×
10.07.2019
219.017.aa94

Результат интеллектуальной деятельности: НЕЛИНЕЙНО-ОПТИЧЕСКИЙ ОГРАНИЧИТЕЛЬ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к оптике и может быть использовано в лазерной технике и оптических приборах для защиты глаз от повреждения лазерным излучением. Ограничитель состоит из телескопа, нелинейно-оптического элемента, расположенного между линзами телескопа и диафрагмы. Нелинейно-оптический элемент выполнен из прозрачного монокристаллического материала либо стеклокерамики и содержит примесь ионов переходных металлов со спектральными полосами поглощения, перекрывающими по спектру линии генерации лазеров, причем концентрация примесных ионов лежит в пределах 10-10 см. Технический результат - увеличение начального пропускания ограничителя в видимой области спектра и обеспечение цветового зрительного комфорта. 2 ил.

Изобретение относится к оптике и может быть использовано в лазерной технике и оптических приборах для защиты глаз от повреждения лазерным излучением.

Известен ограничитель лазерного излучения с длиной волны λ=0.53 мкм [1, 2], состоящий из полупроводникового нелинейно-оптического элемента и диафрагмы. Полупроводниковый нелинейно-оптический элемент изготовлен из монокристаллического ZnSe, имеющего ширину запрещенной зоны Eg большую энергии фотона hν, но меньшую удвоенной энергии фотона (hν<Eg<2hν), Торцы нелинейно-оптического элемента имеют сферическую поверхность и выполняют функцию линз телескопа. Ограничение интенсивности излучения в таком устройстве происходит благодаря самодефокусировке излучения в полупроводнике при двухфотонном поглощении. Порог ограничения излучения составляет 10 нДж для пикосекундных лазерных импульсов, что достаточно для защиты глаз от повреждения лазерным излучением. Порог повреждения глаз излучением с длиной волны 0.5-1.1 мкм равен 0.1-1 мкДж. Недостатком описанного ограничителя является низкий начальный коэффициент пропускания (до начала процесса ограничения) в видимой области спектра - не более 30% и интенсивно желтая окраска кристалла, что не обеспечивает цветовой зрительный комфорт. Недостатком является также то, что при увеличении длительности лазерного импульса возрастает порог ограничения, и для импульсов наносекундной длительности он превышает порог повреждения глаза излучением.

Известен ограничитель лазерного излучения, выбранный в качестве прототипа [3], состоящий из двух софокусных линз, диафрагмы, расположенной за второй линзой и нелинейно-оптического полупроводникового элемента (GaAs или ZnSe), содержащего глубокие примесные уровни в запрещенной зоне. Причем ширина запрещенной зоны Eg больше энергии фотона hν, а энергия ионизации примеси излучением - меньше hν. Ограничение интенсивности излучения происходит в результате однофотонной фотогенерации электронов с примесных центров, что сопровождается образованием отрицательной динамической линзы в полупроводнике и ведет к самодефокусировке излучения [4]. Данный ограничитель обеспечивает порог ограничения излучения в единицы пикоджоулей для нано- и микросекундных импульсов излучения [4], что достаточно для защиты глаз от повреждения лазерным излучением. Недостатком такого ограничителя является отсутствие пропускания в видимой области спектра для GaAs и низкий начальный коэффициент пропускания (до начала процесса ограничения) в видимой области спектра для примесного ZnSe - не более 20%. Кроме того, примесный ZnSe имеет интенсивно красную окраску, что не позволяет обеспечить цветовой зрительный комфорт.

Целью данного изобретения является увеличение начального пропускания ограничителя в видимой области спектра и обеспечение цветового зрительного комфорта.

Поставленная цель достигается тем, что нелинейно-оптический элемент выполнен из прозрачного в видимой области спектра монокристаллического материала либо стеклокерамики и содержит примесь ионов переходных металлов со спектральными полосами оптического поглощения, перекрывающими по спектру линии генерации лазеров, причем концентрация примесных ионов лежит в пределах 1015-1018 см-3.

Под действием короткого импульса лазерного излучения с длиной волны, попадающей в полосу поглощения иона примеси, происходит насыщение примесного поглощения. В результате деформации спектра поглощения, возникает сильная дисперсия показателя преломления материала, что сопровождается формированием градиента показателя преломления по сечению пучка излучения. Градиент показателя преломления приводит к возникновению толстой динамической линзы, изменяющей пространственное распределение прошедшего излучения и увеличивающей его расходимость. В результате этого происходит уменьшение интенсивности излучения в апертуре диафрагмы ограничителя, то есть - ограничение излучения. Благодаря низкой концентрации ионов металла обеспечивается малое начальное поглощение излучения в видимой области спектра и отсутствие окраски либо слабая окрашенность нелинейно-оптического элемента.

Данное техническое решение является новым, а совокупность отличительных признаков не следует из известных технических решений. Существенность отличительных признаков заключается в том, что в ограничителе излучения используется нелинейно-оптический элемент, выполненный из прозрачного в видимой области спектра монокристаллического материала или стеклокерамики, который содержит малую концентрацию ионов переходных металлов, не приводящих к возникновению интенсивной окраски кристалла, но создающих полосы оптического поглощения, перекрывающие по спектру линии генерации лазеров.

Конкретные примеры реализации изобретения.

На фиг.1а показана конструкция ограничителя излучения. Ограничитель состоит из двух софокусных линз - положительной 1 и отрицательной 3 с фокусными расстояниями 95 мм и 30 мм соответственно, нелинейно-оптического элемента 2, расположенного непосредственно перед отрицательной линзой и диафрагмы 4, пропускающей 99% падающего излучения при отсутствии нелинейного элемента. В качестве нелинейно-оптических элементов в ограничителе использовались плоскопараллельные пластины, без просветляющих покрытий, из следующих материалов: YAG:Cr+3 толщиной 8 мм с концентрацией ионов Cr+3 1017 см-3; CaF2:Co2+ толщиной 10 мм с концентрацией ионов Со2+ 1018 см-3. На фиг.1б показаны спектры пропускания нелинейно-оптических элементов в видимой области спектра до возникновения ограничения излучения. Пластина YAG:Cr3+ имеет в видимой области спектра средний коэффициент пропускания 80%, практически бесцветна и не нарушает зрительный комфорт. Пластина CaF2:Со2+ имеет в видимой области спектра средний коэффициент пропускания 56%, имеет слабую сиреневую окраску и не нарушает зрительный комфорт. В качестве нелинейно-оптических элементов могут быть использованы пластины из оптической стеклокерамики, содержащей микрокристаллы аналогичного состава - YAG:Cr3+, CaF2:Co2+.

Ограничитель работает следующим образом. При отсутствии лазерного импульса либо при интенсивности лазерного излучения, меньшей порога ограничения, коэффициент пропускания ограничителя определяется начальным пропусканием нелинейно-оптического элемента и составляет 50-80%, в зависимости от типа элемента (фиг.1б). Под действием короткого импульса лазерного излучения с длиной волны, попадающей в полосу поглощения иона примеси и интенсивностью, превышающей порог ограничения, происходит насыщение примесного поглощения. В результате деформации спектра поглощения возникает сильная дисперсия показателя преломления материала, что сопровождается формированием градиента показателя преломления по сечению пучка излучения. Градиент показателя преломления приводит к возникновению толстой динамической линзы, изменяющей пространственное распределение прошедшего излучения и увеличивающей его расходимость. В результате этого происходит уменьшение интенсивности излучения в апертуре диафрагмы ограничителя, то есть - ограничение излучения.

На фиг.2 показаны зависимости энергии излучения на выходе ограничителя от энергии излучения на его входе для нелинейно-оптических элементов из YAG:Cr3+ для λ=0.53 мкм и длительности импульса излучения τ=10 нс (а), из CaF2:Co2+ для λ=0.53 мкм и длительности импульса излучения τ=10 нс (б). При использовании нелинейно-оптического элемента из YAG:Cr3+ энергетический порог ограничения равен 10 нДж, ограничение происходит в диапазоне изменения входной энергии - 10-9-10-2 Дж. При использовании нелинейно-оптического элемента из CaF2:Co2+ энергетический порог ограничения равен 100 нДж, ограничение происходит в диапазоне изменения входной энергии - 10-7-10-2 Дж. При энергии падающего излучения 10-2-10-1 Дж энергия прошедшего излучения, во всех случаях, не превышает 100 нДж, что достаточно для защиты органов зрения от повреждения излучением.

Из приведенных примеров следует, что использование, в качестве нелинейно-оптических элементов, для ограничения излучения прозрачных в видимой области спектра монокристаллических или стеклокерамических материалов, содержащих малую концентрацию примеси в виде ионов переходных металлов, обеспечивает защиту органов зрения от повреждения излучением. В то же время, по сравнению с прототипом, предлагаемое техническое решение обеспечивает более высокий коэффициент пропускания в видимой области спектра и не нарушает цветового зрительного комфорта.

Изобретение может быть использовано в биноклях, зрительных трубах и устройствах технического зрения для защиты глаз и фотоприемников от ослепления и повреждения лазерным излучением высокой интенсивности.

ЛИТЕРАТУРА

1. Патент №4846561 (USA), приоритет 11.07.89.

2. E.W.Van Stryland, Y.Y.Wu, D.J.Hagan, M.J.Soileau, K.Mansour. Optical limiting with semiconductors. J. Opt. Soc. Am. B, V.5, N9, P.1980-1988, 1988.

3. Патент РФ №2001126690, приоритет 1.10.2001.

4. И.В.Багров, А.П.Жевлаков, О.П.Михеева и др. Низкопороговое ограничение инфракрасного излучения в примесных полупроводниках // Оптический журнал. 2002, Т.69, №2, С.15-20.

Оптическийограничительлазерногоизлучения,содержащийоптическуюсистемуинелинейно-оптическийэлемент,отличающийсятем,чтонелинейно-оптическийэлементвыполненизпрозрачноговвидимойобластиспектрамонокристаллическогоматериалалибостеклокерамикиисодержитпримесьионовпереходныхметалловсоспектральнымиполосамиоптическогопоглощения,перекрывающимипоспектрулиниигенерациилазеров,причемконцентрацияпримесныхионовлежитвпределах10-10см.
Источник поступления информации: Роспатент

Показаны записи 31-39 из 39.
11.03.2019
№219.016.db42

Подложка для биочипа и способ ее изготовления

Изобретения относятся к оптике, технологиям обработки оптических материалов и нанотехнологиям. Подложка для биочипа представляет собой стеклянную пластину с наночастицами металла (Au, Ag, Pt). Согласно изобретению пластина выполнена из силикатного фотохромного или фототерморефрактивного стекла...
Тип: Изобретение
Номер охранного документа: 0002411180
Дата охранного документа: 10.02.2011
11.03.2019
№219.016.db72

Способ изготовления спиральной длиннопериодной волоконной решетки

Способ изготовления спиральной длиннопериодной волоконной решетки из заготовки оптического волокна заключается в том, что на заготовку оптического волокна из стекла или полимера наматывают виток к витку полимерное волокно и фиксируют концы наматываемого волокна. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002426158
Дата охранного документа: 10.08.2011
27.04.2019
№219.017.3df2

Способ изготовления длиннопериодной волоконной решетки

Способ может быть использован для изготовления длиннопериодных волоконных решеток, применяемых в волоконно-оптических датчиках и сенсорах. Способ обеспечивает формирование на поверхности стеклянного волокна периодической структуры переменной толщины. Волокно погружают вертикально в раствор...
Тип: Изобретение
Номер охранного документа: 0002398251
Дата охранного документа: 27.08.2010
27.04.2019
№219.017.3df3

Способ изготовления спиральной длиннопериодной волоконной решетки (варианты)

Способ включает скручивание вокруг оси заготовки со скоростью 0,5…1 об/с и одновременно растягивание продольно со скоростью 0,1…1 мм/с. В первом варианте заготовка представляет собой раствор полимера с концентрацией 50…80% и полученное волокно смачивают растворителем полимера в течение 2…15 с и...
Тип: Изобретение
Номер охранного документа: 0002392646
Дата охранного документа: 20.06.2010
27.04.2019
№219.017.3df9

Способ формирования металлических нанокластеров в стекле

Формирование металлических нанокластеров в стекле применяется в интегральной оптике для создания матриц микролинз, плазменных волноводов, оптических переключателей, химических и биосенсоров на основе плазменных наноструктур и метаматериалов. Способ позволяет получать композитные слои с...
Тип: Изобретение
Номер охранного документа: 0002394001
Дата охранного документа: 10.07.2010
29.05.2019
№219.017.66b2

Способ изготовления гофрированных оптических волокон

Изобретение относится к волноводной и волоконной оптике и может быть использовано для изготовления длиннопериодных волоконных решеток. Способ изготовления гофрированных оптических волокон заключается в том, что волокно погружают вертикально в 5-30% раствор органического полимера в органическом...
Тип: Изобретение
Номер охранного документа: 0002379719
Дата охранного документа: 20.01.2010
15.06.2019
№219.017.833e

Катализатор жидкофазного синтеза метанола и способ его получения

Изобретение относится к области производства гетерогенных катализаторов для процессов жидкофазного синтеза метанола. Катализатор жидкофазного синтеза метанола содержит носитель и цинк в качестве активного компонента. Согласно изобретению, в качестве носителя используют сверхсшитый полистирол со...
Тип: Изобретение
Номер охранного документа: 0002691451
Дата охранного документа: 14.06.2019
24.10.2019
№219.017.dabe

Устройство определения участка трёхпроводной воздушной линии электропередачи с обрывом фазного провода

Изобретение относится к электротехнике и может быть использовано для защиты от обрыва фазного провода воздушной линии электрической сети с изолированной, компенсированной или резистивно заземленной нейтралями напряжением 6-10-20 кВ. Технический эффект, заключающийся в повышении надежности...
Тип: Изобретение
Номер охранного документа: 0002703945
Дата охранного документа: 23.10.2019
02.03.2020
№220.018.0811

Датчик искрения

Изобретение относится к волоконной оптике и может быть использовано в волоконно-оптических датчиках искрения и электрической дуги и предназначено для использования на электростанциях, в высоковольтных установках, на линиях электропередачи, на пожаро- и взрывоопасных предприятиях химической и...
Тип: Изобретение
Номер охранного документа: 0002715477
Дата охранного документа: 28.02.2020
+ добавить свой РИД