×
29.06.2019
219.017.a124

ШИХТА ДЛЯ ИЗГОТОВЛЕНИЯ ПЕНОСТЕКЛА С РАДИАЦИОННО-ЗАЩИТНЫМИ СВОЙСТВАМИ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к производству пеностекла с радиационно-защитными свойствами и может быть использовано на атомных электростанциях, атомных морских и воздушных судах и любых других теплоэнергоустановках с использованием радиоактивных материалов. Технический результат изобретения заключается в снижении температуры вспенивания шихты и получении пеностекла низкой плотности с радиационно-защитными свойствами. Шихта для изготовления пеностекла содержит цеолитсодержащий туф, газообразователь и флюсующую добавку. В качестве флюсующей добавки используют соединение, содержащее элемент с радиационно-защитными свойствами, такой как свинец, барий или висмут, и выбранное из группы оксидов или солей этих элементов. Соотношение компонентов в шихте следующее, мас.%: цеолитсодержащий туф - 57-84,5, газообразователь - 0,5-3,0, радиационно-защитное соединение - 15-40. 2 табл.
Реферат Свернуть Развернуть

Изобретение относится к производству пеностекла - теплоизоляционного изделия неорганического состава с радиационно-защитными свойствами и может быть использовано на атомных электростанциях, атомных морских и воздушных судах и любых других теплоэнергоустановках с использованием радиоактивных материалов.

Известно, что радиационно-защитные (РЗ) свойства конкретных материалов обеспечиваются содержанием в их матрицах элементов с высоким атомным номером. На установках с радиоактивными элементами в качестве РЗ материала традиционно чаще всего используется свинец (в виде листового металла или порошкового наполнителя резин, пластмасс, синтетических смол), барий (главным образом в виде барита BaSO4 в качестве наполнителя штукатурок и бетонных блоков) и материалы, содержащие висмут или его соединения. В качестве РЗ материала на атомных энергоустановках применяется также бетон, который одновременно играет роль строительного материала при возведении ограждающих конструкций [Правила работы с радиоактивными веществами и другими источниками ионизирующих излучений. - М.: Наука, 1984. - 303 с]. Для ослабления γ-излучения Cs в 2 раза толщина свинцовой пластины при энергии γ-излучения 1,0 МэВ составляет 13 мм (табл.1, стр.241), толщина бетона - 129 мм (табл.3, стр.243).

Основным недостатком известных РЗ материалов является то, что они не являются одновременно теплоизолирующими, поэтому, при применении подобных материалов на атомных электроустановках, например на атомных электростанциях, при аварийных ситуациях высока угроза возникновения пожаров. При неисправности в атомном реакторе, когда над процессом деления радиоактивных ядер теряется контроль, начинается интенсивный разогрев поверхности реактора и окружающего пространства, возникают пожары за счет самовозгорания и процесс приобретает трагический исход. При ликвидации аварии, подобной Чернобыльской, кроме огромных средств и усилий, необходимых на радиационное обеззараживание, не меньше разрушений возникает за счет пожаров.

Известно получение высококачественного теплоизолирующего материала неорганического состава - пеностекла с высокой механической прочностью из состава шихты, основным компонентом которой является природное алюмосиликатное сырье цеолитсодержащий туф, при следующем содержании компонентов, мас.%: цеолитсодержащий туф - 99,85-99,75; карбид кремния - 0,15-0,25 [Патент РФ №1708784, кл. C03C 11/00, 1989].

Такое пеностекло характеризуется высокой механической прочностью, что является важным при его использовании в качестве теплоизоляционно-конструкционного материала. Недостатками пеностекла, полученного из известного состава, являются:

- низкая эффективность в качестве РЗ материала. Установлено, что для уменьшения γ-излучения Cs в 2 раза толщина защитного слоя пеностекла должна быть не менее 300 мм, что в 2,2 раза больше обычного бетона;

- высокая температура вспенивания шихты, которая составляет 1160-1180°C, что может быть препятствием для его производства при дефиците энергоресурсов;

- ограниченный диапазон плотности пеностекла по его нижнему значению. Плотность пеностекла, полученного из известного состава шихты, составляет 460-520 кг/м3, а его коэффициент теплопроводности - 0,08-1,2 Вт/м·К. Такой материал не реализует в полной мере теплоизолирующие возможности, присущие пеностеклу с меньшей плотностью. Чем меньше плотность пористого материала, тем меньше коэффициент теплопроводности и, следовательно, лучше теплоизолирующий эффект.

Наиболее близким техническим решением к заявляемому является состав шихты для получения пеностекла, содержащий, мас.%: цеолитсодержащий туф - 55-78,5; газообразователь - 0,5-3,0; бой стекла - 15-30; кальцинированную соду - 6-12 [Патент РФ №2051869, кл. C03C 11/00, 1996].

По известному решению можно получить пеностекло с диапазоном плотности 250-610 кг/м3. В рамках известного состава шихты можно получать пеностекло с более высокими теплоизолирующими свойствами, так как нижняя граница плотности составляет 250 кг/м3, но оно также малоэффективно в качестве РЗ материала. Кроме того, температура плавления шихты все еще достаточно высокая (900-1000°C). При использовании в качестве флюсующих компонентов, понижающих температуру плавления шихты, боя стекла и кальцинированной соды, в известном решении не удается снизить температуру плавления шихты менее 900°C, что определяет повышенный расход энергоресурсов.

Предлагаемое изобретение решает задачу получения пеностекла с РЗ свойствами и с низкой плотностью, а также обеспечивает экономию энергоресурсов при производстве пеностекла за счет снижения температуры вспенивания шихты.

Предложенное решение реализуется за счет введения в состав шихты вместо боя стекла и кальцинированной соды РЗ соединения, содержащего элемент с РЗ свойствами, такой как свинец, барий или висмут, и выбранное из группы оксидов или солей этих элементов, которые одновременно являются активными плавнями, понижающими температуру плавления шихты до 750-890°C. Вследствие снижения вязкости расплава за счет указанных соединений нижнее значение плотности пеностекла, изготовленного из предложенного состава шихты, понижается до 150 кг/м3.

Технический результат достигается тем, что предлагается шихта для изготовления пеностекла с радиационно-защитными свойствами, которая включает цеолитсодержащий туф, газообразователь и флюсующую добавку, в качестве которой используют соединение, содержащее элемент с радиационно-защитными свойствами, такой как свинец, барий или висмут, и выбранное из группы оксидов или солей этих элементов, при следующем соотношении компонентов, мас.%: цеолитсодержащий туф 57-84,5, газообразователь 0,5-3,0, радиационно-защитное соединение 15-40.

Ограничения по содержанию в составе шихты РЗ соединения обусловлены оптимальным соотношением, позволяющим достигать РЗ свойства пеностекла с низким значением плотности. При содержании в составе шихты соединения с РЗ свойствами менее 15 мас.% РЗ свойства пеностекла ухудшаются, толщина теплоизолирующего слоя из этого иатериала должна увеличиваться. Кроме того, ухудшаются теплоизолирующие свойства пеностекла, так как увеличивается его плотность из-за снижения флюсующего действия соединения такой концентрации. При содержании в шихте указанного соединения с РЗ свойствами более 40 мас.% расплав будет маловязким и, вследствие этого, пена неустойчива.

В качестве газообразователя может применяться любое соединение, используемое при изготовлении традиционного пеностекла из стеклопорошка и газообразователя [Демидович Б.К. Пеностекло. - Минск: Наука и техника, 1975. - 248 с.], которое способно образовывать газовую фазу при температуре вспенивания в диапазоне 750-890°C, например карбид кремния, измельченный силицированный графит, длиннопламенные угли, графит, кокс, сажа и любые другие газообразующие вещества. Ограничения по содержанию в шихте газообразователя обусловлены технологической целесообразностью оптимального газообразования в указанный температурный диапазон вспенивания состава шихты.

Заявленный температурный диапазон вспенивания шихты 750-890°C позволяет изготавливать радиационно-защитное пеностекло с более широким диапазоном плотности - 150-600 кг/м3. Пеностекло с низким значением плотности позволяет более эффективно использовать теплоизолирующие свойства продукции. Пеностекло с более высоким значением плотности может применяться как теплоизоляционно-конструкционный строительный материал с РЗ свойствами в несущих элементах строительных конструкций и сооружений.

Ниже приведен пример получения радиационно-защитного пеностекла.

Пример. Цеолитсодержащую породу дробят в бегунах или дробилках, измельчают в шаровой мельнице. Измельченный туф перемешивают с газообразователем и с соединением, содержащим какой-либо элемент из указанной группы. Смесь загружают в металлические формы и нагревают до температуры вспенивания 750-890°C. Выдержка при конечной температуре 15-60 минут. Вспененный материал охлаждают и отжигают по общепринятому режиму в производстве пеностекла. Резкое охлаждение до 600°C за 1,5-2 час и отжиг за ≥8 час.

В таблице 1 приведены составы шихты, включающие в качестве РЗ соединения PbO, BaO или Bi2O3 и свойства РЗ пеностекла, а в таблице 2 - составы шихты, включающие соли указанных элементов и свойства РЗ пеностекла.

Как следует из таблиц 1 и 2, из предложенного состава шихты можно изготавливать радиационно-защитное пеностекло с низкой плотностью по менее энергоемкой технологии.

Шихта для изготовления пеностекла с радиационно-защитными свойствами, включающая цеолитсодержащий туф, газообразователь и флюсующую добавку, отличающаяся тем, что в качестве флюсующей добавки используют соединение, содержащее элемент с радиационно-защитными свойствами, такой как свинец, барий или висмут, и выбранное из группы оксидов или солей этих элементов, при следующем соотношении компонентов, мас.%: цеолитсодержащий туф 57-84,5, газообразователь 0,5-3,0, радиационно-защитное соединение 15-40.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 10.
27.02.2013
№216.012.2bce

Устройство для создания высокого давления и высокой температуры

Изобретение относится к многопуансонным аппаратам для создания высокого давления в многопуансонном блоке. Устройство содержит разъемный в горизонтальной плоскости сферический сосуд, состоящий из нижнего и верхнего полукорпусов и снабженных автономными эластичными камерами и затвор, скрепляющий...
Тип: Изобретение
Номер охранного документа: 0002476741
Дата охранного документа: 27.02.2013
20.04.2013
№216.012.368d

Сырьевая смесь для производства легкого заполнителя бетонов (пенозола)

Изобретение относится к технологии производства легких заполнителей бетонов. Техническим результатом изобретения является снижение температуры прокаливания и обжига заполнителя. Сырьевая смесь для производства легкого заполнителя бетонов содержит золу-унос от сжигания каменных углей на ТЭС и...
Тип: Изобретение
Номер охранного документа: 0002479518
Дата охранного документа: 20.04.2013
10.11.2013
№216.012.7d56

Способ очистки промышленных сточных вод от тяжелых металлов

Изобретение может быть использовано на предприятиях черной и цветной металлургии, химической промышленности для очистки производственных сточных вод, например для извлечения тяжелых металлов из кислых и слабокислых сточных вод с высоким содержанием тяжелых металлов. Для осуществления способа...
Тип: Изобретение
Номер охранного документа: 0002497759
Дата охранного документа: 10.11.2013
15.03.2019
№219.016.e12d

Способ получения модифицированных оптических хемосенсорных пленок на основе кремнезема

Изобретение относится к нанотехнологиям, в частности к способу получения оптических структурированных хемосенсорных пленок на основе частиц кремнезема размером 5-8 нм с модифицированной поверхностью. Способ включает получение нанозоля сферических частиц кремнезема размером 5-8 нм из смеси:...
Тип: Изобретение
Номер охранного документа: 0002433084
Дата охранного документа: 10.11.2011
20.03.2019
№219.016.e816

Способ получения цеолита naа или naх (варианты)

Изобретение относится к области производства адсорбентов и может быть использовано в нефтеперерабатывающей и химической промышленности. Способ получения цеолитов NaA или NaX включает приготовление растворов метасиликата натрия и алюмината натрия, добавление в растворы аминосодержащего...
Тип: Изобретение
Номер охранного документа: 0002452688
Дата охранного документа: 10.06.2012
20.03.2019
№219.016.e81d

Способ получения ag-au халькогенида

Изобретение относится к технологии высокотемпературного синтеза халькогенидов золота и серебра, а именно AgAuX, где X=S, Se, - ютенбогаардтита (α-AgAuS) и фишессерита (α-AgAuSe). Au-Ag халькогениды получают из высокотемпературных расплавов стехиометрического состава смеси элементарных...
Тип: Изобретение
Номер охранного документа: 0002458190
Дата охранного документа: 10.08.2012
29.03.2019
№219.016.f4d4

Способ получения наночастиц кремнезема

Изобретение относится к получению наночастиц кремнезема. Способ включает получение нанозоля кремнезема путем гидролиза тетраэтоксисилана (ТЭОС) при соотношении ТЭОС : этанол : вода, подкисленная HCl до рН 1,5-2, = 1:5:6 и созревание нанозоля. Созревание нанозоля проводят в течение двух часов...
Тип: Изобретение
Номер охранного документа: 0002426692
Дата охранного документа: 20.08.2011
17.04.2019
№219.017.15c1

Способ получения композиционной оптической хемосенсорной пленки

Изобретение относится к нанотехнологиям, в частности к получению водостойких и термостойких структурированных хемосенсорных пленок на основе фотонно-кристаллической опаловой матрицы, которые могут найти применение при экспрессном анализе вредных примесей в газообразных и жидких отходах. Способ...
Тип: Изобретение
Номер охранного документа: 0002399585
Дата охранного документа: 20.09.2010
29.04.2019
№219.017.43b5

Устройство для создания высокого давления и высокой температуры

Изобретение относится к технике высоких давлений и может быть использовано для разнообразных научных исследований, в частности для изучения состояния вещества при сверхвысоких давлениях и температурах в связи с реконструкцией строения глубинных частей Земли, а также для изучения фундаментальных...
Тип: Изобретение
Номер охранного документа: 0002421273
Дата охранного документа: 20.06.2011
29.06.2019
№219.017.a127

Способ изготовления армированного пеностекла

Изобретение относится к производству армированного пеностекла. Технический результат изобретения заключается в повышении стойкости пеностекла к разрушающим воздействиям не менее чем в два-три раза, а также в снижении температуры вспенивания и нижней границы плотности стекла. В форму вертикально...
Тип: Изобретение
Номер охранного документа: 0002443644
Дата охранного документа: 27.02.2012
Показаны записи 1-7 из 7.
27.02.2013
№216.012.2a63

Способ получения цеолита nay

Изобретение относится к области производства цеолитных адсорбентов. Способ получения цеолита NaY включает приготовление водной смеси из оксидов натрия, кремнезема и алюминия, содержащей 1-5,0 М фенилендиамина, нагревание смеси до температуры кристаллизации, выдержку при этой температуре до...
Тип: Изобретение
Номер охранного документа: 0002476378
Дата охранного документа: 27.02.2013
20.08.2013
№216.012.600b

Способ изготовления пеностекла

Изобретение относится к теплоизоляционным материалам, в частности пеностеклу. Технический результат изобретения заключается в расширении диапазона плотности пеностекла от 150 до 600 кг/м и в создании способа производства пеностекла, безопасного для печного оборудования и для окружающей среды....
Тип: Изобретение
Номер охранного документа: 0002490219
Дата охранного документа: 20.08.2013
27.07.2014
№216.012.e43c

Способ изготовления пористого строительного материала

Изобретение относится к производству строительных материалов, в частности к способу изготовления пористых строительных материалов типа пеностекла. Технический результат изобретения заключается в изготовлении блочного пористого строительного материала без использования жаростойких форм. Способ...
Тип: Изобретение
Номер охранного документа: 0002524218
Дата охранного документа: 27.07.2014
10.01.2016
№216.013.9f60

Комплексная технологическая линия производства гранулированного пористого материала из кремнистого сырья

Изобретение относится к производству гранулированного теплоизоляционного пожаробезопасного материала ячеистой структуры. Технический результат изобретения заключается в получении легкого теплоизоляционного гранулированного пористого материала из кремнистого сырья с различным содержанием...
Тип: Изобретение
Номер охранного документа: 0002572437
Дата охранного документа: 10.01.2016
10.01.2016
№216.013.9f64

Технологическая линия для производства гранулированного теплоизоляционного пеностеклокристаллического материала

Изобретение относится к производству гранулированного теплоизоляционного пожаробезопасного материала ячеистой структуры. Технический результат изобретения заключается в снижении плотности материала, увеличении срока службы оборудования. В состав технологической линии входят: участок подготовки...
Тип: Изобретение
Номер охранного документа: 0002572441
Дата охранного документа: 10.01.2016
20.03.2019
№219.016.e816

Способ получения цеолита naа или naх (варианты)

Изобретение относится к области производства адсорбентов и может быть использовано в нефтеперерабатывающей и химической промышленности. Способ получения цеолитов NaA или NaX включает приготовление растворов метасиликата натрия и алюмината натрия, добавление в растворы аминосодержащего...
Тип: Изобретение
Номер охранного документа: 0002452688
Дата охранного документа: 10.06.2012
29.06.2019
№219.017.a127

Способ изготовления армированного пеностекла

Изобретение относится к производству армированного пеностекла. Технический результат изобретения заключается в повышении стойкости пеностекла к разрушающим воздействиям не менее чем в два-три раза, а также в снижении температуры вспенивания и нижней границы плотности стекла. В форму вертикально...
Тип: Изобретение
Номер охранного документа: 0002443644
Дата охранного документа: 27.02.2012
+ добавить свой РИД