×
10.07.2019
219.017.aa41

СПОСОБ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ МОЩНОСТЬЮ ЯДЕРНОЙ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ С РЕАКТОРОМ ВОДО-ВОДЯНОГО ТИПА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002278427
Дата охранного документа
20.06.2006
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к атомной энергетике, а именно - к автоматическому управлению мощностью ядерной энергетической установкой с реактором водо-водяного типа. Способ автоматического управления мощностью ядерной энергетической установки с реактором ВВЭР в режимах регулирования электрической нагрузки в диапазоне 10%-102% номинальной мощности реактора предполагает, что управление упомянутой установкой осуществляют по следующим операциям: - определяют скорость изменения мощности турбины в результате преобразования сигнала по мощности турбины в динамическом элементе с передаточной функцией W(P)=K·Р/(T·Р+1), где P - оператор Лапласа, K - коэффициент с возможными значениями от 0 до 100, Т - постоянная времени с возможными значениями от 0 до 100, и далее выбирают необходимую операцию: или, - при увеличении мощности турбины органы регулирования перемещают вверх при выполнении условия: [(Р-Р)·K+(N-N)+K]>0, где Р - заданное давление пара, Па; Р давление пара. Па; K - коэффициент с возможными значениями от 0 до 1; N - мощность турбины, %; N - мощность реактора, %; К - коэффициент с возможными значениями от 0 до 100; или, - при превышении абсолютного значения разности мощности реактора и мощности турбины на величину более К и при одновременном отсутствии увеличения мощности турбины органы регулирования перемещают при выполнении условия |N-N|≥К, где К - коэффициент с возможными значениями от 0 до 100. Направление перемещения органов регулирования определяют по знаку разности N-N; или, - при отклонении мощности реактора от мощности турбины в пределах от -К до +К при одновременном отсутствии увеличения мощности турбины направление перемещения органов регулирования определяют знаком разности (Р-Р), причем время перемещения органов регулирования определяют исходя из выполнения условия: (Р-Р)-K·(1-exp(-t/T))·(Р-Р)/|Р-P|≥Δн, где t - время, К - коэффициент с возможными значениями от 0 до 100, Т - постоянная времени с возможными значениями от 0 до 10, Δн - зона нечувствительности функции трехпозиционного релейного элемента с возможными значениями от 0 до 10, а время паузы между шагами органов регулирования определяют исходя из выполнения условия: (Р-Р)-К·(1-exp(-t/Т))·(Р-Р)/|Р-P|≤Δв, где t - время, К - коэффициент с возможными значениями от 0 до 100, Т - постоянная времени с возможными значениями от 0 до 10, Δв - зона возврата функции трехпозиционного релейного элемента с возможными значениями от 0 до 10. Управление в соответствии с вышеперечисленными операциями приводит к улучшению условий работы тепловыделяющих элементов активной зоны за счет использования свойств саморегулирования реактора путем минимизации перемещения органов регулирования системы управления и защиты. 4 ил.
Реферат Свернуть Развернуть

Область техники

Изобретение относится к атомной энергетике, а более конкретно - к автоматическому управлению мощностью ядерной энергетической установкой с реактором водо-водяного типа.

Уровень техники

Известен способ управления реакторной установкой в режимах регулирования электрической нагрузки энергоблока атомной станции, когда поддерживается заданное давление пара, при этом используется сигнал по мощности реактора, сигнал по давлению пара во втором контуре и сигнал по мощности турбины или сигнал, характеризующий мощность турбины (расход пара на турбину, положение регулирующих клапанов турбины и т.д.) (М.П.Шальман, В.И.Плютинский «Контроль и управление на атомных электростанциях». М: Энергия, 1979 г.; рис.6-8 а, стр.146) - принят за прототип. Критерием качества управления известного способа является минимизация отклонения давления пара во втором контуре от заданного значения и минимизация времени переходного процесса.

Недостатком известного способа является следующее.

Ухудшаются условия работы тепловыделяющих элементов активной зоны вследствие существенных изменений локального энерговыделения, вызванного, в свою очередь, перемещением органов регулирования системы управления и защиты реактора.

Известен способ управления реактором в режимах регулирования нагрузки с использованием сигнала «средняя температура теплоносителя в 1-м контуре» (М.П.Шальман, В.И.Плютинский «Контроль и управление на атомных электростанциях». М: Энергия, 1979 г.; рис.6-8 б, стр.146). Критерием качества управления известного способа является минимизация отклонения от заданного значения средней температуры теплоносителя в 1-м контуре. Применение данного способа позволяет улучшить условия работы тепловыделяющих элементов в режимах регулирования нагрузки за счет использования свойств саморегулирования реактора. Недостатком известного способа является ограниченный диапазон мощности реактора (от не менее 60% Nном. до Nном., где Nном. - номинальный уровень мощности равный 100%), в котором этот способ может быть реализован. Это ограничение вызвано увеличением давления пара во втором контуре в стационарном состоянии, что, в свою очередь, вызвано ограничениями со стороны турбины и со стороны реакторной установки. Дополнительным недостатком известного способа является изменение коэффициента полезного действия паротурбинной установки при изменении мощности, вызывающей изменение давления пара в стационарном состоянии.

Еще одним недостатком известных способов является то, что вследствие изменения динамических характеристик объекта управления требуется изменение параметров настроек (коэффициенты усиления, постоянные времени). Изменение динамических характеристик объекта управления - реакторной установки происходит в зависимости от периода кампании реактора (изменяется, в том числе, коэффициент реактивности по температуре (или по плотности) теплоносителя и коэффициент по температуре топлива) и в зависимости от величины и вида возмущения (от скорости, направления, величины изменения электрической нагрузки).

Раскрытие изобретения

Задачей изобретения является улучшение условий работы тепловыделяющих элементов активной зоны за счет исключения движения органов регулирования системы управления и защиты реактора вверх при снижении мощности турбины и, как следствие, повышение экономичности и безопасности ядерного реактора.

Техническим результатом изобретения является улучшение условий работы тепловыделяющих элементов активной зоны путем минимизации перемещения органов регулирования системы управления и защиты за счет максимального использования свойств саморегулирования реактора в режимах регулирования нагрузки в широком диапазоне мощности реактора (от 10% до 102% Nном.) при одновременном выполнении требования по поддержанию заданного давления пара. Минимизацию перемещения органов регулирования системы управления и защиты обеспечивают исходя из выполнения следующего условия:

уст.-Н(t)]·dH(t)/dt≥0, для [dNтг(t)/dt]·[dNтг(t)/dt]≥0,

где Нуст. - положение органов регулирования системы управления и защиты в конце процесса регулирования (стабилизация давления пара во втором контуре на заданном уровне).

H(t) положение органов регулирования системы управления и защиты от низа активной зоны.

При скачкообразных увеличениях нагрузки данное условие может нарушаться в целях недопущения снижения давления пара до значений, при которых начинают срабатывать технологические защиты и блокировки.

Поставленная задача заключается в использовании способа автоматического управления мощностью ядерной энергетической установки с реактором водо-водяного типа при изменении внешней электрической нагрузки, включающего поддержание заданного давления пара по информации о текущей мощности турбины, по информации о текущем давлении пара, по информации о текущей мощности реактора путем перемещения органов регулирования системы управления и защиты, и для поддержания заданного давления пара управление упомянутой установки осуществляют следующими операциями:

- определяют скорость изменения мощности турбины в результате преобразования сигнала по мощности турбины в динамическом элементе с передаточной функцией

W(P)=К4·P/(Т4·Р+1), где

К4 - коэффициент с возможными значениями от 0 до 100,

P - оператор Лапласа.

Т4 - постоянная времени с возможными значениями от 0 до 100

Динамический элемент - элемент (аппаратура или программный модуль), реализующий передаточную функцию W(P), для которого, выходная величина является (функцией двух переменных: входной величины и времени. Величина коэффициентов К4, Т4 определяется совокупностью следующих факторов: требования энергосистемы по скорости, диапазону и величине увеличения мощности энергоблока; динамические характеристики объекта управления (нейтронно-физические характеристики - коэффициенты реактивности но температуре топлива и температуре теплоносителя, эффективность органов регулирования системы управления и защиты); тепловая инерционность парогенератора, 1-го контура; характеристики аппаратуры, реализующей алгоритм динамического элемента (коэффициенты передачи измерительных каналов, коэффициенты преобразования и усиления сигналов). По результатам анализа расчетных исследований на полномасштабных математических моделях, экспериментальных исследований значения данных коэффициентов не могут превышать значение 100 и не могут быть менее 0,

и далее выбирают необходимую операцию:

или,

- при увеличении мощности турбины органы регулирования перемещают вверх при выполнении условия

[(Рзад.пара)·К1+(Ктг-Np-ра)+K5]>0, где

Pзад - заданное давление пара, Па;

Рпара - давление пара, Па;

K1 - коэффициент с возможными значениями от 0 до 1;

Nтг - мощность турбины, %;

Np-pa - мощность реактора, %;

К5 - коэффициент с возможными значениями от 0 до 100.

Коэффициенты К1 и K5 обозначают следующее: коэффициент К1 - множитель (масштабный фактор), коэффициент К5 - дополнительное слагаемое. Величина коэффициентов К1, К5 определяется совокупностью следующих факторов: требования энергосистемы по скорости, диапазону и величине увеличения мощности энергоблока; динамические характеристики объекта управления (нейтронно-физические характеристики - коэффициенты реактивности по температуре топлива и температуре теплоносителя, эффективность органов регулирования системы управления и защиты); тепловая инерционность парогенератора, 1-го контура; характеристики аппаратуры, реализующей алгоритм динамического элемента (коэффициенты передачи измерительных каналов, коэффициенты преобразования и усиления сигналов).

По результатам анализа расчетных исследований на полномасштабных математических моделях, экспериментальных исследовании значения данных коэффициентов не могут превышать значение 100 и не могут быть менее 0,

или,

- при превышении абсолютного значения разности мощности реактора и мощности турбины на величину более К6, и при одновременном отсутствии увеличения мощности турбины органы регулирования перемещают при выполнении условия [Nтг-Np-pa|≥K6, направление перемещения органов регулирования определяют по знаку разности

Nтг-Np-pa,

где К6 - коэффициент с возможными значениями от 0 до 100.

Коэффициент К6 обозначает границу абсолютного значения разности мощности реактора и мощности турбины. Значение К6 определяется совокупностью следующих факторов: тепловыми потерями в окружающую среду, мощностью, подводимую к 1 контуру за счет работы главных циркуляционных насосов, отбором тепла по 2 контуру на собственные нужды. По результатам анализа расчетных исследований на полномасштабных математических моделях, экспериментальных исследований значения данных коэффициентов не могут превышать значение 100 и не могут быть менее 0,

или,

- при отклонении мощности реактора от мощности турбины в пределах от минус К6 до плюс К6 при одновременном отсутствии увеличения мощности турбины направление перемещения органов регулирования определяют знаком разности (Рзад.-Pпара), причем время перемещения органов регулирования определяют исходя из выполнения условия:

зад.пара)-К2·(1-exp(-t/T2))·(Рзад.пара)//Рзад.пара|≥Δн, где

t - время,

К2 - коэффициент с возможными значениями от 0 до 100,

Т2 - постоянная времени с возможными значениями от 0 до 106,

Δн - зона нечувствительности функции трехпозиционною релейного элемента с возможными значениями от 0 до 106,

а время паузы между шагами органов регулирования определяют исходя из выполнения условия:

зад.пара)-К3·(1-exp(-t/Т3))·(Рзад.пара)/|Рзад.пара|≤Δв, где

t - время,

К3 - коэффициент с возможными значениями от 0 до 100,

T3 - постоянная времени с возможными значениями от 0 до 106,

Δв - зона возврата функции трехпозиционного релейного элемента с возможными значениями от 0 до 106.

Коэффициенты К2 и К3 обозначают коэффициенты передачи инерционного звена 1-го порядка. К2 и T2 обозначают постоянные времени инерционного звена 1-го порядка. Величины коэффициентов К2 и Т2 определяются исходя из того, что при любых возможных отклонениях текущего давления пара (Pпара) от заданного значения (Рзад.) орган регулирования системы управления и защиты делает один шаг, например 2 см. Величины коэффициентов К3 и Т3 определяются исходя из того, что сигнал (Рзадпара) на входе в трехпозиционный релейный элемент должен быть скомпенсирован сигналом обратной связи в течение времени, которое необходимо для реализации свойств саморегулирования объекта управления. По результатам анализа расчетных исследований на полномасштабных математических моделях, экспериментальных исследований значения коэффициентов К2 и К3 не могут превышать 100 и не могут быть менее 0, значения Т2 и Т3 не могут превышать 106 и не могут быть менее 0.

Величина зоны нечувствительности определяется, исходя из требований по точности поддержания регулируемой величины в стационарном состоянии, требований к качеству переходного процесса.

Величина зоны возврата определяется, исходя из требований к качеству переходного процесса. По результатам анализа расчетных исследований на полномасштабных математических моделях, экспериментальных исследований значения зоны нечувствительности и зоны возврата не могут превышать 106 и не могут быть менее 0.

Технический результат достигается тем, что отклонение давления пара от номинального значения (от заданного значения) в режимах регулирования нагрузки определяют соотношением подводимой ко второму контуру мощности и отводимой мощности на турбину, то есть при больших возмущениях по нагрузке в сторону снижения мощности турбины мощность реактора приводится в соответствии с мощностью турбины с точностью до К6% Nном. Затем, при отклонении мощности реактора от мощности турбины в пределах от -К6% Nном. до +К6% Nном. и при отсутствии увеличения мощности турбины управление реактором производят таким образом, что пауза между перемещениями позволяла бы реализовывать свойства саморегулирования реактора в полной мере. Время паузы определяется характеристиками саморегулирования энергоблока АЭС.

Сущность изобретения поясняется чертежами.

На фиг.1 представлена схема способа автоматического управления мощностью ядерной энергетической установки с реактором водо-водяного типа.

Управление ядерной энергетической установкой (ЭУ) 11 осуществляют путем перемещения органов регулирования системы управления и защиты реактора (ОР СУЗ) 2.

Блок переключения 7 осуществляет выбор управляющего сигнала в зависимости от величины отклонения мощности реактора от мощности турбогенератора и в зависимости от знака скорости изменения мощности турбины. При увеличении мощности турбогенератора управление передают сигналу В, который равен сумме сигналов (Nтг-Np-pa) и (Рзад.пара), при этом существует ограничение на увеличение мощности реактора более допустимого значения, которое определяют в проекте по условиям безопасной эксплуатации. При наличии рассогласования мощности реактора от мощности турбогенератора по абсолютному значению на величину более К6% (формируют с помощью функции релейного элемента 1) и отсутствии увеличения мощности турбогенератора управление осуществляют по сигналу А (релейный алгоритм). В случае, когда отклонение мощности реактора от мощности турбогенератора находится в пределах от минус К6% до плюс К6% при одновременном отсутствии увеличения мощности турбины управление осуществляют по сигналу С (совместно с исполнительным механизмом постоянной скорости реализуют ПИ-алгоритм (пропорционально-интегральный)).

Реализацию ПИ-алгоритма осуществляют за счет охвата выходного трехпозиционного релейного элемента 8 отрицательной обратной связью с характеристиками инерционного звена первого порядка 9.

Управление турбиной 3 осуществляют системой управления турбиной (СУТ) 4, 5, 10, функционирующей в режиме поддержания мощности турбины и воздействующей на регулирующие клапаны (РК) 6.

Работоспособность данного способа поясняется на следующем примере.

На математической модели энергоблока АЭС с ВВЭР, реализующей двухжидкостную модель теплогидравлики и верифицированной по результатам динамических испытаний при вводе АЭС с ВВЭР в эксплуатацию, были проведены расчетные анализы режимов с изменением мощности турбины с применением данного способа управления мощностью ядерной энергетической установкой. Результаты моделирования представлены в виде графиков (фиг.2, 3, 4) изменения основных технологических параметров для следующих значений параметров способа управления (К1=10-5; К5=3; К6=6; К2=3·10-6; К3=3·10-6; К4=3; T3=750 с; Т2=2,5 с; T4=100 с; Δв=0,025; Δн=0,05).

На фиг.2 представлено положение органов регулирования системы управления и защиты реактора.

На фиг.3 представлено изменение мощности реактора и турбины во времени.

На фиг.4 представлено изменение давления в главном паровом коллекторе (ГПК).

определяютскоростьизменениямощноститурбиныврезультатепреобразованиясигналапомощноститурбинывдинамическомэлементеспередаточнойфункциейW(P)=К·Р/(Т·Р+1),гдеP-операторЛапласа;К-коэффициентсвозможнымизначениямиот0до100;Т-постояннаявременисвозможнымизначениямиот0до100;идалеевыбираютнеобходимуюоперациюилиприувеличениимощноститурбиныорганырегулированияперемещаютвверхпривыполненииусловия:[(Р-Р)·К+(N-N)+K]>0,гдеР-заданноедавлениепара,Па;Рдавлениепара,Па;K-коэффициентсвозможнымизначениямиот0до1;N-мощностьтурбины,%;N-мощностьреактора,%;К-коэффициентсвозможнымизначениямиот0до100,илиприпревышенииабсолютногозначенияразностимощностиреактораимощноститурбинынавеличинуболееКиприодновременномотсутствииувеличениямощноститурбиныорганырегулированияперемещаютпривыполненииусловия|N-N|≥К,гдеК-коэффициентсвозможнымизначениямиот0до100;направлениеперемещенияоргановрегулированияопределяютпознакуразностиN-N,илиприотклонениимощностиреактораотмощноститурбинывпределахот-Кдо+Кприодновременномотсутствииувеличениямощноститурбинынаправлениеперемещенияоргановрегулированияопределяютзнакомразности(Р-Р),причемвремяперемещенияоргановрегулированияопределяют,исходяизвыполненияусловия:(Р-Р)-К·(1-exp(-t/T))·(Р-Р)/|Р-Р|≥Δн,гдеt-время;К-коэффициентсвозможнымизначениямиот0до100;Т-постояннаявременисвозможнымизначениямиот0до10;Δн-зонанечувствительностифункциитрехпозиционногорелейногоэлементасвозможнымизначениямиот0до10,авремяпаузымеждушагамиоргановрегулированияопределяют,исходяизвыполненияусловия:(Р-Р)-К·(1-exp(-t/Т))·(Р-Р)/|Р-P|≥Δв,гдеt-время;К-коэффициентсвозможнымизначениямиот0до100;Т-постояннаявременисвозможнымизначениямиот0до10;Δв-зонавозвратафункциитрехпозиционногорелейногоэлементасвозможнымизначениямиот0до10.[Н-H(t)]·dH(t)/dt≥0,для[dN(t)/dt]·[dN(t)/dt]≥0,гдеН-положениеоргановрегулированиясистемыуправленияизащитывконцепроцессарегулирования(стабилизациядавленияпаравовторомконтуреназаданномуровне);H(t)-положениеоргановрегулированиясистемыуправленияизащитыотнизаактивнойзоны.1.Способавтоматическогоуправлениямощностьюядернойэнергетическойустановкисреакторомводо-водяноготипаприизменениивнешнейэлектрическойнагрузки,включающийподдержаниезаданногодавленияпарапоинформацииотекущеймощноститурбины,поинформацииотекущемдавлениипара,поинформацииотекущеймощностиреакторапутемперемещенияоргановрегулированиясистемыуправленияизащиты,отличающийсятем,чтодляподдержаниязаданногодавленияпарауправлениеупомянутойустановкиосуществляютследующимиоперациями:12.Способавтоматическогоуправлениямощностьюядернойэнергетическойустановкисреакторомводо-водяноготипапоп.1,отличающийсятем,чтоминимизациюперемещенияоргановрегулированиясистемыуправленияизащитыобеспечивают,исходяизвыполненияследующегоусловия:2
Источник поступления информации: Роспатент

Показаны записи 1-9 из 9.
20.02.2019
№219.016.bd0d

Устройство для развальцовки труб

Изобретение относится к обработке металлов давлением и может быть использовано при креплении труб в отверстиях трубной решетки развальцовкой. В корпусе расположен рабочий конус, взаимодействующий с роликами, размещенными в окнах корпуса. С корпусом соединена надставка, в которой соосно с...
Тип: Изобретение
Номер охранного документа: 02240193
Дата охранного документа: 20.11.2004
20.02.2019
№219.016.c00c

Затвор дисковый регулирующий

Изобретение относится к энергомашиностроению и предназначено для регулирования потока теплоносителя высоких параметров в гидравлических системах на вспомогательном и стендовом оборудовании ядерных энергетических установок. Затвор дисковый регулирующий содержит корпус, поворотный диск и...
Тип: Изобретение
Номер охранного документа: 0002334146
Дата охранного документа: 20.09.2008
01.03.2019
№219.016.ccc4

Установка промывки трубного пучка парогенератора

Изобретение относится к энергомашиностроению и может быть использовано на парогенераторах ядерных энергетических установок для промывки трубного пучка. Техническим результатом изобретения является повышение эффективности удаления шлама из межтрубного пространства парогенератора. Технический...
Тип: Изобретение
Номер охранного документа: 0002334189
Дата охранного документа: 20.09.2008
29.03.2019
№219.016.f37d

Модуль парогенератора

Модуль парогенератора относится к конструктивным элементам теплообменных аппаратов. Модуль парогенератора содержит корпус, камеру входа рабочего тела, камеру выхода рабочего тела, трубный пучок из труб Фильда, верхнюю и нижнюю трубные доски, причем над нижней трубной доской в камере выхода...
Тип: Изобретение
Номер охранного документа: 0002301373
Дата охранного документа: 20.06.2007
19.04.2019
№219.017.2dc1

Стяжное устройство для т-образного соединения труб

Изобретение относится к устройствам, обеспечивающим надежное функционирование трубопроводов и их соединений в отраслях промышленности, использующих перемещение жидкостей или газов высокого давления. Стяжное устройство содержит два разъемных металлических бандажа, один из которых закреплен на...
Тип: Изобретение
Номер охранного документа: 0002344331
Дата охранного документа: 20.01.2009
09.06.2019
№219.017.7737

Тепловыделяющая сборка ядерного реактора (варианты)

Изобретение относится к атомной энергетике, а более конкретно к тепловыделяющим сборкам ядерных реакторов с водой под давлением. Техническим результатом изобретения является увеличение изгибной жесткости тепловыделяющих сборок, сохранение изгибной жесткости упомянутых сборок и, как следствие,...
Тип: Изобретение
Номер охранного документа: 0002246142
Дата охранного документа: 10.02.2005
29.06.2019
№219.017.9a6b

Тепловыделяющая сборка ядерного реактора

Изобретение относится к атомной энергетике, а более конкретно к тепловыделяющим сборкам для ядерных реакторов с водой под давлением. Тепловыделяющая сборка ядерного реактора содержит хвостовик, закрепленные на хвостовике направляющие каналы, пучок тепловыделяющих элементов, установленных в...
Тип: Изобретение
Номер охранного документа: 0002248631
Дата охранного документа: 20.03.2005
29.06.2019
№219.017.9a6e

Тепловыделяющая сборка ядерного реактора

Изобретение относится к атомной энергетике, в особенности к тепловыделяющим сборкам для ядерных реакторов с водой под давлением. Тепловыделяющая сборка ядерного реактора содержит хвостовик, закрепленные на хвостовике направляющие каналы, пучок тепловыделяющих элементов, установленных в...
Тип: Изобретение
Номер охранного документа: 0002248051
Дата охранного документа: 10.03.2005
29.06.2019
№219.017.9e8a

Теплообменник

Изобретение относится к атомной энергетике, а более конкретно к теплообменникам систем пассивного отвода тепла для ядерных энергетических установок. Технический результат - упрощение конструкции и, как следствие, повышение надежности, уменьшение массы и, следовательно, металлоемкости и...
Тип: Изобретение
Номер охранного документа: 0002361163
Дата охранного документа: 10.07.2009
+ добавить свой РИД