×
02.07.2019
219.017.a320

Результат интеллектуальной деятельности: Носитель датчиков внутритрубного ультразвукового дефектоскопа

Вид РИД

Изобретение

Аннотация: Заявляемое изобретение относится к области внутритрубной диагностики технического состояния трубопроводов большой протяженности. Носитель датчиков содержит корпус, на переднем и заднем концах которого размещены манжеты, между которыми расположены конус и диск. Между конусом и диском установлены полозы, равномерно закрепленные в окружном направлении на конусе и диске, между полозами расположены пластинчатые пружины, причем каждый из полозов имеет основание, которое содержит подложку, переднюю, хвостовую и боковые накладки, на основании закреплены платформы с подвижными блоками ультразвуковых датчиков, подпружиненными относительно платформ в радиальном направлении от продольной оси носителя датчиков. Повышается точность диагностики внутритрубными инспекционными приборами трубопровода в части выявления аномалий стенки трубы за счет обеспечения соблюдения необходимого отступа и углового положения ультразвуковых датчиков относительно поверхности трубопровода. 3 з.п. ф-лы, 7 ил.

Область техники, к которой относится изобретение

Заявляемое изобретение относится к области внутритрубной диагностики технического состояния трубопроводов большой протяженности.

Уровень техники

Из уровня техники известен носитель датчиков для ультразвукового дефектоскопа с установленными в нем ультразвуковыми датчиками, который образует состоящую из полозов внешнюю оболочку, внутри которой размещена, по меньшей мере, одна герметичная оболочка с размещенными в ней указанными средствами измерений, обработки и хранения данных измерений, на передней и задней частях герметичной оболочки установлены опорные манжеты, герметичная оболочка выполнена в виде «гантели», на внутренних боковых поверхностях которой установлены герметичные разъемы с подключенными к ним кабелями, носитель датчиков выполнен в виде сборной конструкции, состоящей из полозов, на внутренней поверхности которых установлены металлические планки с датчиками, обеспечивающие зазор между датчиками и стенкой трубопровода, а также углы установки датчиков относительно стенки трубопровода [RU 116963 U1, опубл. 10.06.2012].

Из уровня техники известен носитель датчиков ультразвукового дефектоскопа, который выполнен по крайней мере из одной секции, которая включает в себя центральный стержень, на котором размещены головная и хвостовая вилки, к фланцам которых прикреплены центрирующие манжеты, между которыми размещены полиуретановый головной конус, полиуретановый хвостовой конус и набор колец с расположенными на нем ультразвуковыми датчиками, при этом наружный диаметр носителя датчиков ультразвукового дефектоскопа имеет размер, не превышающий размер предельно допустимого сужения трубопровода [RU 144267 U1, опубл. 20.08.2014].

Недостатком вышеприведенных конструкций является недостаточная выявляемость дефектов на вмятинах трубопроводов.

Наиболее близким к заявляемому изобретению является носитель датчиков для внутритрубного инспекционного дефектоскопа, который включает в себя полозы, способные скользить по внутренней поверхности трубопровода и закрепленные на упругих кольцевых элементах, которые содержат ультразвуковые датчики. Полозы образуют прокладки между элементами с посадочными местами для датчиков и внутренней поверхностью трубопровода, элементы с посадочными местами для датчиков выполнены способными испытывать упругое отжатие в радиальном направлении от оси носителя [RU 2204113 С1, опубл. 10.05.2003].

Основным недостатком данного устройства является то, что при прохождении указанным носителем датчиков участков трубопроводов с дефектами геометрии (вмятины), вследствие ограниченной гибкости полозов и кольцевых элементов носителя датчиков, а также из-за взаимного влияния полозов и кольцевых элементов на соседние элементы, происходит деформация поверхности носителя датчиков на вмятине в зоне, значительно превышающей размеры вмятины.

Раскрытие сущности изобретения

Технической проблемой, на решение которой направлено заявляемое изобретение, является повышение точности диагностики внутритрубными инспекционными приборами трубопроводов, в части выявления аномалий геометрии стенки трубопровода.

Техническим результатом заявляемого изобретения является повышение точности диагностики внутритрубными инспекционными приборами трубопровода в части выявления аномалий стенки трубы за счет обеспечения соблюдения необходимого отступа и углового положения ультразвуковых датчиков относительно поверхности трубопровода.

Заявляемый технический результат достигается за счет того, что носитель датчиков для ультразвукового внутритрубного дефектоскопа содержит корпус, на переднем и заднем концах которого размещены манжеты, между которыми расположены конус и диск. Между конусом и диском установлены полозы, равномерно закрепленные в окружном направлении на конусе и диске, между полозами расположены пластинчатые пружины, причем каждый из полозов имеет основание, которое содержит подложку, переднюю, хвостовую и боковые накладки, на основании закреплены платформы с подвижными блоками ультразвуковых датчиков, подпружиненными относительно платформ в радиальном направлении от продольной ocи носителя датчиков.

Кроме того, в частном случае реализации изобретения подложка, передняя, хвостовая и боковые накладки, входящие в состав основания выполнены из полиуретана.

Кроме того, в частном случае реализации изобретения платформа содержит раму, на которой установлен подвижный блок ультразвуковых датчиков.

Кроме того, в частном случае реализации изобретения блок ультразвуковых датчиков содержит корпус блока ультразвуковых датчиков, соединенный с двух сторон с салазками, к каждой из которых с внешней стороны прикреплен сухарь посредством оси.

Краткое описание чертежей

Реализация заявляемого изобретения поясняется чертежами, где:

На фиг. 1 изображен носитель датчиков внутритрубного ультразвукового дефектоскопа;

На фиг. 2 изображен полоз носителя датчиков;

На фиг. 3 изображен разнесенный вид полоза носителя датчиков;

На фиг. 4 изображена платформа носителя датчиков;

На фиг. 5 изображен разнесенный вид платформы носителя датчиков;

На фиг. 6 изображено сечение платформы носителя датчиков;

На фиг. 7 изображена схема расположения датчиков на полозе носителя датчиков,

где на чертежах позиции имеют следующие обозначения:

1 - корпус;

2 - манжета;

3 - конус;

4 - диск;

5 - полоз носителя датчиков;

6 - платформа;

7 - пластинчатая пружина;

8 - основание полоза;

9 - блок ультразвуковых датчиков;

10 - ультразвуковой датчик;

11 - подложка;

12 - передняя накладка;

13 - хвостовая накладка;

14 - левые боковые накладки;

15 - правые боковые накладки;

16 - винт;

17 - соединительная планка;

18 - винт боковой;

19 - передняя платформа;

20 - рама;

21 - корпус блока 9 ультразвуковых датчиков 10;

22 - салазки;

23 - ось;

24 - сухарь;

25 - винт корпуса блока 9 ультразвуковых датчиков 10;

26 - пластина корпуса блока 9 ультразвуковых датчиков 10;

27 - боковой винт корпуса блока 9 ультразвуковых датчиков 10;

28 - шайба корпуса блока 9 ультразвуковых датчиков 10;

29 - кронштейн;

30 - пружина;

31 - скоба;

32 - паз кронштейна 29;

33 - поверхность сухаря 24;

34 - поверхность кронштейна 29.

Сведения, подтверждающие возможность осуществления изобретения

Заявляемый носитель датчиков для ультразвукового внутритрубного дефектоскопа по фиг. 1 содержит корпус 1, с двух сторон которого размещены манжеты 2, конус 3 и 4. Манжеты, конус и диск выполнены из полиуретана. К конусу 3 и диску 4 равномерно в окружном направлении крепятся полозы 5 носителя датчиков с установленными на них платформами 6, каждая из которых содержит блок 9 ультразвуковых датчиков 10. Манжеты 2 и конус 3 обеспечивают центрирование носителя датчиков в трубопроводе. Полозы 5 носителя датчиков обеспечивают требуемое равномерное расположение ультразвуковых датчиков 10 в окружном и продольном направлениях относительно продольной оси носителя датчиков и необходимый отступ ультразвуковых датчиков относительно стенки трубопровода. Между полозами 5 носителя датчиков расположены пластинчатые пружины 7, обеспечивающие дополнительное прижатие полозов 5 носителя датчиков к стенке трубопровода.

Каждый из полозов 5 (см. фиг. 2 и фиг. 3) состоит из основания 8, выполненного из полиуретана. Основание 8 содержит подложку 11, переднюю накладку 12, хвостовую накладку 13, левые накладки 14, правые накладки 15, выполненные из полиуретана, причем внутри указанных накладок расположены соединительные планки 17. На основании 8 посредством винтов 16, завернутых в отверстия соединительных планок 17, закреплены платформы 6, содержащие подвижные блоки 9 ультразвуковых датчиков 10. Передняя накладка 12 совместно с подложкой 11 дополнительно крепится винтами 18 к передней платформе 19. Основание 8 обладает необходимой гибкостью для прохождения носителем датчиков сужений трубопровода, в том числе вмятин. Подложка 11, являющаяся основным соединительным элементом полоза, при эксплуатации носителя датчиков не подвержена износу и сохраняет неизменными характеристики жесткости.

Платформа 6 (фиг. 2) состоит из рамы 20 (фиг. 4) и подвижного блока 9 ультразвуковых датчиков 10 (фиг. 4). Блок 9 ультразвуковых датчиков 10 по фиг. 5 включает в себя корпус 21 блока 9 ультразвуковых датчиков 10, салазки 22, оси 23 с сухарями 24. Ультразвуковые датчики 10 крепятся к корпусу 21 блока 9 ультразвуковых датчиков 10 винтами 25 корпуса блока 9 ультразвуковых датчиков 10 с пластинами 26 корпуса блока 9 ультразвуковых датчиков 10. Салазки 22 крепятся к корпусу 21 блока 9 ультразвуковых датчиков 10 (фиг. 5) винтами 27 корпуса блока 9 ультразвуковых датчиков 10. Сухари 24 фиксируются на осях 23 шайбами 28 корпуса блока 9 ультразвуковых датчиков 10. Рама 20 содержит кронштейны 29, пружины 30, скобу 31 для крепления кабелей (на чертежах не показаны), присоединяемых к ультразвуковым датчикам 10.

Блок 9 ультразвуковых датчиков 10 по фиг. 5 и фиг. 6 имеет возможность вращаться относительно сухарей 24 и перемещаться совместно с сухарями 24 относительно пазов 32 кронштейнов 29. Поверхности 33 сухарей 24 имеют цилиндрическую форму, что обеспечивает возможность вращения блока 9 ультразвуковых датчиков 10 относительно оси, параллельной оси носителя датчиков. Предельные перемещения блока 9 ультразвуковых датчиков 10 ограничены размерами пазов 32 кронштейнов 29. Кронштейны 29 выполнены из листовой стали, обладающей пружинными свойствами, и имеют возможность упруго деформироваться в поперечном направлении относительно продольной оси носителя датчиков, что исключает возможность заклинивания блока 9 ультразвуковых датчиков 10 при попадании загрязнений между поверхностями 33 сухарей 24 и поверхностями 34 кронштейнов 29.

За счет подвижного размещения блока 9 ультразвуковых датчиков 10 на платформе 6 обеспечивается постоянное прижатие посредством пружин 30 салазок 22 к внутренней поверхности трубопровода, что обеспечивает необходимое расположение ультразвуковых датчиков 10 относительно поверхности трубопровода. Салазки 22 выполнены из износостойкой стали, что обеспечивает их минимальный износ при эксплуатации носителя датчиков. Для наиболее компактного расположения ультразвуковых датчиков 10 на блоке 9 ультразвуковых датчиков 10 применена схема расположения ультразвуковых датчиков 10, приведенная на фиг. 7. На схеме показано размещение ультразвуковых датчиков 10 на четырех последовательно расположенных блоках 9 ультразвуковых датчиков 10. Работа заявляемого устройства осуществляется следующим образом

В составе ультразвукового дефектоскопа носитель датчиков для ультразвукового внутритрубного дефектоскопа перемещается внутри трубопровода за счет потока среды, транспортируемой по трубопроводу. Полозы 5 (фиг. 1), расположенные равномерно в окружном направлении, посредством пружин 7 (фиг. 1) прижимаются к внутренней поверхности трубопровода и скользят по стенке трубопровода накладками 12, 13, 14, 15 (фиг. 3). Блоки 9 ультразвуковых датчиков 10 (фиг. 2), подвижно расположенные на платформах 6 (фиг. 2), посредством пружин 30 (фиг. 5) прижимаются салазками 22 (фиг. 5) к внутренней поверхности трубопровода. При прохождении носителем датчиков для ультразвукового внутритрубного дефектоскопа участка трубопровода, на котором отсутствуют дефекты геометрии трубопровода, салазки 22 (фиг. 5) располагаются заподлицо с полиуретановыми накладками 12, 13, 14, 15 (фиг. 3). При прохождении носителем датчиков участков трубопровода с вмятиной, полозы 5 (фиг. 1) упруго деформируются и огибают вмятину без повреждения конструкции носителя датчиков. При огибании полозами 5 (фиг. 1) вмятины возможны участки поверхности вмятины, на которых полиуретановые накладки 12, 13, 14, 15 (фиг. 3) не полностью прилегают к поверхности вмятины. На этих участках блоки 9 ультразвуковых датчиков 10 (фиг. 4) посредством пружин 30 (фиг. 5) остаются постоянно прижатыми салазками 22 (фиг. 5) к поверхности вмятины, что обеспечивает сохранение постоянного отступа и угловую ориентации ультразвуковых датчиков 10 по нормали к поверхности трубопровода и исключает потерю диагностической информации.

При прохождении носителем датчиков выступов сварных швов и других аномалий геометрии стенки трубы конструкция носителя упруго деформируется и обеспечивает необходимый отступ и угловое положение ультразвуковых датчиков 10 относительно поверхности трубопровода.


Носитель датчиков внутритрубного ультразвукового дефектоскопа
Носитель датчиков внутритрубного ультразвукового дефектоскопа
Носитель датчиков внутритрубного ультразвукового дефектоскопа
Носитель датчиков внутритрубного ультразвукового дефектоскопа
Носитель датчиков внутритрубного ультразвукового дефектоскопа
Носитель датчиков внутритрубного ультразвукового дефектоскопа
Носитель датчиков внутритрубного ультразвукового дефектоскопа
Носитель датчиков внутритрубного ультразвукового дефектоскопа
Источник поступления информации: Роспатент

Показаны записи 101-110 из 150.
17.07.2019
№219.017.b52f

Система дистанционного управления электроприводом машины безогневой резки труб

Изобретение относится к электроприводным механизмам, управляемым дистанционно с помощью беспроводного пульта, в частности к системе дистанционного управления электроприводом машины безогневой резки труб. Система дистанционного управления электроприводом машины безогневой резки содержит щит...
Тип: Изобретение
Номер охранного документа: 0002694438
Дата охранного документа: 15.07.2019
07.09.2019
№219.017.c84b

Кран с направляющими лопатками

Изобретение относится к области машиностроения, преимущественно к трубопроводной арматуре, а именно к кранам с поворотными пробками. Кран содержит корпус с впускным и выпускным каналами, в котором в двух седлах установлен запорный орган, связанный с приводом его вращения и выполненный со...
Тип: Изобретение
Номер охранного документа: 0002699456
Дата охранного документа: 05.09.2019
08.09.2019
№219.017.c8f8

Комбинированный способ очистки внутренней поверхности технологических трубопроводов нефтеперекачивающих станций при подготовке к перекачке светлых нефтепродуктов

Изобретение относится к области трубопроводного транспорта, а именно к способам очистки внутренней поверхности технологических трубопроводов. Согласно способу освобождают технологические трубопроводы от нефти и/или нефтепродуктов, разделяют каждый из технологических трубопроводов на участки для...
Тип: Изобретение
Номер охранного документа: 0002699618
Дата охранного документа: 06.09.2019
12.09.2019
№219.017.c9ff

Способ мониторинга состояния трассы магистрального трубопровода

Изобретение относится к области фотограмметрии и может быть использовано при осуществлении мониторинга состояния трассы магистрального трубопровода, в частности при мониторинге участков трассы магистрального трубопровода, с применением аэрофотосъемки для выявления и отслеживания попыток...
Тип: Изобретение
Номер охранного документа: 0002699940
Дата охранного документа: 11.09.2019
12.09.2019
№219.017.ca63

Стенд для проведения испытаний дыхательных и предохранительных клапанов резервуаров с нефтью и нефтепродуктами

Изобретение относится к стендам для контроля и испытаний дыхательной и предохранительной арматуры, в частности клапанов резервуаров, и предназначено для проверки работоспособности на срабатывание и определение максимальной производительности арматуры. Стенд для проведения испытаний дыхательных...
Тип: Изобретение
Номер охранного документа: 0002699934
Дата охранного документа: 11.09.2019
02.10.2019
№219.017.cf4e

Полимерсодержащий реагент для цементно-полимерного раствора

Изобретение относится к реагентам для получения цементно-полимерного раствора. Реагент для полимерцементного раствора содержит, мас.%: эпоксидная смола - 11-20 и триэтиленгликоль - 80-89. Полимерсодержащий реагент на основе эпоксидной смолы обеспечивает повышение прочности получаемого...
Тип: Изобретение
Номер охранного документа: 0002700125
Дата охранного документа: 12.09.2019
02.10.2019
№219.017.d034

Мобильный запасной пункт управления, интегрированный в систему управления технологическим процессом транспортировки нефти и нефтепродуктов по магистральным трубопроводам

Изобретение относится к нефтедобывающей отрасли. Мобильный запасной пункт управления, интегрированный в систему управления технологическим процессом транспортировки нефти, включающую управляющий диспетчерский пункт с узлом связи, узлы связи контролируемых нефтеперекачивающих станций, пункты...
Тип: Изобретение
Номер охранного документа: 0002700464
Дата охранного документа: 18.09.2019
10.10.2019
№219.017.d436

Устройство контроля качества изготовления фототиристора

Изобретение относится к области силовой электроники и предназначено для неразрушающего контроля качества изготовления фототиристоров на соответствие группе по скорости нарастания напряжения в закрытом состоянии и может быть использовано при производстве фототиристоров и эксплуатации. Устройство...
Тип: Изобретение
Номер охранного документа: 0002702409
Дата охранного документа: 08.10.2019
01.11.2019
№219.017.dc43

Буровой раствор для строительства скважин в неустойчивых глинистых и несцементированных грунтах и способ его получения

Группа изобретений относится к буровому раствору для строительства скважин в неустойчивых глинистых и несцементированных грунтах и способу его получения и может быть использована в области трубопроводного транспорта, в частности, при строительстве подводных переходов трубопроводов в...
Тип: Изобретение
Номер охранного документа: 0002704658
Дата охранного документа: 30.10.2019
01.11.2019
№219.017.dcd5

Способ гидроизоляции колодца трубопровода

Изобретение относится к линейным сооружениям подземных трубопроводов, а именно к способам получения водонепроницаемой изоляции смотровых технологических колодцев. Способ гидроизоляции колодца трубопровода включает следующие этапы: этап изготовления герметичной оболочки из полимерной мембраны в...
Тип: Изобретение
Номер охранного документа: 0002704512
Дата охранного документа: 29.10.2019
Показаны записи 21-23 из 23.
03.07.2019
№219.017.a437

Калибровочное устройство

Изобретение относится к области неразрушающего контроля технического состояния трубопроводов путем пропуска внутритрубного устройства. Технический результат заключается в увеличении срока эксплуатации комплектующих и повышении точности данных. Калибровочное устройство включает корпус, на...
Тип: Изобретение
Номер охранного документа: 0002693039
Дата охранного документа: 01.07.2019
20.02.2020
№220.018.0445

Одометр

Заявляемое изобретение относится к устройствам измерения пройденной дистанции внутритрубными инспекционными приборами контроля технического состояния трубопроводов, нефтепродуктопроводов, в частности к колесным одометрам. Одометр содержит неподвижный кронштейн, соединенный посредством...
Тип: Изобретение
Номер охранного документа: 0002714465
Дата охранного документа: 17.02.2020
23.02.2020
№220.018.051a

Способ обнаружения питтинговой коррозии

Использование: для обнаружения питтинговой коррозии (питтинга) в контролируемых изделиях методом направленных акустических волн. Сущность изобретения заключается в том, что с помощью ультразвуковых пьезоэлектрических преобразователей, предназначенных для проведения ультразвуковой толщинометрии...
Тип: Изобретение
Номер охранного документа: 0002714868
Дата охранного документа: 19.02.2020
+ добавить свой РИД