×
06.07.2019
219.017.a710

Результат интеллектуальной деятельности: Устройство для исследования термической, термоокислительной и гидролитической деструкции полимерных материалов и способ его осуществления

Вид РИД

Изобретение

Аннотация: Изобретение относится к устройству и способу исследования термической, термоокислительной и гидролитической деструкции полимерных материалов. Устройство для реализации способа исследования термической, термоокислительной и гидролитической деструкции полимерных материалов, состоящее из камеры для проведения процессов пиролиза, соединенной с хроматографом через кран-дозатор и снабженной пробкой-заглушкой с держателем тигля для образцов, линией подачи газа вне ячейки на детектор хроматографа, второй линией подачи газа через кран-дозатор в ячейку с последующей подачей образовавшихся продуктов деструкции полимера в хроматограф и третьей газовой линией предназначенной для постоянной продувки ячейки с минимальным расходом с целью исключения влияния продуктов разложения на деструкцию полимера. Техническим результатом данного изобретения является увеличение точности и полноты детектирования при простоте его исполнения. 2 н. и 9 з.п. ф-лы, 4 ил.

Изобретение относится к устройству и способу исследования термической, термоокислительной и гидролитической деструкции полимерных материалов, в частности ароматических полиэфиров.

На сегодняшний день исследования термической, термоокислительной и гидролитической деструкции полимеров позволяют определить температурные режимы их переработки, при которых они не теряли бы своих свойств. Создание устройства и способа исследования термической, термоокислительной и гидролитической деструкции полимеров, позволяющего с достаточно большой точностью подбирать температурные режимы их переработки является актуальной задачей.

Известен способ исследования термической и термоокислительной деструкции полимеров по Авторскому свидетельству СССР №881610 опубл. 15.11.81. в Бюл. № 42. Указанный в изобретении способ основывается на помещении вещества в калиброванную вакуумированную ампулу, которая после нагрева в камере, имеющей входы и выходы газа-носителя и механизм вскрытия ампулы до необходимой температуры, вскрывается и газообразные продукты подаются на хроматограф. Однако, известный способ затрудняет выяснение механизмов разрушения полимеров, так как в закрытой ампуле возможны реакции взаимодействия низкомолекулярных продуктов распада между собой и основной полимерной цепью, а устройство для его реализации отличается сложностью и большой трудоемкостью.

Так же известен способ исследования термоокислительной деструкции веществ, включающий их нагрев в замкнутом объеме, окисление в среде газа-окислителя, подачу газообразных продуктов окисления в хроматографическую колонку и детектирование разделенных продуктов окисления на выходе из колонки [Пономаренко В.А. и др. Термическая деструкция полимерфтортриазинов. - ВМС, т. (А) XVI, 1974, № 3, с. 553-557].

Устройство для осуществления этого способа включает камеру для проведения процесса термоокисления, каналы для подачи газа-носителя и газа-окислителя, пробку-заглушку камеры, хроматографическую колонку и кран-дозатор, через который камера для проведения процесса термоокисления соединения с хроматографической колонкой.

Недостатком данного способа является большая трудоемкость, недостаточная точность и полнота исследования, поскольку при пиролизе помимо поглощения кислорода, приводящего к уменьшению давления, может происходить выделение продуктов распада и связанное с этим увеличение давления, а при отборе проб с помощью дозирующей петли в моменты ее заполнения не учитываются изменения давления в камере.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому является способ исследования термоокислительной деструкции веществ и устройство для его осуществления по Авторскому свидетельству №1134911 опубл. 15.01.85. в Бюл. №2.

Однако данный способ и соответственно устройство позволяют исследовать только термоокислительную деструкцию полимеров. Кроме этого, система при нагреве образца всегда замкнута, что, как и в предыдущем случае, затрудняет разобраться в механизмах разрушения веществ. Недостатком данного способа и устройства является и то, что жидкие продукты разложения, образующиеся в камере, частично подхватываются газом-носителем, перенося их в газовые линии хроматографа, последствием чего является ухудшение детектировании газообразных продуктов разложения.

Задачей изобретения является создание устройства для исследования термической, термоокислительной и гидролитической деструкции полимерных материалов, в частности полисульфонов и полиэфиркетонов предназначенных для 3D печати и описание способа его осуществления.

Техническим результатом данного изобретения является увеличение точности и полноты детектирования при простоте его исполнения.

Указанная задача решается тем, что деструкцию образца проводят путем его нагрева в замкнутой инертной, окислительной, воздушной с различной степенью влажности или в открытой системе, с последующим разделением газообразных продуктов разложения и их анализом.

Для данных целей заявлено устройство для исследования термической, термоокислительной и гидролитической деструкции полимерных материалов, состоящее из камеры для проведения процессов пиролиза, соединенной с хроматографом через кран-дозатор и снабженной пробкой-заглушкой с держателем тигля для образцов, первой линией подачи газа вне ячейки на детектор хроматографа, второй линией подачи газа через кран-дозатор в ячейку с последующей подачей образовавшихся продуктов деструкции полимера в хроматограф и третей газовой линией предназначенной для постоянной продувки ячейки с минимальным расходом с целью исключения влияния продуктов разложения на деструкцию полимера (открытая система).

В частном случае изобретения полимерные материалы представляют собой ароматические полиэфиры.

При этом на выходе газовой линии из ячейки установлен холодильник для отделения жидких продуктов разложения полимеров от газообразных с целью недопущения засорения газовых линий, а также на выходе из крана дозатора установлен гидрозатвор, позволяющий проводить исследования как в закрытой, так и в открытой системе термостатирования.

Дополнительно с целью более быстрого и равномерного отбора газообразных продуктов разложения в изобретении используется пробка-заглушка с проточкой против входа газовой линии в ячейку.

В частном случае изобретения полимерные материалы могут представляют собой суперконструкционные полимерные материалы.

Также заявлен способ исследования термической, термоокислительной и гидролитической деструкции полимерных материалов, включающий помещение тигля с навеской исследуемого вещества в камеру вышеуказанного устройства с заданной температурой, подачу газа через магистраль по линии, разделение и анализ продуктов разложения.

Устройство, отображенное на фиг. 1 состоит из ячейки 1, в корпусе которой имеется камера 2, входной 3 и выходной 4 каналы для подачи либо газа-носителя, либо кислорода, либо воздуха с различной степенью влажности. Ячейка снабжена нагревателем 5, закрытым теплоизоляционным слоем 6. Камера закрывается пробкой-заглушкой 7 с держателем тигля 8 через герметизирующую прокладку 9 (медь, фторопласт в зависимости от температурных режимов). В контакте с держателем тигля находится запрессованная контролирующая термопара 10. Газ из баллона 11 подается на блок подготовки газов 12, который создает три газовые линии. Линия 13 подает газ непосредственно на детектор по теплопроводности (сравнительный канал), линия 14 подает газ на шестипортовый кран-дозатор 16 через вход «Д», который при положении штока крана-дозатора I проходит через выход «Е» на разделительную колонку 17. Третья линия 15 подает газ в камеру 2 ячейки 1 (через эту линию может подаваться кроме инертного газа кислород и воздух с различной степенью влажности). На выходе из ячейки 4, для отделения жидких продуктов разложения полимеров от газообразных, установлен холодильник 18, который предотвращает их попадание на разделительную колонку 17. В дальнейшем собранные таким образом жидкие продукты разложения полимеров могут быть исследованы с помощью ИК-спектроскопии или жидкостной хроматографии.

Когда шток крана-дозатора 16 находится в положении I между собой соединяются каналы «А»-«В» и «Б»-«Г», позволяя образующимся при деструкции полимеров газообразным продуктам проходить через дозирующую петлю 19, выход из которой соединен с гидрозатвором 20, способствующим либо выходить газу в атмосферу (открытая система), либо блокировать его выход (закрытая система). При положении штока крана-дозатора в положении II между собой соединяются каналы «А»-«Д» и «Б»-«Е», что способствует отбору пробы газов из дозирующей петли и переносу ее через разделительную колонку 17 в аналитический блок хроматографа 21.

Способ осуществляется следующим образом: по достижении в камере заданной температуры, варьирующий в диапазоне 0-500°С, помещают тигель с навеской исследуемого вещества (нагрев можно осуществлять и при нахождении тигля в камере). Далее через магистрали 3, 4 по линии 15 подается либо инертный газ, либо кислород, либо воздух с разной степенью влажности (в зависимости от задачи). В данном процессе отделение жидких и газообразных продуктов разложения увеличивает точность анализа и предотвращает попадание жидких веществ в газовые линии хроматографа и аналитический блок. Временные интервалы разложения полимеров лимитированы только временем выхода газообразных продуктов разложения на разделительных колонках хроматографа. Варьируя массой навески образца от 10 до 500 мг, достигается наиболее оптимальный выход продуктов разложения полимеров, комфортного для расчетов их количеств с минимальными погрешностями.

Приведенный ниже пример позволяет ознакомиться с принципом работы устройства и не является ограничивающим, возможны другие варианты осуществления изобретения без изменения его сущности.

Пример 1

Устройство и способ по изобретению апробировано на исследовании термической деструкции полисульфона следующего строения:

На фиг. 2 и фиг. 3 представлены исследования термической деструкции полисульфона Radel R, описывающие кинетические кривые выделения СО (кривая 1), SO2 (кривая 2) и СО2 (кривая 3) в открытой и закрытой системах соответственно, при температуре 450°С.

Как видно из этих графиков, использование предлагаемого способа и устройства исследования полимеров позволяет уловить разницу в газообразовании основных продуктов разложении полисульфона в открытой и закрытой системах, что в свою очередь позволяет обеспечить высокую точность и полноту анализа. Так, во втором случае содержание окиси углерода с течением времени уменьшается с увеличением выхода двуокиси углерода, что свидетельствует о взаимодействии низкомолекулярных продуктов разложения в закрытом объеме между собой.

Пример 2

С использованием данного устройства по указанному способу были исследованы процессы сшивания полисульфонов различного строения при температурах 150°С, 200°С, 250°С, 300°С, время выдержки полимера в ячейке - 60 мин. Для изучения термической деструкции исследуемых полимерных материалов при температурах 350°С, 400°С, 450°С, 500°С были исследованы следующие продукты деструкции: водород, метан, оксид углерода, диоксид углерода и двуокись серы. Использование данного способа позволило выяснить влияние концевых групп полимеров на процессы сшивания, что позволило подобрать блокирующий реагент для уменьшения степени сшивания. Тем самым удалось улучшить перерабатываемость материала в изделие без потерь его механических свойств.

На фиг. 4 представлены кинетические кривые выделения водорода для полисульфона (диоксидифенилсульфон) без блокиратора кривая 1 и кривая 2 с блокиратором дихлордифенилсульфон. Как следует из кривых, блокирование полисульфона приводит к значительному уменьшению степени сшивания образца.


Устройство для исследования термической, термоокислительной и гидролитической деструкции полимерных материалов и способ его осуществления
Устройство для исследования термической, термоокислительной и гидролитической деструкции полимерных материалов и способ его осуществления
Устройство для исследования термической, термоокислительной и гидролитической деструкции полимерных материалов и способ его осуществления
Источник поступления информации: Роспатент

Показаны записи 41-50 из 174.
26.10.2018
№218.016.9620

Оптоволоконный фотоэлектрический свч модуль

Изобретение относится к области радиотехники, в частности к радиофотонике, и может быть использовано при конструировании систем возбуждения антенн и антенных решеток для связи, радиолокации и радиоэлектронной борьбы. Оптоволоконный фотоэлектрический СВЧ модуль включает симметричный...
Тип: Изобретение
Номер охранного документа: 0002670719
Дата охранного документа: 24.10.2018
06.12.2018
№218.016.a444

Стендовый жидкостный ракетный двигатель с непрерывной спиновой детонацией

Изобретение относится к области испытаний, в частности стендовых испытаний режимов работы ЖРД, работающих в режиме непрерывной детонации на топливной смеси, состоящей из газообразного кислорода и керосина. Изобретение представляет собой стендовый ЖРД с кольцевой камерой детонационного горения,...
Тип: Изобретение
Номер охранного документа: 0002674117
Дата охранного документа: 04.12.2018
07.12.2018
№218.016.a463

Устройство для импульсной деформации длинномерных трубчатых изделий

Изобретение относится к обработке металлов давлением, а именно к устройствам для магнитоимпульсной обработки металлов давлением. Устройство содержит приспособление для прижимного соединения и разъединения торцевых частей полувитков блока разъемного индуктора. При этом указанное приспособление...
Тип: Изобретение
Номер охранного документа: 0002674184
Дата охранного документа: 05.12.2018
09.12.2018
№218.016.a50b

Радиофотонный передающий тракт для передачи мощных широкополосных сигналов и эффективного возбуждения антенн

Изобретение относится к радиофотонике, в том числе к технике передачи мощных широкополосных радиосигналов по волоконно-оптическим линиям связи к антеннам и антенным решеткам. Техническим результатом является повышение КПД, максимально достижимой мощности, широкополосности (расширение мгновенной...
Тип: Изобретение
Номер охранного документа: 0002674074
Дата охранного документа: 07.12.2018
20.12.2018
№218.016.a95b

Радиофотонный широкополосный приемный тракт на основе ммшг-модулятора с подавлением собственных шумов лазера

Изобретение относится к радиофотонике, в том числе к технике приема слабых широкополосных радиосигналов, например, от антенн и антенных решеток. Заявленный радиофотонный широкополосный приемный тракт на основе ММШГ-модулятора с подавлением собственных шумов лазера содержит лазер, оптическую...
Тип: Изобретение
Номер охранного документа: 0002675410
Дата охранного документа: 19.12.2018
20.12.2018
№218.016.a963

Способ изготовления фотодетекторов мощного оптоволоконного свч модуля

Изобретение может быть использовано для создания мощных СВЧ фотодетекторов на основе эпитаксиальных структур GaAs/AlGaAs, чувствительных к излучению на длине волны 810-860 нм. Способ изготовления фотодетекторов мощного оптоволоконного СВЧ модуля включает создание на полупроводниковой подложке...
Тип: Изобретение
Номер охранного документа: 0002675408
Дата охранного документа: 19.12.2018
20.12.2018
№218.016.a99f

Конструкция высокопрочных датчиков

Изобретение относится к области авиационной техники, диагностики технического состояния конструкций из полимерных композиционных, металлических и гибридных материалов с использованием волоконно-оптических акустических средств встроенного контроля. Конструкция высокопрочного датчика деформации...
Тип: Изобретение
Номер охранного документа: 0002675411
Дата охранного документа: 19.12.2018
20.12.2018
№218.016.a9dd

Фотодетекторный свч модуль

Изобретение относится к области радиотехники, а именно к радиофотонике, и может быть использовано при конструировании систем возбуждения антенн и активных фазированных антенных решеток (АФАР) для связи, радиолокации, радионавигации и радиоэлектронной борьбы. Фотодетекторный СВЧ модуль включает...
Тип: Изобретение
Номер охранного документа: 0002675409
Дата охранного документа: 19.12.2018
26.12.2018
№218.016.ab9c

Фильтрующий пакет, способ получения мембраны для него и способ изготовления противоаэрозольного фильтра противогаза

Изобретение относится к области получения противоаэрозольных фильтров из волокнистых фильтрующих материалов. Фильтрующий слой изготовлен из полиакрилонитрильных нановолокон. Нановолокна получены методом электроформования по технологии Nanospider из раствора полиакрилонитрила с концентрацией...
Тип: Изобретение
Номер охранного документа: 0002675924
Дата охранного документа: 25.12.2018
27.12.2018
№218.016.ac66

Способ получения фильтрующего материала и фильтрующий материал

Изобретение относится к области получения высокоэффективных волокнистых фильтрующих материалов. Фильтрующий материал представляет собой трехслойную композицию, в которой один из слоев выполнен из полимерных (полиакрилонитрильных) нановолокон, полученных методом электроформования, и размещен...
Тип: Изобретение
Номер охранного документа: 0002676066
Дата охранного документа: 25.12.2018
Показаны записи 41-50 из 97.
15.03.2019
№219.016.e14c

Электроизоляционная композиция

Изобретение относится к кабельной технике, а именно полимерным композициям на основе поливинилхлорида (ПВХ) с пониженной горючестью, выделением дыма в условиях тления и горения и хлористого водорода при горении, предназначенным для изоляции, внутренних и наружных оболочек проводов и кабелей....
Тип: Изобретение
Номер охранного документа: 0002469055
Дата охранного документа: 10.12.2012
10.04.2019
№219.016.fef2

Одностадийный способ получения ароматического полиэфира

Настоящее изобретение относится к одностадийному способу получения ароматических полиэфиров реакцией нуклеофильного замещения, включающему взаимодействие 0,056-0,063 моль 4,4'-дихлордифенилсульфона, 90 мл диметилсульфоксида, 0,0024 моль катализатора оксида алюминия, 0,087 моль щелочного агента...
Тип: Изобретение
Номер охранного документа: 0002684328
Дата охранного документа: 08.04.2019
10.04.2019
№219.016.ff03

Способ получения ароматических полиэфиров

Изобретение относится к области получения ароматических полиэфиров. Описан способ получения ароматических полиэфиров реакцией нуклеофильного замещения, включающий взаимодействие 0,0404 моль 4,4'-дихлордифенилсульфона и 0,0404 моль ароматических диоксисоединений в присутствии 0,044 моль...
Тип: Изобретение
Номер охранного документа: 0002684327
Дата охранного документа: 08.04.2019
10.04.2019
№219.016.ff0f

Ароматические полиэфирэфиркетоны, сополиэфирэфиркетоны и способ их капсулирования

Настоящее изобретение относится к способу получения капсулированных ароматических полиэфирэфир- и сополиэфирэфиркетонов. Описан способ капсулирования ароматических полиэфирэфиркетонов и сополиэфирэфиркетонов, полученных в результате синтеза смеси компонентов в соотношении: 0,021-0,035 моль...
Тип: Изобретение
Номер охранного документа: 0002684329
Дата охранного документа: 08.04.2019
27.04.2019
№219.017.3cec

Композиционный материал на основе полифениленсульфона

Изобретение относится к применению композиционного материала в качестве суперконструкционного полимерного материала для аддитивных 3D-технологий методом послойного наплавления (FDM). Композиционный материал содержит следующие компоненты, мас.%: 85-95 полифениленсульфона (ПФС) и 5-15 талька....
Тип: Изобретение
Номер охранного документа: 0002686329
Дата охранного документа: 25.04.2019
09.05.2019
№219.017.4a5b

Композиционный материал

Изобретение относится к области создания композиционного материала предназначенных в качестве суперконструкционных материалов, используемых в 3D-печати методом послойного наплавления (FDM), то есть создание трехмерных объектов за счет нанесения последовательных слоев материала, повторяющих...
Тип: Изобретение
Номер охранного документа: 0002686916
Дата охранного документа: 06.05.2019
24.05.2019
№219.017.5d96

Способ получения полиэфирсульфонов

Изобретение относится к области получения полиэфирсульфонов, применяемых в качестве суперконструкционных полимерных материалов для 3D печати. Способ получения полиэфирсульфонов заключается в том, что проводят реакцию нуклеофильного замещения нуклеофильного агента дигалоидароматическим...
Тип: Изобретение
Номер охранного документа: 0002688942
Дата охранного документа: 23.05.2019
24.05.2019
№219.017.5dc8

Ароматический огнестойкий полиэфирэфиркетон и способ его получения

Настоящее изобретение относится к огнестойким ароматическим полиэфирэфиркетонам. Описан ароматический огнестойкий полиэфирэфиркетон, характеризующийся строением:
Тип: Изобретение
Номер охранного документа: 0002688943
Дата охранного документа: 23.05.2019
29.05.2019
№219.017.631b

Композиционный материал на основе полифениленсульфона и способ его получения

Изобретение относится к способу получения композиционного материала на основе полифениленсульфона, применяемого в качестве суперконструкционного полимерного материала для аддитивных 3D технологий. Способ получения композиционного материала заключается в том, что предварительно сухую смесь 75-85...
Тип: Изобретение
Номер охранного документа: 0002688140
Дата охранного документа: 20.05.2019
29.05.2019
№219.017.6388

Ароматические сополиэфирсульфонкетоны и способ их получения

Изобретение относится к способу получения ароматических сополиэфирсульфонкетонов (СПЭСК), которые могут быть использованы в качестве термо- и теплостойких конструкционных полимерных материалов. Первый вариант способа получения сополиэфирсульфонкетона заключается в том, что проводят реакцию...
Тип: Изобретение
Номер охранного документа: 0002688142
Дата охранного документа: 20.05.2019
+ добавить свой РИД