×
10.07.2019
219.017.ab11

Результат интеллектуальной деятельности: СПОСОБ ЗАЩИТЫ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ)

Вид РИД

Изобретение

Аннотация: Изобретение относится к области газотурбинных двигателей. Технический результат - повышение эффективности системы защиты турбореактивного двигателя при потере газодинамической устойчивости достигается за счет селективного управления исполнительными органами двигателя в зависимости от типа потери газодинамической устойчивости. Измеряют давление за последней ступенью компрессора газотурбинного двигателя и преобразуют полученный аналоговый сигнал в реальном времени в электрический сигнал, соответствующий величине отношения амплитуды колебаний текущего давления к его среднему значению. Электрический сигнал последовательно сравнивают с предварительно заданными собственным критерием для типа потери устойчивости в виде диапазона частот контролируемого параметра и пороговой величиной срабатывания в виде предельного значения отношения амплитуды колебаний давления к среднему значению, а полученные по результату сравнения сигналы наличия срывного режима, подают на исполнительные механизмы двигателя в соответствии с типом потери устойчивости для парирования до выхода двигателя из срывного режима. В качестве типов потери устойчивости используют "помпаж", "вращающийся срыв" и совокупность "помпаж - вращающийся срыв". Сигналы подают при "помпаже" на органы механизации компрессора, при "вращающемся срыве" одновременно на систему регулирования расхода топлива двигателя и органы механизации компрессора, при совокупности "помпаж - вращающийся срыв" вначале подают сигнал на органы механизации компрессора, а затем на систему регулирования расхода топлива. 3 н. и 4 з.п. ф-лы, 7 ил.

Изобретение относится к области газотурбинных двигателей, а точнее касается защиты газотурбинного, преимущественно авиационного, двигателя, содержащего компрессор, при потере газодинамической устойчивости.

Известен сигнализатор помпажа, содержащий датчик давления с логарифмической выходной характеристикой, две RC-цепочки с различными постоянными времени для регистрации разности сигналов датчика до и после помпажа (авт.св. СССР №522344, МКИ F 04 D 27/02, опубл. 1976 г.).

Известен способ сигнализации о возникновении помпажного режима компрессора, например, турбореактивного двигателя, путем измерения давления воздуха за компрессором, при котором определяют отношение между изменением давления воздуха при срыве к давлению воздуха за компрессором до срыва и подают этот импульс на указатель помпажа, только с частотой, соответствующей началу срыва (авт.св. СССР 229883, МКИ F 04 D 27/02, опубл. 1986 г.).

Для реализации способа сигнал с датчика давления, пропорциональный текущей величине давления, поступает на устройство выработки относительной величины изменения давления при срыве, выходной сигнал которого поступает на вход фильтра, усилитель и реле. На установившихся режимах сигнал на выходе фильтра отсутствует. При срыве скорость изменения давления лежит в полосе пропускания фильтра и на вход в усилитель проходит сигнал, который затем поступает на реле. При превышении сигналом на выходе усилителя порогового значения реле срабатывает и выдает сигнал в систему аварийной сигнализации или аварийной защиты двигателя при срыве.

Известен способ защиты компрессора от неустойчивых режимов работы (авт.св. СССР №1783170, МКИ F 04 D 27/02, опубл. 1992 г.). Известный способ может быть использован для регулирования режима работы газотурбинного двигателя. Согласно известному способу измеряют разность давления газа в двух точках лопатки компрессора, сравнивают с первой пороговой величиной и, при превышении измеренной разности первой пороговой величины, формируют сигнал наличия предсрывного режима, а также определяют значение производной по времени от измеренной разности давления газа, сравнивают значение производной со второй пороговой величиной и, при превышении значением производной второй пороговой величины, формируют сигнал наличия предсрывного режима. Точки замера разности давления газа устанавливают на спинке и корытце лопатки.

Схема реализации предлагаемого способа содержит дифференциальный датчик давления, преобразующий величину разности давления в электрический сигнал, блок сравнения с первой пороговой величиной, на вход которого поступает электрический сигнал с выхода датчика давления, блок формирования производной по времени, на вход которого поступает электрический сигнал с выхода датчика давления, блок сравнения со второй пороговой величиной, на вход которого поступает сигнал с выхода блока формирования производной по времени, блок ИЛИ, на один вход которого поступает сигнал наличия предсрывного режима с выхода блока сравнения с первой пороговой величиной, а на другой вход которого поступает с выхода блок сравнения со второй пороговой величиной, а с выхода выводят сигнал наличия предсрывного режима на привод исполнительного механизма.

Известны также различные сигнализаторы, реагирующие на изменение различных контролируемых параметров.

Характерным параметром для помпажных явлений служит резкое падение давления воздуха за компрессором и по тракту двигателя вначале помпажа, повторяющееся при каждом импульсе помпажных колебаний, что может служить признаком помпажных процессов.

Известны сигнализаторы, реагирующие на изменение давления за компрессором.

Известна система для газотурбинных двигателей сверхзвуковых самолетов (патент США, №3852958), которая измеряет давление на выходе компрессора, дифференцирует полученный сигнал и сравнивает текущую скорость изменения давления с максимально допустимой скоростью. Когда текущее значение скорости уменьшения давления превосходит заданный уровень, то текущее значение интегрируется и сигнал на выходе интергатора сравнивается с заданным значением изменения давления. Если это задание превзойдено, то система уменьшает подачу топлива (И.Л.Письменный. Многочастотные нелинейные колебания в газотурбинном двигателе. М.: Машиностроение, 1987 г., стр.91).

Известна система защиты авиационного газотурбинного двигателя от помпажа (Теория автоматического управления силовыми установками летательных аппаратов, под ред. д-ра техн. наук, проф. А.А.Шевякова, Москва: Машиностроение, 1976 г., стр.102-104).

Система содержит датчик, на вход которого поступает контролируемый параметр, сигнализатор срыва компрессора, на вход которого поступает сигнал с выхода датчика, блок формирования командных сигналов, на один вход которого поступает сигнал с выхода сигнализатора срыва компрессора, а на два других - сигнал принудительного включения системы с целью кратковременного увеличения запасов устойчивости и сигналы, характеризующие условия работы двигателя (высота и скорость полета), и систему регулирования двигателя, на вход которой поступают: команда на изменение подачи топлива, команда на изменение положения органов механизации двигателя, команда на включение системы зажигания, которые поступают с выхода блока формирования командных сигналов.

Известная система осуществляет способ защиты двигателя, содержащего компрессор, при потере газодинамической устойчивости, включающий автоматическое обнаружение возникшего срывного явления в компрессоре, формирование необходимых командных сигналов для исполнительных органов, осуществляющих парирование возмущения, ликвидацию срывного явления и восстановление режима работы двигателя.

Известные технические решения используют для защиты газотурбинного двигателя при потере газодинамической устойчивости независимо от ее вида одновременно максимальные воздействия, изменяя положения органов механизации компрессора и подачу топлива в камеру сгорания, что ведет к значительным потерям импульса тяги газотурбинного двигателя, существенному снижению частоты вращения роторов двигателя и достаточно длительному восстановлению исходного режима.

Задачей предлагаемого изобретения является снижение потери импульса тяги, связанное с работой системы защиты при потере газодинамической устойчивости и повышение надежности работы газотурбинного двигателя.

Технический результат - повышение эффективности системы защиты газотурбинного двигателя при потере газодинамической устойчивости, достигается за счет селективного (выборочного) управления исполнительными органами двигателя в зависимости от типа потери газодинамической устойчивости.

Важной составляющей для решения поставленной задачи является обеспечение надежного сигнала о потере газодинамической устойчивости в течение всего срывного процесса.

Известно, что потеря газодинамической устойчивости может быть различных видов (Теория автоматического управления силовыми установками летательных аппаратов, под ред. д-ра техн. наук, проф. А.А.Шевякова, Москва: Машиностроение, 1976 г., стр.102-104).

На определенных режимах работы газотурбинных двигателей нарушается устойчивость течения и возникает продольная неустойчивость течения в целом во всей газодинамической системе. Она может проявляться в виде циклических низкочастотных колебаний потока по всему тракту двигателя, которые принято называть "помпажом", и в виде апериодического процесса, который сопровождается высокочастотными колебаниями, связанными с наличием вращающейся срывной зоны в проточной части компрессора, течение же на некотором расстоянии от компрессора является практически стационарным. Этот вид газодинамической неустойчивости принято называть "вращающимся срывом".

Авторами установлено, что такие известные виды потери устойчивости как "помпаж" и "вращающийся срыв" имеют различные диапазоны частот колебаний и величины относительных колебаний контролируемого параметра (давления за компрессором), что позволяет осуществлять раздельную регистрацию этих видов потери газодинамической устойчивости и управление соответствующими исполнительными механизмами двигателя в зависимости от типа потери газодинамической устойчивости.

Под величиной относительных колебаний давления за компрессором понимается отношение амплитуды ΔР колебаний давления за компрессором к среднему значению давления Р (что далее поясняется фиг.1б).

Поставленная задача решается тем, что в способе защиты газотурбинного двигателя, содержащего компрессор, при потере газодинамической устойчивости, при котором измеряют параметр, реагирующий на потерю газодинамической устойчивости работы двигателя, сравнивают с пороговой величиной и, по результату сравнения, формируют сигнал наличия срывного режима, который подают на исполнительные механизмы двигателя, в качестве параметра, реагирующего на потерю газодинамической устойчивости работы двигателя, измеряют давление за последней ступенью компрессора, преобразуют полученный аналоговый сигнал в реальном времени в электрический сигнал, соответствующий величине отношения амплитуды колебаний текущего давления к его среднему значению, и используют полученный сигнал в качестве контролируемого параметра для контроля газодинамической устойчивости двигателя соответственно типу потери газодинамической устойчивостью с образованием самостоятельного канала для контроля каждого типа потери устойчивости, при этом параллельно в каждом канале текущий электрический сигнал последовательно сравнивают с предварительно заданными собственным критерием для типа потери устойчивости в виде диапазона частот контролируемого параметра и пороговой величиной срабатывания в виде предельного значения отношения амплитуды колебаний давления к среднему значению, а, полученные по результату сравнения, сигналы наличия срывного режима, подают на исполнительные механизмы двигателя в соответствии с типом потери устойчивости для парирования до выхода двигателя из срывного режима.

Целесообразно, чтобы в качестве типов потери устойчивости использовали бы "помпаж", "вращающийся срыв" и совокупность "помпаж - вращающийся срыв" и подавали сигналы при "помпаже" на органы механизации компрессора, при "вращающемся срыве" одновременно на систему регулирования расхода топлива двигателя и органы механизации компрессора, при совокупности "помпаж - вращающийся срыв" вначале подавали сигнал на органы механизации компрессора, а затем - на систему регулирования расхода топлива.

Также целесообразно, чтобы интервал частот критерия потери устойчивости типа "помпаж" составлял бы от 8 до 30 Гц, а интервал частот критерия потери устойчивости типа "вращающийся срыв" составлял бы от 8 до 120 Гц.

Поставленная задача решается также тем, что в устройстве защиты газотурбинного двигателя, содержащего компрессор, при потере газодинамической устойчивости, содержащем систему регулирования работы двигателя, вход которой подсоединен к выходу датчика давления, а выход связан с исполнительными механизмами двигателя, система регулирования работы двигателя содержит блок формирования электрического сигнала величины отношения амплитуды колебаний текущего давления к его среднему значению в реальном времени, вход которого подсоединен к выходу датчика давления и является входом в систему регулирования, схему выделения сигнала "помпаж" путем сравнения сформированного электрического сигнала с заданным диапазоном частот потери устойчивости типа "помпаж", схему выделения сигнала "вращающейся срыв" путем сравнения сформированного электрического сигнала с заданным диапазоном частот потери устойчивости типа "вращающейся срыв", при этом входы обеих схем выделения параллельно соединены с выходом блока формирования, схему сравнения сигнала "помпаж" с пороговой величиной срабатывания в виде предельного значения отношения амплитуды колебаний давления к среднему значению при "помпаже", вход которой соединен с выходом схемы выделения сигнала "помпаж", а с выхода выводят сигнал наличия срывного режима "помпаж", схему сравнения сигнала "вращающийся срыв" с пороговой величиной срабатывания в виде предельного значения отношения амплитуды колебаний давления к среднему значению при "вращающемся срыве", вход которой соединен с выходом схемы выделения сигнала "вращающийся срыв", а с выхода выводят сигнал наличия срывного режима "вращающийся срыв", схему соединения, входы которой связаны с соответствующими выходами обеих схем сравнения, а выходы связаны с исполнительными механизмами для формирования сигнала воздействия для защиты двигателя соответственно типу потери устойчивости, при этом в схеме соединения выход схемы сравнения сигнала "вращающийся срыв" соединен с исполнительным механизмом системы подачи топлива и с исполнительным механизмом органов механизации компрессора через диодную развязку, обеспечивающую срабатывание исполнительных механизмов одновременно, а выход схемы сравнения сигнала "помпаж" соединен с исполнительным механизмом органов механизации компрессора через другую диодную развязку, обеспечивающую его собственное срабатывание.

Целесообразно, чтобы вход системы регулирования работы двигателя был бы подсоединен к датчику давления, который был бы установлен за последней ступенью компрессора.

Поставленная задача решается также тем, что в устройстве защиты газотурбинного двигателя, содержащего компрессор, при потере газодинамической устойчивости, содержащем систему регулирования работы двигателя, вход которой подсоединен к выходу датчика давления, а выход связан с исполнительными механизмами двигателя, система регулирования работы двигателя содержит блок формирования электрического сигнала величины отношения амплитуды колебаний текущего давления к его среднему значению в реальном времени, вход которого подсоединен к выходу датчика давления и является входом в систему регулирования, схему выделения сигнала "помпаж" путем сравнения сформированного электрического сигнала с заданным диапазоном частот потери устойчивости типа "помпаж", схему выделения сигнала "вращающейся срыв" путем сравнения сформированного электрического сигнала с заданным диапазоном частот потери устойчивости типа "вращающейся срыв", при этом входы обеих схем выделения параллельно соединены с выходом блока формирования, схему сравнения сигнала "помпаж" с пороговой величиной срабатывания в виде предельного значения отношения амплитуды колебаний давления к среднему значению при "помпаже", вход которой соединен с выходом схемы выделения сигнала "помпаж", а с выхода выводят сигнал наличия срывного режима "помпаж", схему сравнения сигнала "вращающийся срыв" с пороговой величиной срабатывания в виде предельного значения отношения амплитуды колебаний давления к среднему значению при "вращающемся срыве", вход которой соединен с выходом схемы выделения сигнала "вращающийся срыв", а с выхода выводят сигнал наличия срывного режима "вращающийся срыв", схему соединения, входы которой связаны с соответствующими выходами обеих схем сравнения, а выходы связаны с исполнительными механизмами для формирования сигнала воздействия для защиты двигателя соответственно типу потери устойчивости, при этом в схеме соединения выход схемы сравнения сигнала "вращающийся срыв" соединен с исполнительным механизмом системы подачи топлива и с исполнительным механизмом органов механизации компрессора через диодную развязку, обеспечивающую срабатывание исполнительных механизмов одновременно, а выход схемы сравнения сигнала "помпаж" соединен с исполнительным механизмом системы механизации компрессора через другую диодную развязку, обеспечивающую его собственное срабатывание, при этом схема соединения дополнительно содержит элемент НЕ, который подключен к выходу схемы сравнения сигнала "помпаж", и элемент И, который одним входом подключен к выходу элемента НЕ, другим входом - к выходу схемы сравнения сигнала "вращающийся срыв", а выходом одновременно связан с исполнительными механизмами системы подачи топлива и органов механизации компрессора.

Целесообразно, чтобы вход системы регулирования работы двигателя был бы подсоединен к датчику давления, который был бы установлен за последней ступенью компрессора.

В дальнейшем предлагаемое изобретение поясняется описанием и чертежами.

Краткое описание чертежей.

На фиг.1а представлен вид колебаний давления за последней ступенью компрессора и воздействий на исполнительный механизм газотурбинного двигателя при потере газодинамической устойчивости типа "помпаж", согласно изобретению.

Фиг.1б иллюстрирует колебания давления за компрессором Рк, амплитуду ΔР колебаний и среднее значение давления Р.

На фиг.2 представлен вид колебаний давления за последней ступенью компрессора и воздействий на исполнительные механизмы газотурбинного двигателя при потере газодинамической устойчивости типа "вращающийся срыв", согласно изобретению.

На фиг.3 представлен вид колебаний давления за последней ступенью компрессора и воздействий на исполнительные механизмы газотурбинного двигателя при потере газодинамической устойчивости типа "помпаж-вращающийся срыв", согласно изобретению.

На фиг.4 представлен вид критерия потери газодинамической устойчивости типа "помпаж", реализуемый согласно изобретению.

На фиг.5 представлен вид критерия потери газодинамической устойчивости типа "вращающийся срыв", реализуемый согласно изобретению.

На фиг.6 представлена принципиальная схема устройства для защиты газотурбинного двигателя при потере газодинамической устойчивости.

На фиг.7 представлена принципиальная схема устройства для защиты газотурбинного двигателя при потере газодинамической устойчивости (вариант).

В качестве типов потери устойчивости используют основные, базовые типы потери устойчивости: "помпаж", "вращающийся срыв".

Способ защиты газотурбинного двигателя, содержащего компрессор, при потере газодинамической устойчивости, осуществляют следующим образом.

Измеряют давление Рк за последней ступенью компрессора газотурбинного двигателя. Давление Рк может быть измерено статическое или полное.

При потере газодинамической устойчивости двигателя возникают колебания Рк (фиг.1...3)

Вид колебаний Рк при потере газодинамической устойчивости типа "помпаж" и "вращающийся срыв" приведены на фиг.1а и фиг.2 соответственно. Вид колебаний Рк при совокупности "помпаж-вращающийся срыв" приведен на фиг.3. Имеет место потеря газодинамической устойчивости типа "помпаж", в момент времени t1-t2 (фиг.1a), "вращающийся срыв" (фиг.2) в момент времени t3-t4 или совокупность "помпаж-вращающийся срыв" (фиг.3), при которой потеря устойчивости типа "помпаж" в момент времени (t2t3) перешла в потерю устойчивости типа "вращающийся срыв". Как видно, потери устойчивости "помпаж" и "вращающийся срыв" имеют колебания Рк различного характера по амплитуде и частоте колебаний, что позволяет использовать Рк в качестве параметра, реагирующего на потерю газодинамической устойчивости работы двигателя.

Полученный аналоговый сигнал Рк в реальном времени преобразуют в электрический сигнал, соответствующий величине отношения ΔР/Р, где ΔР - амплитуда колебаний текущего измеренного давления Рк, Р - среднее значение давления в колебательном процессе при потере газодинамической устойчивости (фиг.1б).

Кроме того, установлено, что электрический сигнал, соответствующий ΔР/Р, при потере газодинамической устойчивости типа "помпаж" лежит в полосе частот так, как это изображено на фиг.4, при потере газодинамической устойчивости типа "вращающийся срыв" так, как это изображено на фиг.5.

Как видно из фиг.1...5, величина ΔР/Р при потере устойчивости типа "помпаж" и типа "вращающийся срыв" имеет различные значения и различные собственные частотные характеристики колебаний. Поэтому текущий электрический сигнал, соответствующий ΔР/Р в реальном времени, используют в качестве контролируемого параметра для контроля газодинамической устойчивости двигателя соответственно типу потери газодинамической устойчивости и сравнивают его в реальном времени параллельно с предварительно заданным критерием в виде интервала частот f1-f2 для потери устойчивости типа "помпаж" (фиг.4) и предварительно заданным критерием в виде интервала частот f3-f4 для потери устойчивости типа "вращающийся срыв" (фиг.5).

Выделенные сигналы "помпаж" и/или "вращающийся срыв" сравнивают с заданной пороговой величиной срабатывания в виде предельного отношения амплитуды колебаний давления к среднему значению (ΔР/Р)п при "помпаже" и (ΔР/Р)вс при "вращающемся срыве" соответственно.

Интервал частот критерия потери устойчивости типа "помпаж" составляет от 8 до 30 Гц.

Интервал частот критерия потери устойчивости типа "вращающийся срыв" составляет от 8 до 120 Гц.

Полученные по результату сравнения сигналы наличия срывного режима "помпаж" и/или "вращающийся срыв" подают на исполнительные механизмы двигателя в соответствии с типом потери устойчивости для парирования до выхода двигателя из срывного режима так, как показано на фиг.1а, 2, 3. Точки 1...4 на фиг.1а, 2, 3 соответствуют далее точкам ①...④ на схеме фиг.6 и фиг.7.

Сигнал наличия срывного режима "помпаж" подают на органы механизации компрессора 1, например, поворота лопаток компрессора, с момента времени t1 до момента времени t2, (фиг.1a), сигнал наличия срывного режима "вращающийся срыв" подают одновременно на органы механизации компрессора 1 и на систему регулирования расхода топлива 2 с момента времени t3 до момента времени t4. (фиг.2), при получении совокупного сигнала "помпаж" - "вращающийся срыв" вначале подают сигналы на органы механизации компрессора 1 с момента времени t1 до момента времени t4, и затем, в момент времени (t2t3) до момента времени t4, на систему регулирования расхода топлива 3.

Способ защиты работы газотурбинного двигателя при потере газодинамической устойчивости реализуется с помощью устройств (варианты), согласно изобретению.

Устройство для защиты газотурбинного двигателя при потере газодинамической устойчивости (фиг.6 и фиг.7) содержит датчик 1 давления, который установлен за последней ступенью компрессора, и систему 2 регулирования работы двигателя, входом подсоединенную к выходу датчика 1, с которого поступает аналоговый сигнал 3, а выходом связанную с исполнительными механизмами двигателя. Исполнительными механизмами двигателя могут быть органы механизации компрессора 4, например, для поворота лопаток компрессора, и органы системы регулирования расхода топлива 5. Могут быть и другие исполнительные механизмы (на чертеже не показаны).

Система 2 регулирования содержит блок 6 формирования электрического сигнала величины отношения амплитуды колебаний текущего давления к среднему значению в реальном времени, вход которого подсоединен к выходу датчика 1 и является входом в систему 2 регулирования, схему 9 выделения сигнала "помпаж" путем сравнения сформированного электрического сигнала 7 с заданным диапазоном частот потери устойчивости типа "помпаж", схему 10 выделения сигнала "вращающийся срыв" путем сравнения сформированного электрического сигнала 8 с заданным диапазоном частот потери устойчивости типа "вращающийся срыв", при этом входы обеих схем выделения 9 и 10 параллельно соединены с выходом блока 6 формирования, схему 11 сравнения сигнала "помпаж" с пороговой величиной срабатывания в виде предельного значения отношения амплитуды колебаний текущего давления к среднему значению давления при "помпаже", вход 12 которой соединен с выходом схемы 9 выделения сигнала "помпаж", а с выхода выводят сигнал 13 наличия срывного режима "помпаж", схему 14 сравнения сигнала "вращающийся срыв" с пороговой величиной срабатывания в виде предельного значения отношения амплитуды колебаний текущего давления к среднему значению давления при "вращающемся срыве", вход 15 которой соединен с выходом схемы 10 выделения сигнала "вращающийся срыв", а с выхода выводят сигнал 16 наличия срывного режима "вращающийся срыв".

Система 2 регулирования содержит схему 17 соединения, входы которой связаны с соответствующими выходами обеих схем 11 и 14 сравнения, а выходы связаны с исполнительными механизмами 4 и 5 для формирования сигнала воздействия для защиты двигателя соответственно типу потери устойчивости.

Схема 17 соединяет выход схемы 11 сравнения сигнала "помпаж" через диодную развязку 19 с органами механизации компрессора 4, а выход схемы 14 сравнения сигнала "вращающийся срыв" через диодную развязку 18 с органами механизации компрессора 4 и системы регулирования расхода топлива 5, соответственно.

В варианте выполнения устройства (фиг.7) схема 17 соединения дополнительно содержит элемент НЕ, который подключен к выходу схемы 11 сравнения сигнала "помпаж", и элемент И, который одним входом подключен к выходу элемента НЕ, другим входом - к выходу сравнения сигнала "вращающийся срыв", а выходом одновременно связан с исполнительными механизмами системы подачи топлива 5 и органов механизации компрессора 4.

Система 2 регулирования работы двигателя может быть изготовлена на известных схемных решениях. Схема 11 сравнения сигнала "помпаж" может быть выполнена на основе узкополосного частотного фильтра, а схема 14 сравнения сигнала "вращающийся срыв" на основе широкополосного частотного фильтра.

При работе устройство реализует способ, согласно изобретению.

На вход блока 6 формирования непрерывно поступает аналоговый сигнал 3 с выхода датчика давления 1, преобразуется в реальном времени в электрический сигнал, соответствующий величине отношения амплитуды колебаний текущего давления к его среднему значению, который поступает параллельно на вход схемы 9 выделения сигнала "помпаж" и на вход схемы 10 выделения сигнала "вращающийся срыв". При совпадении с заданным собственным диапазоном частот потери устойчивости типа "помпаж" или "вращающийся срыв" на выходе схем 9 и/или 10 появляется сигнал(ы), поступающие на входы соответствующих схем 11 и 14, где они сравниваются с соответствующей заданной пороговой величиной срабатывания. В случае превышения пороговой величины, на выходе формируется сигнал 13 наличия срывного режима типа "помпаж" и/или сигнал 16 наличия срывного режима типа "вращающийся срыв". Сигнал 13 подается в момент времени t1 через диодную развязку 19 на органы механизации компрессора 4 (фиг.6) и на вход элемента НЕ (фиг.7). В точке ① появляется сигнал постоянного тока, который сохраняется до выхода двигателя из срывного режима "помпаж" в течение времени t1-t2 (фиг.1a). Сигнал 16 в момент времени t3 подается одновременно через диодную развязку 18 (фиг.6) и элемент И (фиг.7) на систему регулирования расхода топлива 5 и на органы механизации компрессора 4. В точке ③ появляется сигнал постоянного тока, который сохраняется до выхода двигателя из срывного режима "вращающийся срыв" в течение времени t3-t4 (фиг.2).

В случае совокупности "помпаж-вращающийся срыв", (фиг.3) формируется сигнал 13 и затем сигнал 16. Сигнал 13 подается в момент времени t1 через диодную развязку 19 на органы механизации компрессора 4 (фиг.6) и на вход элемента НЕ (фиг.7). Сигнал 16 в момент времени t3 подается через диодную развязку 18 (фиг.6) и элемент И (фиг.7) на систему регулирования расхода топлива 5 на время t3-t4 и на органы механизации компрессора 4. В точке ① сохраняется сигнал постоянного тока до выхода двигателя из срывного режима "помпаж-вращающийся срыв" в течение времени t1-t4 (фиг.3), в точке ③ - в течении времени t3-t4.

В первом случае (фиг.1а) при возникновении помпажных колебаний подключается только механизация компрессора.

Во втором случае (фиг.2), когда режим "вращающийся срыв" реализуется сразу, совместно одновременно используется механизация компрессора и сброс расхода топлива.

В третьем случае (фиг.3), когда после циклов помпажа происходит переход во вращающийся срыв, дополнительно к механизации компрессора задействуется сброс расхода топлива.

При использовании изобретения время ликвидации срывного режима "помпаж" сокращается на 20-30%, время ликвидации срывного режима "вращающийся срыв" сокращается на 30-50%, а совокупности "помпаж-вращающийся срыв" - на 15-20%. Потери импульса тяги коррелируются с временем нахождения двигателя в срывном режиме и снижаются в том же процентном отношении.

1.Способзащитыгазотурбинногодвигателя,содержащегокомпрессор,припотерегазодинамическойустойчивости,прикоторомизмеряютпараметр,реагирующийнапотерюгазодинамическойустойчивостиработыдвигателя,сравниваютспороговойвеличинойипорезультатусравненияформируютсигналналичиясрывногорежима,которыйподаютнаисполнительныемеханизмыдвигателя,отличающийсятем,чтовкачествепараметра,реагирующегонапотерюгазодинамическойустойчивостиработыдвигателя,измеряютдавлениезапоследнейступеньюкомпрессора,преобразуютполученныйаналоговыйсигналвреальномвременивэлектрическийсигнал,соответствующийвеличинеотношенияамплитудыколебанийтекущегодавлениякегосреднемузначению,ииспользуютполученныйсигналвкачествеконтролируемогопараметрадляконтролягазодинамическойустойчивостидвигателясоответственнотипупотеригазодинамическойустойчивостисобразованиемсамостоятельногоканаладляконтролякаждоготипапотериустойчивости,приэтомпараллельновкаждомканалетекущийэлектрическийсигналпоследовательносравниваютспредварительнозаданнымисобственнымкритериемдлятипапотериустойчивостиввидедиапазоначастотконтролируемогопараметраипороговойвеличинойсрабатыванияввидепредельногозначенияотношенияамплитудыколебанийдавленияксреднемузначению,аполученныепорезультатусравнениясигналыналичиясрывногорежимаподаютнаисполнительныемеханизмыдвигателявсоответствиистипомпотериустойчивостидляпарированиядовыходадвигателяизсрывногорежима.12.Способпоп.1,отличающийсятем,чтовкачестветиповпотериустойчивостииспользуют"помпаж","вращающийсясрыв"исовокупность"помпаж-вращающийсясрыв"иподаютсигналыпри"помпаже"наорганымеханизациикомпрессора,при"вращающемсясрыве"одновременнонасистемурегулированиярасходатопливадвигателяиорганымеханизациикомпрессора,присовокупности"помпаж-вращающийсясрыв"вначалеподаютсигналнаорганымеханизациикомпрессора,азатемнасистемурегулированиярасходатоплива.23.Способпоп.1или2,отличающийсятем,чтоинтервалчастоткритерияпотериустойчивоститипа"помпаж"составляетот8до30Гц,аинтервалчастоткритерияпотериустойчивоститипа"вращающийсясрыв"составляетот8до120Гц.34.Устройствозащитыгазотурбинногодвигателя,содержащегокомпрессор,припотерегазодинамическойустойчивости,содержащеесистемурегулированияработыдвигателя,входкоторойподсоединенквыходудатчикадавления,авыходсвязансисполнительнымимеханизмамидвигателя,отличающеесятем,чтосистемарегулированияработыдвигателясодержитблокформированияэлектрическогосигналавеличиныотношенияамплитудыколебанийтекущегодавлениякегосреднемузначениювреальномвремени,входкоторогоподсоединенквыходудатчикадавленияиявляетсявходомвсистемурегулирования,схемувыделениясигнала"помпаж"путемсравнениясформированногоэлектрическогосигналасзаданнымдиапазономчастотпотериустойчивоститипа"помпаж",схемувыделениясигнала"вращающийсясрыв"путемсравнениясформированногоэлектрическогосигналасзаданнымдиапазономчастотпотериустойчивоститипа"вращающийсясрыв",приэтомвходыобеихсхемвыделенияпараллельносоединенысвыходомблокаформирования,схемусравнениясигнала"помпаж"спороговойвеличинойсрабатыванияввидепредельногозначенияотношенияамплитудыколебанийдавленияксреднемузначениюпри"помпаже",входкоторойсоединенсвыходомсхемывыделениясигнала"помпаж",асвыходавыводятсигналналичиясрывногорежима"помпаж",схемусравнениясигнала"вращающийсясрыв"спороговойвеличинойсрабатыванияввидепредельногозначенияотношенияамплитудыколебанийдавленияксреднемузначениюпри"вращающемсясрыве",входкоторойсоединенсвыходомсхемывыделениясигнала"вращающийсясрыв",асвыходавыводятсигналналичиясрывногорежима"вращающийсясрывсхемусоединения,входыкоторойсвязаныссоответствующимивыходамиобеихсхемсравнения,авыходысвязанысисполнительнымимеханизмамидляформированиясигналавоздействиядлязащитыдвигателясоответственнотипупотериустойчивости,приэтомвсхемесоединениявыходсхемысравнениясигнала"вращающийсясрыв"соединенсисполнительныммеханизмомсистемыподачитопливаисисполнительныммеханизмоморгановмеханизациикомпрессорачерездиоднуюразвязку,обеспечивающуюсрабатываниеисполнительныхмеханизмоводновременно,авыходсхемысравнениясигнала"помпаж"соединенсисполнительныммеханизмоморгановмеханизациикомпрессорачерездругуюдиоднуюразвязку,обеспечивающуюегособственноесрабатывание.45.Устройствопоп.4,отличающеесятем,чтовходсистемырегулированияработыдвигателяподсоединенкдатчикудавления,которыйустановлензапоследнейступеньюкомпрессора.56.Устройствозащитыгазотурбинногодвигателя,содержащегокомпрессор,припотерегазодинамическойустойчивости,содержащеесистемурегулированияработыдвигателя,входкоторойподсоединенквыходудатчикадавления,авыходсвязансисполнительнымимеханизмамидвигателя,отличающеесятем,чтосистемарегулированияработыдвигателясодержитблокформированияэлектрическогосигналавеличиныотношенияамплитудыколебанийтекущегодавлениякегосреднемузначениювреальномвремени,входкоторогоподсоединенквыходудатчикадавленияиявляетсявходомвсистемурегулирования,схемувыделениясигнала"помпаж"путемсравнениясформированногоэлектрическогосигналасзаданнымдиапазономчастотпотериустойчивоститипа"помпаж",схемувыделениясигнала"вращающейсясрыв"путемсравнениясформированногоэлектрическогосигналасзаданнымдиапазономчастотпотериустойчивоститипа"вращающийсясрыв",приэтомвходыобеихсхемвыделенияпараллельносоединенысвыходомблокаформирования,схемусравнениясигнала"помпаж"спороговойвеличинойсрабатыванияввидепредельногозначенияотношенияамплитудыколебанийдавленияксреднемузначениюпри"помпаже",входкоторойсоединенсвыходомсхемывыделениясигнала"помпаж",асвыходавыводятсигналналичиясрывногорежима"помпаж",схемусравнениясигнала"вращающийсясрыв"спороговойвеличинойсрабатыванияввидепредельногозначенияотношенияамплитудыколебанийдавленияксреднемузначениюпри"вращающемсясрыве",входкоторойсоединенсвыходомсхемывыделениясигнала"вращающийсясрыв",асвыходавыводятсигналналичиясрывногорежима"вращающийсясрыв",схемусоединения,входыкоторойсвязаныссоответствующимивыходамиобеихсхемсравнения,авыходысвязанысисполнительнымимеханизмамидляформированиясигналавоздействиядлязащитыдвигателясоответственнотипупотериустойчивости,приэтомвсхемесоединениявыходсхемысравнениясигнала"вращающийсясрыв"соединенсисполнительныммеханизмомсистемыподачитопливаисисполнительныммеханизмоморгановмеханизациикомпрессорачерездиоднуюразвязку,обеспечивающуюсрабатываниеисполнительныхмеханизмоводновременно,авыходсхемысравнениясигнала"помпаж"соединенсисполнительныммеханизмоморгановмеханизациикомпрессорачерездругуюдиоднуюразвязку,обеспечивающуюегособственноесрабатывание,приэтомсхемасоединениядополнительносодержитэлементНЕ,которыйподключенквыходусхемысравнениясигнала"помпаж",иэлементИ,которыйоднимвходомподключенквыходуэлементаНЕ,другимвходом-квыходусхемысравнениясигнала"вращающийсясрыв",авыходомодновременносвязансисполнительнымимеханизмамисистемыподачитопливаиоргановмеханизациикомпрессора.67.Устройствопоп.6,отличающеесятем,чтовходсистемырегулированияработыдвигателяподсоединенкдатчикудавления,которыйустановлензапоследнейступеньюкомпрессора.7
Источник поступления информации: Роспатент

Показаны записи 31-40 из 46.
25.08.2017
№217.015.a386

Способ сертификационных испытаний корпуса на непробиваемость при разрушении диска ротора стартера гтд

Изобретение относится к области авиационного двигателестроения и может быть использовано при сертификационных испытаниях корпуса на непробиваемость при разрушении диска ротора стартера газотурбинного двигателя. Перед испытаниями предварительно выполняют опытный образец диска, соответствующий...
Тип: Изобретение
Номер охранного документа: 0002607145
Дата охранного документа: 10.01.2017
26.08.2017
№217.015.d5b8

Стенд для температурных испытаний изделий авиационной техники

Изобретение относится к испытательной технике, а именно к стендам для температурных испытаний авиационной техники. Стенд для температурных испытаний содержит устройство нагрева рабочей среды, основание, размещенные на нем камеру для испытуемого изделия, трубопровод и защитное устройство в виде...
Тип: Изобретение
Номер охранного документа: 0002623137
Дата охранного документа: 22.06.2017
26.08.2017
№217.015.de9e

Газотурбинная установка и способ функционирования газотурбинной установки

Изобретение относится к энергетике. Газотурбинная установка (ГТУ) содержит компрессор, камеру сгорания, турбину, потребитель энергии, магистраль топливоподачи и котел утилизатор, снабженный контурами горячего и холодного теплоносителей. Контур горячего теплоносителя выполнен в виде выпускного...
Тип: Изобретение
Номер охранного документа: 0002624690
Дата охранного документа: 05.07.2017
03.07.2018
№218.016.6a21

Газотурбинная силовая установка летательного аппарата

Изобретение относится к авиационному двигателестроению, в частности к малоразмерным газотурбинным двигателям летательных аппаратов. Газотурбинная силовая установка летательного аппарата содержит расположенные в корпусе воздухозаборный канал с полым центральным обтекателем, стойками и...
Тип: Изобретение
Номер охранного документа: 0002659426
Дата охранного документа: 02.07.2018
04.07.2018
№218.016.6a75

Способ определения предзадирного состояния в сопряжении цилиндро-поршневой группы двигателя внутреннего сгорания

Изобретение относится к машиностроению, а именно к способам испытания двигателей внутреннего сгорания. Технический результат, достигаемый при осуществлении предлагаемого способа, заключается в определении момента срыва толщины масляного слоя в режимах рабочего хода и газообмена,...
Тип: Изобретение
Номер охранного документа: 0002659659
Дата охранного документа: 03.07.2018
10.07.2018
№218.016.6ebf

Способ инициирования импульсной детонации

Изобретение относится к способам детонационного сжигания топлива и может быть использовано для инициирования импульсной детонации в топливно-воздушной смеси в энергетических установках, импульсных детонационных двигателях. Способ инициирования импульсной детонации топливно-воздушной смеси...
Тип: Изобретение
Номер охранного документа: 0002659415
Дата охранного документа: 02.07.2018
20.02.2019
№219.016.bcf0

Двигательная установка для гиперзвукового летательного аппарата

Двигательная установка для гиперзвукового летательного аппарата содержит гиперзвуковой прямоточный воздушно-реактивный двигатель, имеющий, по меньшей мере, одну камеру сгорания, снабженную устройством для впрыска топлива и воспламенителем. На вход воспламенителя подают кислород. Двигательная...
Тип: Изобретение
Номер охранного документа: 0002287076
Дата охранного документа: 10.11.2006
01.03.2019
№219.016.c8f4

Центробежный компрессор

Изобретение относится к компрессоростроению, а именно к центробежным и диагональным компрессорам. Центробежный компрессор содержит корпус с размещенным в нем рабочим колесом (РК) с лопатками, безлопаточный диффузор, радиальный лопаточный диффузор и антипомпажное устройство. Последнее выполнено...
Тип: Изобретение
Номер охранного документа: 0002273771
Дата охранного документа: 10.04.2006
20.03.2019
№219.016.e3c6

Система подачи пыли во вход газотурбинного двигателя при его стендовых пылевых испытаниях

Изобретение относится к испытательным стендам авиационной техники, а также к областям, где применяются газотурбинные двигатели (ГТД), и они подвергаются пылевым стендовым испытаниям. Технической задачей предлагаемого изобретения является обеспечение подачи равномерной концентрации и...
Тип: Изобретение
Номер охранного документа: 0002284497
Дата охранного документа: 27.09.2006
10.04.2019
№219.016.ffe1

Фронтовое устройство камеры сгорания и способ организации рабочего процесса в ней

Изобретение относится к устройствам для сжигания топливовоздушной смеси в воздушно-реактивных двигателях и газотурбинных установках. Фронтовое устройство камеры сгорания содержит центральную пневматическую форсунку основной зоны горения, струйный смеситель с отверстиями для подвода воздуха,...
Тип: Изобретение
Номер охранного документа: 0002285865
Дата охранного документа: 20.10.2006
Показаны записи 31-40 из 48.
29.03.2019
№219.016.f6c4

Способ управления расходом топлива в многоколлекторную камеру сгорания газотурбинного двигателя

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах (САУ) автоматического управления ГТД. Сущность изобретения заключается в том, что дополнительно распределение топлива между коллекторами осуществляют с помощью...
Тип: Изобретение
Номер охранного документа: 0002435972
Дата охранного документа: 10.12.2011
29.03.2019
№219.016.f6c6

Система топливопитания и регулирования газотурбинного двигателя

Изобретение относится к области авиационного двигателестроения и может быть использовано в системах автоматического управления газотурбинными двигателями (ГТД). Сущность изобретения заключается в том, что дополнительно вводится блок адаптации к характеристикам топлива, подключенный к блоку...
Тип: Изобретение
Номер охранного документа: 0002435971
Дата охранного документа: 10.12.2011
29.03.2019
№219.016.f6d0

Способ управления расходом топлива на запуске газотурбинного двигателя

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах (САУ) автоматического управления ГТД. Сущность изобретения заключается в том, что дополнительно в процессе запуска ГТД сравнивают измеренную частоту вращения ротора...
Тип: Изобретение
Номер охранного документа: 0002435973
Дата охранного документа: 10.12.2011
29.03.2019
№219.016.f78e

Способ контроля технического состояния газотурбинной установки

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронных системах (САУ) автоматического управления газотурбинными установками (ГТУ) газоперекачивающих агрегатов (ГПА) и газотурбинных электростанций (ГТЭС). Сущность изобретения заключается в том, что...
Тип: Изобретение
Номер охранного документа: 0002444717
Дата охранного документа: 10.03.2012
29.03.2019
№219.016.f7ad

Способ управления газотурбинным двигателем с форсажной камерой сгорания

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах (САУ) автоматического управления газотурбинными двигателями с форсажной камерой сгорания (ТРДФ). Дополнительно в зависимости от параметров двигателя и воздушного...
Тип: Изобретение
Номер охранного документа: 0002442001
Дата охранного документа: 10.02.2012
19.04.2019
№219.017.2e10

Способ управления расходом топлива на запуске газотурбинного двигателя

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах (САУ) автоматического управления ГТД. Сущность изобретения заключается в том, что дополнительно, в зависимости от расхода топлива, поступающего в коллектор, формируют...
Тип: Изобретение
Номер охранного документа: 0002392468
Дата охранного документа: 20.06.2010
19.04.2019
№219.017.2eba

Способ управления газотурбинным двигателем с форсажной камерой сгорания

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах (САУ) автоматического управления газотурбинными двигателями с форсажной камерой сгорания (ТРДФ). Сущность изобретения заключается в том, что дополнительно на...
Тип: Изобретение
Номер охранного документа: 0002389890
Дата охранного документа: 20.05.2010
19.04.2019
№219.017.2ec4

Способ контроля топливной системы газотурбинного двигателя

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах (САУ) автоматического управления ГТД. Сущность изобретения заключается в том, что дополнительно измеряют частоту вращения ротора двигателя, фактический расход топлива...
Тип: Изобретение
Номер охранного документа: 0002387854
Дата охранного документа: 27.04.2010
19.04.2019
№219.017.2ee0

Способ управления расходом топлива на запуске газотурбинного двигателя

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах (САУ) автоматического управления ГТД. Сущность изобретения заключается в том, что дополнительно измеряют температуру воздушно-топливной смеси (ВТС) в КС, в случае...
Тип: Изобретение
Номер охранного документа: 0002386836
Дата охранного документа: 20.04.2010
19.04.2019
№219.017.2ee6

Способ управления газотурбинным двигателем с форсажной камерой сгорания

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах (САУ) автоматического управления газотурбинными двигателями с форсажной камерой сгорания (ТРДФ). Сущность изобретения заключается в том, что дополнительно на...
Тип: Изобретение
Номер охранного документа: 0002386837
Дата охранного документа: 20.04.2010
+ добавить свой РИД