 1295 до 1305°С в течение 1,5 часа.

После процесса горячего изостатического прессования проводилась завершающая часть гомогенизирующего отжига по режиму:

нагрев до 1305°С - выдержка 1 час, далее

нагрев до 1310°С - выдержка 1 час, далее

нагрев до 1315°С - выдержка 1 час, далее

нагрев до 1320°С - выдержка 1 час, далее

нагрев до 1325°С - выдержка 9 часов,

далее закалка и старение.

Контроль макроструктуры показал отсутствие рекристаллизованных зерен в отливках. Контроль микроструктуры показал, что микропористость в отливках практически отсутствует. Выход годного составил 100%. Время технологического процесса: предварительный отжиг - ГИП, гомогенизирующий отжиг, составляет 16 часов.

Пример 2.

Партию отливок створок, полученных из монокристаллического никелевого жаропрочного сплава ЖС36 (Тп.р. γ′=1290°С, Тнеравнов.солидуса = 1280°С, Травнов.солидуса = 1325°С) на установке направленной кристаллизации УВНК-8П в количестве 12 штук поместили в термовакуумную печь для проведения предварительного отжига в течение 2 часов в интервале температур от неравновесного солидуса (1280°С) до температуры 1305°С, превышающую температуру полного растворения упрочняющей γ′-фазы на 15°С. После предварительного отжига провели визуальный осмотр на предмет выявления рекристаллизованных зерен на поверхности отливки. Отбраковали 1 отливку. Годные 11 отливок поместили в газостат для поведения ГИП и двух ступеней гомогенизирующего отжига: I - (1305-1310)°С, II - (1310-1315)°С; при давлении инертного газа 180 МПа в течение 3 часов.

После процесса горячего изостатического прессования проводилась завершающая часть гомогенизирующего отжига по режиму:

нагрев до 1315°С - выдержка 1 час, далее

нагрев до 1320°С - выдержка 1 час, далее

нагрев до 1325°С - выдержка 9 часов,

далее закалка и старение.

Контроль макроструктуры показал отсутствие рекристаллизованных зерен и микропористости в отливках. Выход годного составил 100%. Время технологического процесса: предварительный отжиг - ГИП, гомогенизирующий отжиг, составляет 16 часов.

Пример 3.

Партию отливок турбинных лопаток, полученных из монокристаллического никелевого жаропрочного сплава ЖС36 (Тп.р. γ′=1290°С, Тнеравнов.солидуса = 1280°С, Травнов.солидуса = 1325°С) на установке направленной кристаллизации УВНК-8П в количестве 12 штук поместили в термовакуумную печь для проведения предварительного отжига в течение 3 часов в интервале температур от неравновесного солидуса (1280°С) до температуры 1310°С, превышающую температуру полного растворения упрочняющей γ′-фазы на 20°С. После предварительного отжига провели визуальный осмотр на предмет выявления рекристаллизованных зерен на поверхности отливки. Отбраковали 1 отливку. Годные 11 отливок поместили в газостат для поведения ГИП и трех ступеней гомогенизирующего отжига: I - (1310-1315)°С, II - (1315-1320)°С, III - (1320-1325)°С; при давлении инертного газа 120 МПа в течение 4 часов.

После процесса горячего изостатического прессования проводилась завершающая часть гомогенизирующего отжига по режиму:

нагрев до 1325°С - выдержка 9 часов,

далее закалка и старение.

Контроль макроструктуры показал отсутствие рекристаллизованных зерен и микропористости в отливках. Выход годного составил 100%. Время технологического процесса: предварительный отжиг - ГИП, гомогенизирующий отжиг, составляет 16 часов.

Параллельно, по способу-прототипу были получены турбинные лопатки из монокристаллического жаропрочного никелевого сплава ЖС36. Способ включал получение отливки методом направленной кристаллизации, ГИП и термическую обработку, состоящую из гомогенизирующего отжига со ступенчатыми нагревами и изотермическими выдержками по режимам прототипа. Из 12 отливок после осуществления 30 часового техпроцесса 3 лопатки оказались рекристаллизованными, что для монокристаллических сплавов является однозначно браковочным признаком. Выход годного составил 75%.

Таким образом, применение предлагаемого способа получения изделий из монокристаллических жаропрочных никелевых сплавов позволяет повысить выход годных изделий при сокращении длительности технологического процесса и получать отливки без рекристаллизованных зерен, в которых практически отсутствует микропористость, со значительной экономией времени и энергоресурсов.

Источник поступления информации: Роспатент

Показаны записи 61-70 из 328.
10.10.2015
№216.013.8099

Способ сушки покрытия из серебросодержащей пасты

Изобретение относится к способу сушки покрытия из серебросодержащей пасты, используемой для получения неразъемного соединения при изготовлении силовых полупроводниковых приборов по технологии КНМ «кремний на молибдене». Данная технология позволяет получать соединения при низкой температуре с...
Тип: Изобретение
Номер охранного документа: 0002564518
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.811b

Способ получения композиционного материала на основе ниобия

Изобретение относится к области порошковой металлургии, а именно к получению высокотемпературных композиционных материалов на основе ниобия с оксидным упрочнением. Порошки для приготовления матрицы перемешивают и подвергают механическому легированию в защитной атмосфере с образованием массива...
Тип: Изобретение
Номер охранного документа: 0002564648
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.811d

Способ нанесения электропроводящего покрытия для электрообогреваемого элемента органического остекления

Изобретение относится к вакуумному нанесению покрытий, а именно к нанесению электропроводящего прозрачного покрытия на полимерную пленку для электрообогреваемого элемента органического остекления. Проводят реактивное магнетронное распыление металлической мишени в атмосфере газовой смеси...
Тип: Изобретение
Номер охранного документа: 0002564650
Дата охранного документа: 10.10.2015
20.10.2015
№216.013.8326

Эпоксидное связующее пленочного типа

Изобретение относится к области создания эпоксидных связующих пленочного типа для формования полимерных композиционных материалов (ПКМ), предназначенных для использования в авиационной, машино-, авто-, судостроительной промышленности и других отраслях техники. Эпоксидное связующее пленочного...
Тип: Изобретение
Номер охранного документа: 0002565177
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.832d

Многослойное электропроводящее покрытие на основе термостойкого связующего

Изобретение относится к области молниезащитных электропроводящих покрытий для конструкций из полимерных композиционных материалов, используемых в авиационной промышленности, и касается многослойного электропроводящего покрытия на основе термостойкого связующего. Содержит по меньшей мере два...
Тип: Изобретение
Номер охранного документа: 0002565184
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.832f

Композиционный слоистый материал и способ его получения

Изобретение относится к авиастроительной промышленности, в частности к слоистым металлополимерным композиционным материалам, и касается композиционного слоистого материала и способа его получения. Материал содержит, по меньшей мере, два слоя алюминиевого сплава, причем каждый алюминиевый слой...
Тип: Изобретение
Номер охранного документа: 0002565186
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.834c

Градиентный металлостеклопластик и изделие, выполненное из него

Изобретение относится к слоистым алюмополимерным композиционным материалам, предназначенным для применения в силовых элементах планера самолета и их ремонта, а также в других транспортных средствах. Градиентный металлостеклопластик, состоящий из внешних листов высокомодульного Al-Li сплава с...
Тип: Изобретение
Номер охранного документа: 0002565215
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.86da

Свариваемый сплав на основе титана

Изобретение относится к металлургии, а именно к производству титановых сплавов, и может быть использовано для изготовления деформированных полуфабрикатов, а также отливок, предназначенных для изготовления деталей энергетического и транспортного машиностроения, авиационной и космической техники...
Тип: Изобретение
Номер охранного документа: 0002566125
Дата охранного документа: 20.10.2015
10.11.2015
№216.013.8dcc

Способ получения полимерных пленок с пористой градиентной структурой

Изобретение относится к способу получения полимерных пленок с пористой градиентной структурой и может быть использовано в качестве разделительных мембран, покрытий, электроизоляционных, гидрофобных и защитных материалов для устройств радио- и микроэлектроники, деталей оптических систем,...
Тип: Изобретение
Номер охранного документа: 0002567907
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.8fb7

Волокнистый композиционный материал с матрицей на основе ниобия

Изобретение относится к области металлургии, а именно к высокотемпературным композиционным материалам на основе ниобия, упрочненным оксидными волокнами, применяемым для изготовления конструкционных деталей авиационного назначения. Волокнистый композиционный материал содержит матрицу и...
Тип: Изобретение
Номер охранного документа: 0002568407
Дата охранного документа: 20.11.2015
+ добавить свой РИД