×
06.07.2019
219.017.a93e

Результат интеллектуальной деятельности: СПОСОБ ЗАПРАВКИ ЖИДКИМ КИСЛОРОДОМ БАКА КОСМИЧЕСКОГО РАЗГОННОГО БЛОКА

Вид РИД

Изобретение

Аннотация: Изобретение относится к ракетно-космической технике и может быть использовано преимущественно при заправке космических разгонных блоков. Согласно изобретению бак заполняют жидким кислородом до заданного уровня заправки при обеспечении равномерного поля заданной среднемассовой температуры по высоте бака. Для этого переохлажденный кислород подают на нижнее днище бака и барботируют через него гелий. Температуру кислорода на входе в бак поддерживают ниже указанной заданной среднемассовой температуры на величину прогрева заправленного в бак кислорода. Это обеспечивает снижение теплопритока к криогенной жидкости. Перед заполнением бака возможно захолаживание его конструкции до средней температуры не выше -160°С путем подачи переохлажденного кислорода в верхнюю часть бака. Изобретение позволяет упростить технологию заправки, расширить возможности и снизить затраты времени и средств на ее проведение. 1 з.п.ф-лы. 1 ил.

Изобретение относится к области ракетно-космической техники и может быть использовано при заправке жидким кислородом топливных баков ракетных двигательных установок, преимущественно баков окислителя космических разгонных блоков (РБ), входящих в состав ракетно-космических систем (РКС).

Известен способ заправки жидким кислородом топливного бака ракеты-носителя (РН) путем насосной подачи в бак жидкого кислорода из заправочной теплоизолированной емкости и дренажирования паров кислорода, включающий заполнение бака до заданного уровня и термостатирование жидкого кислорода (см. Н. В. Твердовский "Космодром", М., "Машиностроение", 1976, с. 69 - 77, рис. 20). Поскольку сжиженный кислород является криогенной жидкостью, имеющей очень низкую температуру кипения, при подаче от заправочной емкости к баку РН и непосредственно в баке он воспринимает значительные внешние теплопритоки, что обусловлено очень большой разностью температур окружающей среды и жидкого кислорода и большой длиной заправочных трубопроводов (магистралей). Подогрев же жидкого кислорода, вследствие его малой теплоты парообразования, приводит к частичному испарению жидкого кислорода с образованием в заправочной магистрали двухфазного газожидкостного потока, что вызывает повышенные потери при заправке бака, а также может вызвать срыв работы насоса жидкого кислорода. Заполнение бака жидким кислородом производится до заданного уровня, соответствующего требуемому количеству заправляемого в бак криогенного окислителя для нормальной работы жидкостного ракетного двигателя (ЖРД), причем для предотвращения потерь жидкого кислорода в баке от внешних теплопритоков и получения его требуемой кондиции на момент старта РН, производится термостатирование жидкого кислорода в баке, обеспечивающее поддержание его заданной среднемассовой температуры. Превышение этой температуры может привести к нарушению нормальной работы насоса окислителя ракетной двигательной установки и выходу из сторон ЖРД. Недостатком данного способа заправки являются большие потери жидкого кислорода и большая продолжительность цикла заправочных работ. Данный недостаток особенно проявляется при заправке жидким кислородом бака космического разгонного блока (РБ), который располагается в верхней части ракетно-космической системы, установленной на стартовой площадке, и имеет наибольшую длину заправочной магистрали.

Наиболее близким к предложенному является способ заправки жидким кислородом топливного бака космического разгонного блока РКС путем насосной подачи в бак переохлажденного жидкого кислорода и отвода в дренаж паров кислорода, включающий заполнение бака жидким кислородом до заданного уровня и обеспечение заданной среднемассовой температуры кислорода за счет его термостатирования, причем жидкий переохлажденный кислород подают в верхнюю часть бака через коллектор душирования, а отвод жидкого кислорода при термостатировании производят из нижней части бака (см. Ракетно-космический комплекс. "Космодром", под ред. Проф. А.П. Вольского, изд. МО СССР, М., 1977, с. 146 - 158, рис. 5.2). Согласно известному способу, жидкий кислород перед поступлением в заправочную магистраль переохлаждают в теплообменнике с жидким азотом, что позволяет компенсировать внешние теплопритоки в магистрали и получить более низкую температуру кислорода в баке. Однако при подаче жидкого кислорода через коллектор душирования, расположенный в верхней части бака, имеют место повышенные теплопритоки к кислороду, особенно в начале процесса заправки, что обусловлено конденсацией испаренного кислорода на струях переохлажденной жидкости, поступающей через коллектор душирования, и перемешиванием жидкости при заполнении бака, а также большой величиной смачиваемой поверхности бака. Это приводит к повышенному прогреву жидкого кислорода при заправке и вызывает необходимость дополнительного охлаждения кислорода в баке путем его термостатирования до заданного значения среднемассовой температуры, обеспечивающего, за счет поддержания термодинамической стабильности жидкого кислорода в баке, надежную работу насоса жидкого кислорода двигательной установки космического разгонного блока и, соответственно, надежную работу ее ЖРД. Для космического разгонного блока температура жидкого кислорода в баке окислителя на момент старта должна быть не выше верхнего предела статического температурного диапазона, отработанного при летной эксплуатации разгонных блоков данного типа, что является необходимым условием для обеспечения надежного запуска двигателя РБ, который осуществляется в космических условиях при уровне перегрузки на 2-4 порядка ниже, чем в земных условиях. Термостатирование заправленного жидкого кислорода производится путем циркуляции его в баке окислителя посредством подачи в бак охлажденного кислорода и одновременного отвода более теплого кислорода в наземный теплообменник с жидким азотом, причем термостатирование жидкого кислорода связано со значительными дополнительными затратами и увеличением времени заправочных работ.

Кроме того, в некоторых случаях, в частности при необходимости использования единственного трубопровода заправки разгонного блока жидким кислородом и при ограниченных запасах жидкого кислорода на стартовой позиции, отсутствует возможность термостатирования жидкого кислорода в баке окислителя разгонного блока, что не позволяет обеспечить заправку этого бака известным способом и произвести успешный запуск ракетно-космической системы.

Задачей, решаемой изобретением, является снижение затрат при заправке жидким кислородом топливного бака космического разгонного блока, сокращение времени и упрощение процесса заправки, а также расширение (функциональных возможностей данного способа.

Решение поставленной задачи обеспечивается за счет того, что при осуществлении заправки жидким кислородом бака космического разгонного блока путем подачи в бак переохлажденного жидкого кислорода и отвода в дренаж паров кислорода, включающей заполнение бака жидким кислородом до заданного уровня и обеспечение равномерного поля заданной среднемассовой температуры жидкого кислорода по высоте бака, в соответствии с изобретением, подачу жидкого переохлажденного кислорода производят на нижнее днище бака, а равномерное поле среднемассовой температуры жидкого кислорода по высоте бака обеспечивают барботированием через него гелия, при этом температуру переохлажденного кислорода на входе в бак поддерживают ниже значения заданной среднемассовой температуры жидкого кислорода в баке на величину прогрева заправленного в бак кислорода; кроме того, перед заполнением бака жидким кислородом производят предварительное захолаживание конструкции бака до средней температуры, составляющей не более -160oC, путем подачи жидкого кислорода в верхнюю часть бака. Подача жидкого переохлажденного кислорода на нижнее днище бака позволяет существенно уменьшить прогрев жидкого кислорода при заполнении бака за счет минимизации внешнего теплопритока к нему, в частности вследствие уменьшения смачиваемой поверхности бака при заправке. При этом барботирование гелия через жидкий кислород обеспечивает выравнивание температуры по высоте слоя жидкого кислорода и позволяет получить в конце заправки бака равномерное поле среднемассовой температуры жидкого кислорода. В то же время, проведение предварительного захолаживания бака жидким кислородом, подаваемым в верхнюю часть бака, до средней температуры не выше -160oC обеспечивает, за счет отвода в дренаж основной части тепла конструкции бака с отходящими парами кислорода перед заполнением бака жидким кислородом, дополнительное снижение прогрева жидкого кислорода при заправке. Уменьшение величины прогрева заправляемого в бак переохлажденного кислорода, при условии поддержания его температуры на входе в бак ниже значения заданной среднемассовой температуры жидкого кислорода в баке на величину его прогрева при заправке, обеспечивает получение в конце заправки температуры кислорода в баке, находящейся в летном статистическом диапазоне температур, гарантирующем падежный запуск маршевого двигателя РБ в условиях космического полета. Это позволяет в предложенном способе заправки не проводить термостатирование жидкого кислорода в баке окислителя РБ, которое необходимо при заправке бака РБ известным способом, и за счет этого существенно снизить затраты при заправке бака жидким кислородом, сократить время и упростить процесс заправки, а также расширить функциональные возможности использования предлагаемого способа заправки.

На прилагаемом чертеже схематично представлено устройство для реализации предложенного способа заправки бака. Устройство содержит криогенную заправочную емкость 1 с жидким кислородом, нижняя часть которой через патрубок 2, насос жидкого кислорода 3, азотный теплообменник 4 и наземный трубопровод (магистраль) заправки 5 подключена к бортовому трубопроводу заправки 6, выходной конец которого размещен внутри бака окислителя 7 разгонного блока и располагается вблизи нижнего днища бака. У нижнего днища бака 7 размещен также газовый коллектор 8, подключенный трубопроводом 9 к баллону 10 со сжатым гелием. В верхней части бака 7 расположен коллектор душирования 11, который через линию 12 соединен с трубопроводом заправки 6. Бак 7 также снабжен уровнемером 13 и дренажным патрубком 14, внутри бака установлены штатные внутрибаковые устройства 15 и размещены баллоны 16 со сжатым газом. Теплообменник 4 представляет собой криогенную емкость с жидким азотом, внутри которой проходит трубопровод 5 подачи жидкого кислорода в бак 7, причем газовая полость емкости сообщена со всасывающим патрубком газового эжектора 17, вход которого подключен к компрессору 18. На патрубке 2 заправочной емкости 1 установлен запорный клапан 19, на трубопроводе 5 установлен запорный клапан 20, бортовой трубопровод 6 и трубопровод 12 содержат соответственно клапаны 21 и 22, дренажный патрубок 14 бака 7 снабжен клапаном 23, на трубопроводе 9 подачи гелия установлен клапан 24. Между трубопроводами 5 и 6 и на трубопроводе 9 установлены бортовые разъемные соединения 25. Устройство содержит также трубопровод 26 с клапаном 27 для слива жидкого кислорода из бака 7 в емкость 1.

Устройство работает следующим образом.

Перед началом процесса заправки производится наддув емкости 1, включается насос жидкого кислорода 3 и осуществляется охлаждение заправочных магистралей (трубопроводов) в соответствии со штатной циклограммой (технологическим алгоритмом) работы системы заправки стартового комплекса. Заправку жидким кислородом бака окислителя 7 разгонного блока производят при открытых клапанах 19, 20, 21 и 23 устройства. Жидкий кислород из заправочной емкости 1 поступает в наземный трубопровод заправки 5 с азотным теплообменником 4 и далее через бортовой трубопровод заправки 6 подается в нижнюю часть бака 7. В теплообменнике 4 жидкий кислород переохлаждается жидким переохлажденным азотом до температуры ниже (не выше) значения заданной среднемассовой температуры жидкого кислорода в баке окислителя 7 разгонного блока на величину прогрева заправляемого жидкого кислорода, которая определяется экспериментально в процессе предварительных заправочно-технологических испытаний ракетного комплекса. Переохлаждение жидкого азота в теплообменнике 4 обеспечивается за счет поддержания в газовой полости теплообменника необходимой величины разрежения, создаваемого газовым эжектором 17 при работе компрессора 18. При подаче жидкого переохлажденного кислорода на нижнее днище бака 7, в процессе его заполнения, образуется верхний кипящий слой жидкости, в котором, в основном, происходит накопление тепла, снимаемого с конструкции бака при его заправке. Другая часть тепла конструкции бака в виде испаренного кислорода удаляется через дренажный патрубок 14. Пары кислорода проходят через весь объем бака 7, интенсивно снимая тепло с несмоченных элементов конструкции бака, за счет чего обеспечивается наиболее оптимальное использование холодосодержания отводимых паров кислорода. При этом, поскольку площадь контакта вводимого на нижнее днище бака 7 жидкого кислорода с поверхностью бака минимальна, имеет место значительное (более чем в 2 раза по сравнению с прототипом) снижение внешнего теплопритока к кислороду и, следовательно, минимальный прогрев его в процессе заполнения бака до заданного уровня заправки. В то же время, при общем пониженном (на 1,5-2oC - по сравнению с прототипом) уровне температуры жидкого кислорода в баке 7, верхние слои жидкости будут иметь существенно более высокую (на ~ 15oC) температуру, что обусловлено прогревом части жидкого кислорода при охлаждении бака. Заполнение бака 7 жидким кислородом ведут до достижения заданного уровня заправки, контролируемого с помощью уровнемера 13, после чего закрывают клапаны 21, 20 и 19 на заправочной магистрали. Перед стартом РКС открывают клапан 24 и производят подачу в бак 7 гелия из баллона 10 через газовый коллектор 8, обеспечивая барботаж гелия через жидкий кислород и выравнивание температуры жидкого кислорода по высоте бака, при этом среднемассовая температура кислорода устанавливается ниже, чем при заправке по способу-прототипу, и соответствует заданной температуре жидкого кислорода в баке окислителя, находящейся в летном статистическом диапазоне температур, обеспечивающем надежный запуск маршевого двигателя разгонного блока. В то же время, с целью дополнительного снижения прогрева жидкого кислорода при заправке, в начале процесса заправки целесообразно провести предварительное захолаживание конструкции бака 7 до средней температуры не выше -160oC, близкой к равновесной температуре жидкого кислорода, подачей жидкого переохлажденного кислорода в верхнюю часть бака. Для этого при закрытом клапане 21 открывают клапан 22 и подают кислород в бак через коллектор душирования 11. При этом жидкий кислород, диспергируемый в верхнюю часть бака 7 через коллектор душирования, равномерно орошает и смачивает всю внутреннюю поверхность бака, интенсивно отбирая тепло конструкции бака, которое отводится из бака через дренажный патрубок 14 с отходящими парами кислорода. Вследствие этого, при предварительном захолаживании бака 7 до температуры, близкой к равновесной температуре жидкого кислорода и составляющей не выше -160oC, основная часть тепла конструкции бака отводится из бака с парами кислорода в начале процесса заправочных работ, что обеспечивает, при последующей подаче жидкого переохлажденного кислорода на нижнее днище бака, снижение прогрева жидкого кислорода и уменьшение толщины образующегося верхнего прогретого слоя кислорода в баке по сравнению с заправкой бака без предварительного захолаживания конструкции бака, и, соответственно, дополнительное снижение среднемассовой температуры жидкого кислорода в баке в конце заправки.

Таким образом, предложенный способ заправки позволяет отказаться от проведения циркуляционного термостатирования жидкого кислорода после заполнения бака окислителя РБ, что существенно снижает затраты при заправке, сокращает время проведения заправочных работ, упрощает процесс заправки и его аппаратурное оформление. Исключение операции термостатирования жидкого кислорода после заполнения бака расширяет также функциональные возможности предлагаемого способа, в частности позволяет использовать его для заправки бака окислителя разгонного блока ДМ-SL в составе РН "Зенит 2S" в условиях подготовки морского старта.

Пример реализации способа.

Предложенный способ реализован при заправке жидким кислородом бака окислителя разгонного бока ДМ-SL на РН "Зенит 2S". Объем бака окислителя РБ составлял ~ 10 м3. Температура переохлажденного жидкого кислорода, подаваемого на днище бака, составляла -196oC. В конце процесса заправки производилось барботирование жидкого кислорода гелием, подаваемым в бак через заправочный трубопровод в течение 6-7 минут с расходом 0,7 г/с, обеспечивающее получение равномерного поля температуры жидкости по высоте бака. С учетом прогрева заправленного кислорода за счет внешнего теплопритока к баку, составляющего 2,5oC, среднемассовая температура жидкого кислорода в баке после барботирования гелием составила -193,5oC, что соответствует ее номинальному значению в отработанном летном диапазоне температур надежного запуска двигателя РБ данного типа.

1.Способзаправкижидкимкислородомбакакосмическогоразгонногоблокапутемподачивбакпереохлажденногожидкогокислородаиотводавдренажпаровкислорода,включающийзаполнениебакажидкимкислородомдозаданногоуровнязаправкииобеспечениеравномерногополязаданнойсреднемассовойтемпературыжидкогокислородаповысотебака,отличающийсятем,чтоподачужидкогопереохлажденногокислородапроизводятнанижнееднищебака,аравномерноеполесреднемассовойтемпературыжидкогокислородаповысотебакаобеспечиваетбарботированиемчерезнегогелия,приэтомтемпературупереохлажденногокислороданавходевбакподдерживаютнижезначениязаданнойсреднемассовойтемпературыжидкогокислородавбакенавеличинупрогревазаправленноговбаккислорода.12.Способпоп.1,отличающийсятем,чтопередзаполнениембакажидкимкислородомпроизводятпредварительноезахолаживаниеконструкциибакадосреднейтемпературыневыше-160Спутемподачижидкогокислородавверхнюючастьбака.2
Источник поступления информации: Роспатент

Показаны записи 1-10 из 71.
20.02.2019
№219.016.bd74

Измерительный преобразователь линейных перемещений

Изобретение относится к электроконтактной технике, а именно к устройствам коммутации электрических цепей изделий, например космических аппаратов. Измерительный преобразователь линейных перемещений содержит корпус, скользящие электрические контакты с изоляционным держателем, втулку,...
Тип: Изобретение
Номер охранного документа: 02201003
Дата охранного документа: 20.03.2003
23.02.2019
№219.016.c7bf

Устройство для разделения жидкости и газа в условиях невесомости

Изобретение относится к космической технике и предназначено для очистки жидкости от газовых включений в условиях невесомости и микрогравитации. Предлагаемое устройство содержит корпус, выполненный в виде двух усеченных конусов, соединенных между собой большими основаниями с помощью кольцевой...
Тип: Изобретение
Номер охранного документа: 0002165871
Дата охранного документа: 27.04.2001
01.03.2019
№219.016.ca8a

Генератор переменного напряжения

Генератор переменного напряжения относится к электронной технике, может быть использован в электронных схемах, где требуется их включение и отключение в заданные моменты времени при отказах или коротком замыкании без коммутации силового питания. Технический результат заключается в расширении...
Тип: Изобретение
Номер охранного документа: 02239928
Дата охранного документа: 10.11.2004
01.03.2019
№219.016.cab7

Отделяемый от гиперзвукового летательного аппарата элемент, обладающий аэродинамическим качеством

Изобретение относится к области аэродинамики, а именно, к разработке отделяемого от гиперзвукового летательного аппарата (ЛА) элемента, обладающего аэродинамическим качеством, и способа спуска его в атмосфере. Может быть использовано при создании гиперзвуковых ЛА различного назначения:...
Тип: Изобретение
Номер охранного документа: 02223896
Дата охранного документа: 20.02.2004
08.03.2019
№219.016.d5cc

Способ контроля герметичности изделий

Изобретение относится к испытательной технике. Технический результат изобретения - повышение чувствительности испытаний и расширение номенклатуры испытываемых изделий. Камеру с размещенным в ней изделием вакуумируют, подают в нее тарированный поток контрольного газа, заправляют изделие...
Тип: Изобретение
Номер охранного документа: 02180737
Дата охранного документа: 20.03.2002
11.03.2019
№219.016.d6d7

Автоматизированная испытательная система для отработки, электрических проверок и подготовки к пуску космических аппаратов

Изобретение относится к наземному оборудованию космических аппаратов (КА), Предлагаемая система содержит блок ее приведения в готовность к испытаниям КА, а также блоки управления, ввода и анализа корректности директив автоматической программы испытаний, интерпретации директив, передачи...
Тип: Изобретение
Номер охранного документа: 0002245825
Дата охранного документа: 10.02.2005
11.03.2019
№219.016.dac2

Способ сборки трехслойной панели с опорными узлами

Изобретение относится к аэрокосмической технике, а именно к созданию панелей для размещения спутникового оборудования. Способ сборки трехслойной панели с опорными узлами включает фиксацию сотового заполнителя опорными узлами. На внутренних сторонах верхней и нижней обшивок и боковых...
Тип: Изобретение
Номер охранного документа: 0002360799
Дата охранного документа: 10.07.2009
11.03.2019
№219.016.ddf9

Способ обезгаживания изделий и устройство для его реализации

Изобретение относится к испытательной технике, в частности к испытаниям изделий на обезгаживание, и может найти применение в тех областях техники, где предъявляются повышенные требования к чистоте изделий. Способ состоит в том, что помещают изделие в вакуумную камеру, экранируют стенки камеры...
Тип: Изобретение
Номер охранного документа: 02177376
Дата охранного документа: 27.12.2001
11.03.2019
№219.016.de33

Способ сушки внутренних поверхностей гидросистемы

Изобретение относится к способам сушки внутренних поверхностей гидросистем, включающих в себя разветвленные трубопроводы с тупиковыми зонами, емкости, агрегаты и узлы с развитой поверхностью перед проверкой их на герметичность. Сущность изобретения заключается в том, что внутренние поверхности...
Тип: Изобретение
Номер охранного документа: 02182691
Дата охранного документа: 20.05.2002
15.03.2019
№219.016.e163

Способ изготовления высокотемпературного электроизоляционного стеклотекстолита

Изобретение относится к электроизоляционным конструкционным стеклотекстолитам и может быть использовано в качестве электроизоляторов. Способ изготовления высокотемпературного электроизоляционного стеклотекстолита включает пропитку стеклоткани 15%-ным раствором кремнийорганической смолы,...
Тип: Изобретение
Номер охранного документа: 0002162458
Дата охранного документа: 27.01.2001
Показаны записи 1-6 из 6.
11.03.2019
№219.016.d76a

Система заряжания автоматической артиллерийской установки

Изобретение относится к артиллерии. Сущность изобретения заключается в том, что система заряжания содержит механизм подпитки патронами, веерный транспортер, устройство снижения патронов на линию досылки и досылатель. Веерный транспортер включает в себя ведущую звездку, первую ведомую звездку,...
Тип: Изобретение
Номер охранного документа: 0002231728
Дата охранного документа: 27.06.2004
11.03.2019
№219.016.d76c

Автоматическая артиллерийская установка

Изобретение относится к артиллерии. Сущность изобретения заключается в том, что магазин артустановки выполнен в виде двухзаходного шнекового барабана, расположенного в подбашенном помещении, над которым расположен передающий механизм, кинематически связанный с элеватором. Двухзаходный шнековый...
Тип: Изобретение
Номер охранного документа: 0002231729
Дата охранного документа: 27.06.2004
04.04.2019
№219.016.fbf1

Способ снятия покрова и оболочки с кабеля и устройство для его осуществления

Изобретение относится к области переработки и утилизации использованного кабеля. Способ включает вдавливание клиновых дисковых ножей в оболочку и продольную обкатку ими кабеля параллельно его поверхности. Устройство содержит, в частности, планшайбу с копирными дорожками. С последними...
Тип: Изобретение
Номер охранного документа: 02221690
Дата охранного документа: 20.01.2004
10.04.2019
№219.017.0a3b

Жидкостный ракетный двигатель

Жидкостный ракетный двигатель содержит камеру сгорания с соплом, имеющие тракт регенеративного охлаждения, насос окислителя и насос горючего с расходными магистралями окислителя и горючего, соединенные с приводной турбиной. Вход газогенератора подключен к расходной магистрали окислителя и через...
Тип: Изобретение
Номер охранного документа: 02173399
Дата охранного документа: 10.09.2001
Тип: Изобретение
Номер охранного документа: 0000201644
Дата охранного документа: 23.03.1984
19.06.2019
№219.017.8c66

Камера жидкостного ракетного двигателя

Камера жидкостного ракетного двигателя с регенеративной системой охлаждения включает реактивное сопло и насадок. Насадок пристыкован к соплу, входящему в состав камеры жидкостного ракетного двигателя, без изменения исходной конфигурации сопла. Продольный контур насадка выполнен по кривой,...
Тип: Изобретение
Номер охранного документа: 02196917
Дата охранного документа: 20.01.2003
+ добавить свой РИД