×
29.06.2019
219.017.9b24

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ПОЛИМЕРИЗАЦИИ И СОПОЛИМЕРИЗАЦИИ СОПРЯЖЕННЫХ ДИЕНОВ

Вид РИД

Изобретение

№ охранного документа
0002254923
Дата охранного документа
27.06.2005
Аннотация: Изобретение относится к способам получения катализаторов полимеризации и сополимеризации сопряженных диенов и может найти применение при производстве цис-1,4-гомополимеров и цис-1,4-сополимеров в промышленности синтетических каучуков. Сущность способа заключается во взаимодействии в углеводородном растворителе соединения редкоземельного элемента (А), сопряженного диена (В) с предварительно сформированным комплексом, полученным в результате взаимодействия хлорирующего агента (С), алкилирующего агента (D) и основания Льюиса (Е). Технический результат - разработка способа получения катализатора полимеризации и сополимеризации сопряженных диенов, обладающего высокой активностью и стереоселективностью действия. 9 з.п. ф-лы, 1 табл.

Изобретение относится к способам получения катализаторов полимеризации и сополимеризации сопряженных диенов и может найти применение при производстве цис-1,4-гомополимеров и цис-1,4-сополимеров в промышленности синтетических каучуков.

Известен способ получения катализатора полимеризации диенов путем предварительного взаимодействия в углеводородном растворителе карбоксилата лантаноида, имеющего атомный номер от 57 до 60, с триизобутилалюминием или диизобутилалюминийгидридом, галогенорганическим соединением, выбранным из числа алюминийгалогенидов, алкилалюминийгалогенидов, и сопряженного диена (Патент США № 3794604, МКИ2 С 08 F 1/14, опубл. 1974). Мольное соотношение лантаноид:алюминий:галоген:сопряженный диен находится в пределах 1:4-200:0,1-6:5-500. Смесь выдерживают при комнатной температуре от нескольких минут до нескольких дней, а затем используют при полимеризации диенов при 50°С.

Получаемый таким образом катализатор характеризуется стабильностью во времени, однако имеет низкую активность (выход полибутадиена составляет всего 74 кг/г·ат церия) и относительно невысокую стереоселективность действия (содержание цис-1,4 звеньев в полимере около 97 %).

Известен способ получения катализатора полимеризации сопряженных диенов путем взаимодействия их в углеводородном растворителе с соединениями индивидуальных редкоземельных металлов или их смеси с галогенорганическим соединением, выбранным из группы первичных, вторичных или третичных алкил-, циклоалкил-, арил-, алкиларил-, винил-, алкокси-, эпоксигалогенидов, и триалкиалюминием или диизобутилалюминийгидридом (Патент США №4444903, МКИ3 С 08 F 4/62, опубл. 1984). Мольное соотношение лантаноид:алюминий:галоген находится в пределах 1:30-200:0,5-3. Катализатор готовят смешением при комнатной температуре в любом порядке в присутствии или отсутствии мономера и выдерживают 15 мин.

Несмотря на использование наиболее доступных и дешевых галогенирующих соединений при формировании катализатора полученные полимеры характеризуются высоким содержанием цис-звеньев (до 99 %), каталитический комплекс, приготовленный по этому способу, обладает недостаточно высокой активностью (выход полибутадиена составляет всего 280 кг/г·ат неодима).

Наиболее близким по технической сущности к предлагаемому является способ получения катализатора полимеризации сопряженных диенов путем смешения в углеводородном растворителе продукта взаимодействия соединения редкоземельного элемента и основания Льюиса с алюминийорганическим соединением, выбранным из числа алюминийалкилов или алкилалюминийгидридов, с алюминийгалогенидом или алкилалюминийгалогенидом в присутствии сопряженного диена (Патент США № 4461883, МКИ3 С 08 F 4/14, С 08 F 4/52, С 08 F 2/06, опубл. 1984).

Катализатор готовят смешением компонентов при температуре 50°С и выдерживают 30 мин. Полученный при оптимальных мольных соотношениях соединение неодима:основание Льюиса:сопряженный диен:алюминий:галоген, равных 1:2:10:50:2,5, катализатор стабилен во времени, имеет хорошую активность (выход полиизопрена достигает 284 кг/г·ат неодима), позволяет получать полимеры с содержанием цис-1,4 звеньев до 97,1 %.

Однако способ имеет ряд недостатков, а именно недостаточно высокую активность и стереоселективность действия катализатора. Кроме того, высокий расход алюминийорганического соединения приводит к повышенному содержанию золы в полимере и ограничивает область его применения.

Задачей предлагаемого изобретения является разработка способа, позволяющего значительно повысить активность катализатора, а также дающего возможность получать полимеры с высоким содержанием цис-1,4-звеньев.

Поставленная задача решается разработкой способа получения катализатора полимеризации и сополимеризации сопряженных диенов путем смешения в углеводородном растворителе соединения редкоземельного элемента (А) и сопряженного диена (В) с предварительно сформированным комплексом, полученным в результате взаимодействия хлорирующего агента (С), алкилирующего агента (D) и основания Льюиса (Е).

В качестве сопряженного диена (В) используют бутадиен, изопрен, пиперилен или их смеси.

В качестве соединения редкоземельного элемента (А) используют соли, образованные неодимом (Nd), празеодимом (Рr), лантаном (La), церием (Се) или их смесями с альфа-разветвленными насыщенными С620 или нафтеновыми кислотами, предпочтительно использование неодеканата неодима (Nd(Ver)3), нафтената неодима (NdРh3), октаноата неодима (Nd(Oct)3), неодеканата празеодима (Рr(Vеr)3), нафтената празеодима (РrРh3), октаноата празеодима (Рr(Осt)3), неодеканата лантана (Lа(Vеr)3), октаноата лантана (Lа(Oсt)3), неодеканата церия (Се(Vеr)3), октаноата церия (Се(Oсt)3), неодеканата дидима (Di(Vеr)3), нафтената дидима (DiPh3), октаноата дидима (Di(Oct)3).

В качестве хлорирующего агента (С) выбирают соединение из группы, включающей диэтилалюминийхлорид (ДЭАХ), этилалюминийсесквихлорид (ЭАСХ), этилалюминийдихлорид (ЭАДХ), диизопропилалюминийхлорид (ДИПАХ), изопропилалюминийсесквихлорид (ИПАСХ), изопропилалюминийдихлорид (ИПАДХ), диизобутилалюминийхлорид (ДИБАХ), изобутилалюминийсесквихлорид (ИБАСХ), изобутилалюминийдихлорид (ИБАДХ), четыреххлористый углерод (CCl4), третбутилхлорид, четыреххлористый кремний (SiCl4), четыреххлористое олово (SnCl4), алюминийхлорид (АlСl3).

В качестве алкилирующего агента (D) используют соединение формулы R1R2R3Al, где R1, R2 - алифатический C2-C8 или ароматический углеводородный радикал или водород, R3 - алифатический C2-C8 или ароматический углеводородный радикал или AlR1R2, предпочтительно использование триизобутилалюминия (ТИБА), диизобутилалюминийгидрида (ДИБАГ), триэтилалюминия (ТЭА).

В качестве основания Льюиса (Е) используют соединение, выбранное из группы, включающей ацетилацетон, фенилацетилацетон, этилацетилацетон, третбутилацетилацетон, пропилацетилацетон, пиридин, тетрагидрофуран, диметилформамид, тиофен, дифениловый эфир, метилфениловый эфир, диэтиловый эфир, триэтилфосфин, трипропилфосфин, триизобутилфосфин, трифенилфосфин, метанол, этанол, изопропанол, изобутанол.

Мольные соотношения компонентов выдерживают равными: компонент (А):компонент (В) - 1:1-100; компонент (А):компонент (С) - 1:0,5-6; компонент (А):компонент (D) - 1:10-150; компонент (А):компонент (Е)-1:0,1-100.

Предварительное формирование комплекса основания Льюиса (Е) с алкилирующим агентом (D) и хлорирующим агентом (С) приводит к разрушению ассоциатов последних. При этом происходит лучшее алкилирование, галогенирование соединения редкоземельного металла (А), на 30-50 % увеличивается активность каталитического комплекса, улучшается регулирование молекулярной массы получаемого полимера.

Применение предлагаемого способа формирования катализатора приводит к повышению его растворимости в углеводородах, что улучшает молекулярно-массовое распределение, однородность получаемого полимера и увеличивает точность дозировки каталитического комплекса.

Дополнительным преимуществом предлагаемого способа является то, что при предварительном формировании комплекса основания Льюиса (Е) с алкилирующим агентом (D), хлорирующим агентом (С) и дальнейшем взаимодействии его с компонентами катализатора максимальная активность каталитического комплекса достигается при меньших соотношениях редкоземельный металл: алюминийорганическое соединение, при этом снижается расходная норма алюминийорганического соединения на тонну производимого каучука.

Полимеризацию проводят в алифатических, алициклических и ароматических углеводородах при температуре 0-120°С, предпочтительно 20-110°С. Вязкость полимера можно регулировать известным приемом - введением в раствор мономера в углеводородном растворителе до подачи катализатора диизобутилалюминийгидрида. По окончании полимеризации катализатор дезактивируют, а полимер высаживают введением этанола, содержащего антиоксидант. Полимер сушат в вакууме до постоянной массы.

Активность катализатора оценивают в кг полимера на 1 г·атом редкоземельного металла за 1 час.

Ниже приводятся примеры, иллюстрирующие предлагаемое изобретение.

Пример 1

В стеклянный реактор, предварительно прогретый в вакууме и заполненный сухим азотом, при перемешивании помещают 0,5 мл (0,45 ммоль) толуольного раствора диизобутилалюминийгидрида, 0,2 мл (0,045 ммоль) толуольного раствора диизобутилалюминийхлорида, 0,45 мл (0,0225 ммоль) толуольного раствора дифенилового эфира, выдерживают в течение часа при температуре 40°С. Затем к полученному комплексу при перемешивании прибавляют 0,3 мл (0,0225 ммоль) раствора неодеканата неодима и 0,1 мл (0,11 ммоль) толуольного раствора пиперилена.

Содержимое реактора выдерживают в течение 24 часов при температуре 25°С до полного созревания каталитического комплекса.

Полимеризацию бутадиена-1,3 проводят по примеру 1. Концентрация ионов неодима в каталитическом комплексе составляет 0,016 г·ат/л.

Через 1 час полимер выделяют, сушат до постоянной массы. Условия эксперимента и полученные данные приведены в таблице.

Пример 2

В стеклянный реактор, предварительно прогретый в вакууме и заполненный сухим азотом, при перемешивании помещают 0,5 мл (0,45 ммоль) толуольного раствора диизобутилалюминийгидрида, 0,2 мл (0,045 ммоль) толуольного раствора диэтилалюминийхлорида, 0,0045 мл (0,00225 ммоль) толуольного раствора ацетилацетона, выдерживают в течение часа при температуре 25°С. Затем к полученному комплексу при перемешивании прибавляют 0,2 мл (0,015 ммоль) неодеканата неодима, 0,1 мл (0,0075 ммоль) октаноата неодима и 0,1 мл (0,11 ммоль) толуольного раствора пиперилена.

Содержимое реактора выдерживают в течение 24 часов при температуре 25°С до полного созревания каталитического комплекса.

Полученный катализатор с концентрацией ионов неодима 0,0116 г·ат/л используют для сополимеризации бутадиена и изопрена. В предварительно прогретую в вакууме при 150-200°С и заполненную сухим азотом стеклянную ампулу с самозатягивающейся резиновой пробкой загружают 40 мл циклогексанового раствора, содержащего 2,16 г бутадиена и 1,36 г изопрена, ампулу термостатируют при 60°С и прибавляют с помощью шприца 0,34 мл катализатора.

Через 1 час полимер выделяют, сушат до постоянной массы. Условия эксперимента и полученные данные приведены в таблице.

Пример 3

В стеклянный реактор, предварительно прогретый в вакууме и заполненный сухим азотом, при перемешивании помещают 1,1 мл (1,125 ммоль) толуольного раствора триэтилалюминия, 0,12 мл (0,029 ммоль) толуольного раствора этилалюминийсесквихлорида, 0,1 мл (0,045 ммоль) толуольного раствора фенилацетилацетона, выдерживают в течение часа при температуре 25°С. Затем к полученному комплексу при перемешивании прибавляют 0,3 мл (0,0225 ммоль) нафтената неодима и 0,1 мл (0,11 ммоль) толуольного раствора изопрена.

Содержимое реактора выдерживают в течение 24 часов при температуре 25°С до полного созревания каталитического комплекса.

Полученный катализатор с концентрацией неодима 0,0116 г·ат/л используют для полимеризации изопрена. В предварительно прогретую в вакууме при 150-200°С и заполненную сухим азотом стеклянную ампулу с самозатягивающейся резиновой пробкой загружают 40 мл толуольного раствора, содержащего 3,84 г изопрена, ампулу термостатируют при 60°С и прибавляют с помощью шприца 0,343 мл катализатора.

Через 1 час полимер выделяют, сушат до постоянной массы. Условия эксперимента и полученные данные приведены в таблице.

Пример 4

В стеклянный реактор, предварительно прогретый в вакууме и заполненный сухим азотом, при перемешивании помещают 3,4 мл (3,375 ммоль) толуольного раствора триизобутилалюминия, 0,1 мл (0,0225 ммоль) толуольного раствора этилалюминийдихлорида, 0,1 мл (0,045 ммоль) толуольного раствора этилацетилацетона, выдерживают в течение часа при температуре 25°С. Затем к полученному комплексу при перемешивании прибавляют 0,1 мл (0,0075 ммоль) октаноата неодима, 0,1 мл (0,0075 ммоль) неодеканата церия, 0,1 мл (0,0075 ммоль) неодеканата празеодима и 1,8 мл (2,25 ммоль) толуольного раствора бутадиена.

Содержимое реактора выдерживают в течение 24 часов при температуре 25°С до полного созревания каталитического комплекса.

Полимеризацию бутадиена-1,3 проводят по примеру 1. Суммарная концентрация ионов редкоземельных элементов в каталитическом комплексе составляет 0,0116 г·ат/л.

Через 1 час полимер выделяют, сушат до постоянной массы. Условия эксперимента и полученные данные приведены в таблице.

Пример 5

В стеклянный реактор, предварительно прогретый в вакууме и заполненный сухим азотом, при перемешивании помещают 0,5 мл (0,45 ммоль) толуольного раствора диизобутилалюминийгидрида, 0,23 мл (0,0563 ммоль) толуольного раствора диизопропилалюминийхлорида, 0,22 мл (0,1125 ммоль) толуольного раствора третбутилацетилацетона, выдерживают в течение часа при температуре 25°С. Затем к полученному комплексу при перемешивании прибавляют 0,3 мл (0,0225 ммоль) неодеканата празеодима и 0,18 мл ( 0,225ммоль) толуольного раствора изопрена.

Содержимое реактора выдерживают в течение 24 часов при температуре 25°С до полного созревания каталитического комплекса.

Полимеризацию бутадиена-1,3 проводят по примеру 1. Концентрация ионов празеодима в каталитическом комплексе составляет 0,01618 г·ат/л.

Через 1 час полимер выделяют, сушат до постоянной массы. Условия эксперимента и полученные данные приведены в таблице.

Пример 6

В стеклянный реактор, предварительно прогретый в вакууме и заполненный сухим азотом, при перемешивании помещают 0,7 мл (0,675 ммоль) толуольного раствора диизобутилалюминийгидрида, 0,19 мл (0,045 ммоль) толуольного раствора изопропилалюминийсесквихлорида, 0,18 мл (0,09 ммоль) толуольного раствора пропилацетилацетона, выдерживают в течение часа при температуре 25°С. Затем к полученному комплексу при перемешивании прибавляют 0,3 мл (0,0225 ммоль) нафтената празеодима, 0,05 мл (0,055 ммоль) толуольного раствора пиперилена и 0,05 мл (0,055 ммоль) толуольного раствора изопрена.

Содержимое реактора выдерживают в течение 24 часов при температуре 25°С до полного созревания каталитического комплекса.

Полимеризацию бутадиена-1,3 проводят по примеру 1. Концентрация ионов празеодима в каталитическом комплексе составляет 0,0157 г·ат/л.

Через 1 час полимер выделяют, сушат до постоянной массы. Условия эксперимента и полученные данные приведены в таблице.

Пример 7

В стеклянный реактор, предварительно прогретый в вакууме и заполненный сухим азотом, при перемешивании помещают 0,5 мл (0,45 ммоль) толуольного раствора триэтилалюминия, 0,14 мл (0,0338 ммоль) толуольного раствора изопропилалюминийдихлорида, 0,0045 мл (0,0023 ммоль) толуольного раствора пиридина, выдерживают в течение часа при температуре 25°С. Затем к полученному комплексу при перемешивании прибавляют 0,3 мл (0,0225 ммоль) октаноата празеодима, 0,04 мл (0,04 ммоль) толуольного раствора пиперилена, 0,04 мл (0,04 ммоль) толуольного раствора изопрена и 0,031 мл (0,031 ммоль) толуольного раствора бутадиена.

Содержимое реактора выдерживают в течение 24 часов при температуре 25°С до полного созревания каталитического комплекса.

Полимеризацию бутадиена-1,3 проводят по примеру 1. Концентрация ионов празеодима в каталитическом комплексе составляет 0,0228 г·ат/л.

Через 1 час полимер выделяют, сушат до постоянной массы. Условия эксперимента и полученные данные приведены в таблице.

Пример 8

В стеклянный реактор, предварительно прогретый в вакууме и заполненный сухим азотом, при перемешивании помещают 0,5 мл (0,45 ммоль) толуольного раствора диизобутилалюминийгидрида, 0,28 мл (0,0675 ммоль) толуольного раствора диизобутилалюминийхлорида, 0,045 мл (0,0225 ммоль) толуольного раствора тетрагидрофурана, выдерживают в течение часа при температуре 25°С. Затем к полученному комплексу при перемешивании прибавляют 0,3 мл (0,0225 ммоль) неодеканата дидима и 0,1 мл (0,112 ммоль) толуольного раствора пиперилена.

Содержимое реактора выдерживают в течение 24 часов при температуре 25°С до полного созревания каталитического комплекса.

Полимеризацию бутадиена-1,3 проводят по примеру 1. Концентрация ионов дидима в каталитическом комплексе составляет 0,0192 г·ат/л.

Через 1 час полимер выделяют, сушат до постоянной массы. Условия эксперимента и полученные данные приведены в таблице.

Пример 9

В стеклянный реактор, предварительно прогретый в вакууме и заполненный сухим азотом, при перемешивании помещают 0,5 мл (0,45 ммоль) толуольного раствора триэтилалюминия, 0,14 мл (0,0338 ммоль) толуольного раствора изобутилалюминийсесквихлорида, 0,022 мл (0,0113 ммоль) толуольного раствора диметилформамида, выдерживают в течение часа при температуре 25°С. Затем к полученному комплексу при перемешивании прибавляют 0,3 мл (0,0225 ммоль) нафтената дидима и 0,18 мл (0,225 ммоль) толуольного раствора пиперилена.

Содержимое реактора выдерживают в течение 24 часов при температуре 25°С до полного созревания каталитического комплекса.

Полимеризацию бутадиена-1,3 проводят по примеру 1. Концентрация ионов дидима в каталитическом комплексе составляет 0,0205 г·ат/л.

Через 1 час полимер выделяют, сушат до постоянной массы. Условия эксперимента и полученные данные приведены в таблице.

Пример 10

В стеклянный реактор, предварительно прогретый в вакууме и заполненный сухим азотом, при перемешивании помещают 0,5 мл (0,45 ммоль) толуольного раствора диизобутилалюминийгидрида, 0,09 мл (0,0225 ммоль) толуольного раствора изобутилалюминийдихлорида, 0,045 мл (0,0225 ммоль) толуольного раствора тиофена, выдерживают в течение часа при температуре 25°С. Затем к полученному комплексу при перемешивании прибавляют 0,3 мл (0,0225 ммоль) октаноата дидима и 0,09 мл (0,1125 ммоль) толуольного раствора пиперилена.

Содержимое реактора выдерживают в течение 24 часов при температуре 25°С до полного созревания каталитического комплекса. Полимеризацию бутадиена-1,3 проводят по примеру 1. Концентрация ионов дидима в каталитическом комплексе составляет 0,0229 г·ат/л.

Через 1 час полимер выделяют, сушат до постоянной массы. Условия эксперимента и полученные данные приведены в таблице.

Пример 11

В стеклянный реактор, предварительно прогретый в вакууме и заполненный сухим азотом, при перемешивании помещают 0,5 мл (0,45 ммоль) толуольного раствора триизобутилалюминия, 0,56 мл (0,135 ммоль) толуольного раствора третбутилхлорида, 0,045 мл (0,0225 ммоль) толуольного раствора метилфенилового эфира, выдерживают в течение часа при температуре 25°С. Затем к полученному комплексу при перемешивании прибавляют 0,2 мл (0,015 ммоль) неодеканата неодима, 0,1 мл (0,0075 ммоль) октаноата церия и 0,09 мл (0,1125 ммоль) толуольного раствора пиперилена.

Содержимое реактора выдерживают в течение 24 часов при температуре 25°С до полного созревания каталитического комплекса. Полимеризацию бутадиена-1,3 проводят по примеру 1. Суммарная концентрация ионов редкоземельных элементов в каталитическом комплексе составляет 0,0116 г·ат/л.

Через 1 час полимер выделяют, сушат до постоянной массы. Условия эксперимента и полученные данные приведены в таблице.

Пример 12

В стеклянный реактор, предварительно прогретый в вакууме и заполненный сухим азотом, при перемешивании помещают 0,225 мл (0,225 ммоль) толуольного раствора диизобутилалюминийгидрида, 0,08 мл (0,018 ммоль) толуольного раствора четыреххлористого кремния, 0,0045 мл (0,0022 ммоль) толуольного раствора диэтилового эфира, выдерживают в течение часа при температуре 25°С. Затем к полученному комплексу при перемешивании прибавляют 0,3 мл (0,0225 ммоль) неодеканата неодима и 0,18 мл (0,225 ммоль) толуольного раствора пиперилена.

Содержимое реактора выдерживают в течение 24 часов при температуре 25°С до полного созревания каталитического комплекса.

Полимеризацию бутадиена-1,3 проводят по примеру 1. Концентрация ионов неодима в каталитическом комплексе составляет 0,0286 г·ат/л.

Через 1 час полимер выделяют, сушат до постоянной массы. Условия эксперимента и полученные данные приведены в таблице.

Пример 13

В стеклянный реактор, предварительно прогретый в вакууме и заполненный сухим азотом, при перемешивании помещают 0,45 мл (0,45 ммоль) толуольного раствора диизобутилалюминийгидрида, 0,13 мл (0,0304 ммоль) толуольного раствора четыреххлористого олова, 0,36 мл (0,18 ммоль) толуольного раствора триэтилфосфина, выдерживают в течение часа при температуре 25°С. Затем к полученному комплексу при перемешивании прибавляют 0,3 мл (0,0225 ммоль) неодеканата церия 0,18 мл (0,225 ммоль) толуольного раствора пиперилена.

Содержимое реактора выдерживают в течение 24 часов при температуре 25°С до полного созревания каталитического комплекса.

Полимеризацию бутадиена-1,3 проводят по примеру 1. Концентрация ионов церия в каталитическом комплексе составляет 0,0158 г·ат/л.

Через 1 час полимер выделяют, сушат до постоянной массы. Условия эксперимента и полученные данные приведены в таблице.

Пример 14

В стеклянный реактор, предварительно прогретый в вакууме и заполненный сухим азотом, при перемешивании помещают 0,45 мл (0,45 ммоль) толуольного раствора диизобутилалюминийгидрида, 0,12 мл (0,0299 ммоль) толуольного раствора четыреххлористого углерода, 0,36 мл (0,18 ммоль) толуольного раствора трипропилфосфина, выдерживают в течение часа при температуре 25°С. Затем к полученному комплексу при перемешивании прибавляют 0,3 мл (0,0225 ммоль) неодеканата лантана 0,18 мл (0,225 ммоль) толуольного раствора пиперилена.

Содержимое реактора выдерживают в течение 24 часов при температуре 25°С до полного созревания каталитического комплекса.

Полимеризацию бутадиена-1,3 проводят по примеру 1. Концентрация ионов лантана в каталитическом комплексе составляет 0,01494 г·ат/л.

Через 1 час полимер выделяют, сушат до постоянной массы. Условия эксперимента и полученные данные приведены в таблице.

Пример 15

В стеклянный реактор, предварительно прогретый в вакууме и заполненный сухим азотом, при перемешивании помещают 0,45 мл (0,45 ммоль) толуольного раствора диизобутилалюминийгидрида, 0,09 мл (0,0225 ммоль) толуольного раствора алюминийхлорида, 0,675 мл (0,3375 ммоль) толуольного раствора триизобутилфосфина, выдерживают в течение часа при температуре 25°С. Затем к полученному комплексу при перемешивании прибавляют 0,3 мл (0,0225 ммоль) октаноата лантана 0,18 мл (0,225 ммоль) толуольного раствора пиперилена.

Содержимое реактора выдерживают в течение 24 часов при температуре 25°С до полного созревания каталитического комплекса.

Полимеризацию бутадиена-1,3 проводят по примеру 1. Концентрация ионов лантана в каталитическом комплексе составляет 0,01323 г·ат/л.

Через 1 час полимер выделяют, сушат до постоянной массы. Условия эксперимента и полученные данные приведены в таблице.

Пример 16

В стеклянный реактор, предварительно прогретый в вакууме и заполненный сухим азотом, при перемешивании помещают 0,45 мл (0,45 ммоль) толуольного раствора диизобутилалюминийгидрида, 0,19 мл (0,045 ммоль) толуольного раствора диизобутилалюминийхлорида, 0,45 мл (0,225 ммоль) толуольного раствора трифенилфосфина, выдерживают в течение часа при температуре 25°С. Затем к полученному комплексу при перемешивании прибавляют 0,3 мл (0,0225 ммоль) неодеканата неодима и 0,18 мл (0,225 ммоль) толуольного раствора пиперилена.

Содержимое реактора выдерживают в течение 24 часов при температуре 25°С до полного созревания каталитического комплекса.

Полимеризацию бутадиена-1,3 проводят по примеру 1. Концентрация ионов неодима в каталитическом комплексе составляет 0,01434 г·ат/л.

Через 1 час полимер выделяют, сушат до постоянной массы. Условия эксперимента и полученные данные приведены в таблице.

Пример 17

В стеклянный реактор, предварительно прогретый в вакууме и заполненный сухим азотом, при перемешивании помещают 0,45 мл (0,45 ммоль) толуольного раствора диизобутилалюминийгидрида, 0,19 мл (0,045 ммоль) толуольного раствора диизобутилалюминийхлорида, 0,02 мл (0,0113 ммоль) толуольного раствора метанола, выдерживают в течение часа при температуре 25°С. Затем к полученному комплексу при перемешивании прибавляют 0,3 мл (0,0225 ммоль) неодеканата неодима и 0,18 мл (0,225 ммоль) толуольного раствора пиперилена.

Содержимое реактора выдерживают в течение 24 часов при температуре 25°С до полного созревания каталитического комплекса.

Полимеризацию бутадиена-1,3 проводят по примеру 1. Концентрация ионов неодима в каталитическом комплексе составляет 0,01971 г·ат/л.

Через 1 час полимер выделяют, сушат до постоянной массы. Условия эксперимента и полученные данные приведены в таблице.

Пример 18

В стеклянный реактор, предварительно прогретый в вакууме и заполненный сухим азотом, при перемешивании помещают 0,45 мл (0,45 ммоль) толуольного раствора диизобутилалюминийгидрида, 0,19 мл (0,045 ммоль) толуольного раствора диизобутилалюминийхлорида, 0,04 мл (0,0203 ммоль) толуольного раствора этанола, выдерживают в течение часа при температуре 25°С. Затем к полученному комплексу при перемешивании прибавляют 0,3 мл (0,0225 ммоль) неодеканата неодима и 0,18 мл (0,225 ммоль) толуольного раствора пиперилена.

Содержимое реактора выдерживают в течение 24 часов при температуре 25°С до полного созревания каталитического комплекса.

Полимеризацию бутадиена-1,3 проводят по примеру 1. Концентрация ионов неодима в каталитическом комплексе составляет 0,01941 г·ат/л.

Через 1 час полимер выделяют, сушат до постоянной массы. Условия эксперимента и полученные данные приведены в таблице.

Пример 19

В стеклянный реактор, предварительно прогретый в вакууме и заполненный сухим азотом, при перемешивании помещают 0,45 мл (0,45 ммоль) толуольного раствора диизобутилалюминийгидрида, 0,19 мл (0,045 ммоль) толуольного раствора диизобутилалюминийхлорида, 0,018 мл (0,009 ммоль) толуольного раствора изопропанола, выдерживают в течение часа при температуре 25°С. Затем к полученному комплексу при перемешивании прибавляют 0,3 мл (0,0225 ммоль) неодеканата неодима и 0,18 мл (0,225 ммоль) толуольного раствора пиперилена.

Содержимое реактора выдерживают в течение 24 часов при температуре 25°С до полного созревания каталитического комплекса.

Полимеризацию бутадиена-1,3 проводят по примеру 1. Концентрация ионов неодима в каталитическом комплексе составляет 0,01979 г·ат/л.

Через 1 час полимер выделяют, сушат до постоянной массы. Условия эксперимента и полученные данные приведены в таблице.

Пример 20

В стеклянный реактор, предварительно прогретый в вакууме и заполненный сухим азотом, при перемешивании помещают 0,45 мл (0,45 ммоль) толуольного раствора диизобутилалюминийгидрида, 0,19 мл (0,045 ммоль) толуольного раствора диизобутилалюминийхлорида, 0,02 мл (0,0113 ммоль) толуольного раствора изобутанола, выдерживают в течение часа при температуре 25°С. Затем к полученному комплексу при перемешивании прибавляют 0,3 мл (0,0225 ммоль) неодеканата и 0,18 мл (0,225 ммоль) толуольного раствора пиперилена.

Содержимое реактора выдерживают в течение 24 часов при температуре 25°С до полного созревания каталитического комплекса.

Полимеризацию бутадиена-1,3 проводят по примеру 1. Концентрация ионов неодима в каталитическом комплексе составляет 0,01971 г·ат/л.

Через 1 час полимер выделяют, сушат до постоянной массы. Условия эксперимента и полученные данные приведены в таблице.

Как видно из приведенных примеров, предлагаемый способ позволяет значительно повысить активность катализатора, а также получать полимеры с высоким содержанием цис-1,4-звеньев, что обеспечивает хорошие технологические свойства и высокий уровень физико-механических показателей резин.

1.Способполучениякатализатораполимеризацииисополимеризациисопряженныхдиеновпутемсмешениявуглеводородномрастворителесоединенияредкоземельногоэлемента(А),сопряженногодиена(В),хлорирующегоагента(С),алкилирующегоагента(D)иоснованияЛьюиса(Е),отличающийсятем,чтокомпоненты(А)и(В)смешиваютспредварительносформированнымкомплексом,полученнымврезультатевзаимодействияхлорирующегоагента(С),алкилирующегоагента(D)иоснованияЛьюиса(Е).12.Способпоп.1,отличающийсятем,чтовкачествесопряженногодиена(В)используютбутадиен,изопрен,пипериленилиихсмеси.23.Способпоп.1,отличающийсятем,чтовкачествесоединенияредкоземельногоэлемента(А)используютсоли,образованныенеодимом,празеодимом,лантаном,цериемилиихсмесямисальфа-разветвленныминасыщеннымиС-Силинафтеновымикислотами.34.Способпоп.1,отличающийсятем,чтовкачествехлорирующегоагента(С)выбираютсоединениеизгруппы,включающейалюминийхлорид,диэтилалюминийхлорид,этилалюминийсесквихлорид,этилалюминийдихлорид,диизопропилалюминийхлорид,изопропилалюминийсесквихлорид,изопропилалюминийдихлорид,диизобутилалюминийхлорид,изобутилалюминийсесквихлорид,изобутилалюминийдихлорид,четыреххлористыйуглерод,трет-бутилхлорид,четыреххлористыйкремний,четыреххлористоеолово.45.Способпоп.1,отличающийсятем,чтовкачествеалкилирующегоагента(D)используютсоединениеформулыRRRAl,гдеR,R-алифатическийC-C,илиароматическийуглеводородныйрадикал,иливодород,R-алифатическийС-С,илиароматическийуглеводородныйрадикал,илиOalRR.56.Способпоп.1,отличающийсятем,чтовкачествеоснованияЛьюиса(Е)выбираютсоединениеизгруппы,включающейацетилацетон,фенилацетилацетон,этилацетилацетон,трет-бутилацетилацетон,пропилацетилацетон,пиридин,тетрагидрофуран,диметилформамид,тиофен,дифениловыйэфир,метилфениловыйэфир,диэтиловыйэфир,триэтилфосфин,трипропилфосфин,триизобутилфосфин,трифенилфосфин,метанол,этанол,изопропанол,изобутанол.67.Способпоп.1,отличающийсятем,чтомольноесоотношениекомпонент(А):компонент(В)выдерживаютравным1:1÷100.78.Способпоп.1,отличающийсятем,чтомольноесоотношениекомпонент(А):компонент(С)выдерживаютравным1:0,5÷6.89.Способпоп.1,отличающийсятем,чтомольноесоотношениекомпонент(А):компонент(D)выдерживаютравным1:10÷150.910.Способпоп.1,отличающийсятем,чтомольноесоотношениекомпонент(А):компонент(Е)выдерживаютравным1:0,1÷100.10
Источник поступления информации: Роспатент

Показаны записи 11-20 из 45.
20.03.2019
№219.016.ea3c

Способ обезвреживания промышленных органических шламов

Изобретение относится к способам микробиологической очистки промышленных органических шламов и может найти применение для утилизации шламов предприятий нефтеперерабатывающей и нефтехимической промышленности. В шлам вносят кондиционирующую добавку, в качестве которой используют отход...
Тип: Изобретение
Номер охранного документа: 02148034
Дата охранного документа: 27.04.2000
20.03.2019
№219.016.ea99

Способ совместного получения моно- и диэтиленгликолей

Изобретение относится к усовершенствованному способу совместного получения моно- и диэтиленгликолей реакцией гидратации окиси этилена. Процесс гидратации окиси этилена проводят при повышенных температуре, давлении в присутствии ацетальдегида и/или кротонового альдегида, взятых в количестве...
Тип: Изобретение
Номер охранного документа: 02152922
Дата охранного документа: 20.07.2000
20.03.2019
№219.016.ea9f

Система для приготовления горячей воды

Система предназначена для приготовления горячей воды и может быть использована в нефтехимической промышленности, в производствах при получении тепла для технологических нужд. Система содержит корпус с топкой, в которой установлены газовые горелки, два радиационных и три конвективных змеевика,...
Тип: Изобретение
Номер охранного документа: 02154773
Дата охранного документа: 20.08.2000
10.04.2019
№219.017.0b05

Способ получения моноалкиловых (c-c) эфиров три- и тетраэтиленгликолей

Изобретение относится к усовершенствованному способу получения моноалкиловых эфиров три- и тетраэтиленгликолей, широко используемых в качестве низкозамерзающего осушителя природного газа, флотореагентов и при получении современных гидротормозных жидкостей. Моноалкиловые (С-C) эфиры три- и...
Тип: Изобретение
Номер охранного документа: 02159760
Дата охранного документа: 27.11.2000
19.04.2019
№219.017.2c8d

Способ гидропиролиза углеводородного сырья

Изобретение относится к области нефтехимии, конкретно, к пиролизу углеводородного сырья. Способ гидропиролиза углеводородного сырья осуществляют в трубчатой печи пиролиза в присутствии водяного пара и водорода. В качестве углеводородного сырья используют смесь бензина и гидрированной Сфракции...
Тип: Изобретение
Номер охранного документа: 0002249611
Дата охранного документа: 10.04.2005
19.04.2019
№219.017.31e0

Ингибитор коррозии

Изобретение относится к области защиты металлов от коррозии и может быть использовано в системах оборотного водоснабжения и теплоснабжения химических, нефтехимических, энергетических и других промышленных предприятий. Ингибитор включает смесь ортофосфатов и триполифосфатов щелочных металлов,...
Тип: Изобретение
Номер охранного документа: 0002458184
Дата охранного документа: 10.08.2012
19.04.2019
№219.017.3331

Способ получения этиленпропиленового каучука

Изобретение относится к области получения этиленпропиленовых каучуков и может быть использовано в нефтехимической промышленности. Описан способ получения этиленпропиленового каучука сополимеризацией этилена и пропилена в среде углеводородного растворителя. Сополимеризация проходит в присутствии...
Тип: Изобретение
Номер охранного документа: 0002434023
Дата охранного документа: 20.11.2011
29.04.2019
№219.017.3ebd

Способ получения катализатора полимеризации бутадиена и сополимеризации бутадиена с сопряженными диенами

Изобретение относится к способу получения катализатора (со)полимеризации бутадиена и может найти применение в промышленности синтетических каучуков при производстве цис-1,4-полидиенов. Описан способ получения катализатора взаимодействием соединения редкоземельного элемента, сопряженного диена и...
Тип: Изобретение
Номер охранного документа: 0002267355
Дата охранного документа: 10.01.2006
29.04.2019
№219.017.3ebf

Способ получения катализатора полимеризации бутадиена и сополимеризации бутадиена с сопряженными диенами

Способ получения катализатора полимеризации бутадиена и сополимеризации бутадиена с сопряженными диенами взаимодействием компонентов, включающих соединение редкоземельного элемента (РЗЭ), диизобутилалюминийгидрид (ДИБАГ), триизобутилалюминий (ТИБА), алкилалюминийгалогенид и сопряженный диен....
Тип: Изобретение
Номер охранного документа: 0002267497
Дата охранного документа: 10.01.2006
18.05.2019
№219.017.5617

Покрытие

Изобретение относится к области строительства, в частности к покрытию. Технический результат заключается в повышении коррозионной стойкости, долговечности конструкции, увеличении несущей способности, облегчении технологии монтажа и обеспечении защиты окружающей среды. Покрытие включает...
Тип: Изобретение
Номер охранного документа: 0002345198
Дата охранного документа: 27.01.2009
Показаны записи 1-8 из 8.
20.03.2019
№219.016.ea9f

Система для приготовления горячей воды

Система предназначена для приготовления горячей воды и может быть использована в нефтехимической промышленности, в производствах при получении тепла для технологических нужд. Система содержит корпус с топкой, в которой установлены газовые горелки, два радиационных и три конвективных змеевика,...
Тип: Изобретение
Номер охранного документа: 02154773
Дата охранного документа: 20.08.2000
19.04.2019
№219.017.2c8d

Способ гидропиролиза углеводородного сырья

Изобретение относится к области нефтехимии, конкретно, к пиролизу углеводородного сырья. Способ гидропиролиза углеводородного сырья осуществляют в трубчатой печи пиролиза в присутствии водяного пара и водорода. В качестве углеводородного сырья используют смесь бензина и гидрированной Сфракции...
Тип: Изобретение
Номер охранного документа: 0002249611
Дата охранного документа: 10.04.2005
18.05.2019
№219.017.5bc8

Способ получения этилен-пропиленовых сополимеров

Изобретение относится к области получения материалов, применяемых в качестве депрессорных присадок к топливам и маслам, в качестве пластификаторов в составе композиций строительных и авиационных герметиков. Высокомолекулярный каучук разогревают за счет диссипации в нем механической энергии и...
Тип: Изобретение
Номер охранного документа: 02162473
Дата охранного документа: 27.01.2001
29.06.2019
№219.017.9b02

Способ получения низших олефинов

Изобретение относится к области нефтехимической промышленности и предназначено для использования в установках получения низших олефинов пиролизом углеводородных газов в трубчатых печах. Способ получения низших олефинов пиролизом углеводородного сырья в пирозмеевике трубчатой печи при...
Тип: Изобретение
Номер охранного документа: 02206598
Дата охранного документа: 20.06.2003
29.06.2019
№219.017.9b1e

Способ получения тримеров и тетрамеров пропилена

Использование: нефтехимия. Проводят олигомеризацию пропилена в присутствии твердого фосфорно-кислотного катализатора при повышенных температуре и давлении, с выделением из олигомеризата фракции димеров пропилена фракцию димеров возвращают на олигомеризацию с дополнительной подачей фракции...
Тип: Изобретение
Номер охранного документа: 0002255081
Дата охранного документа: 27.06.2005
29.06.2019
№219.017.9b52

Способ выделения полиизопренового каучука

Изобретение относится к области выделения синтетического изопренового каучука, используемого для производства шин и резинотехнических изделий, и может быть применено в нефтехимической промышленности. В способе выделения полиизопренового каучука из раствора в углеводородном растворителе водной...
Тип: Изобретение
Номер охранного документа: 02235732
Дата охранного документа: 10.09.2004
29.06.2019
№219.017.9b6e

Водоуловитель градирни

Изобретение относится к устройствам для охлаждения оборотной воды энергетических и промышленных установок, конкретно к водоуловителям, используемым для улавливания и отвода воды в вентиляторных и башенных градирнях. Водоуловитель градирни содержит V-образные пластины с центральным плоским...
Тип: Изобретение
Номер охранного документа: 02230273
Дата охранного документа: 10.06.2004
29.06.2019
№219.017.a21a

Способ получения цис-1,4-полиизопрена

Изобретение относится к области получения синтетического изопренового каучука, используемого для производства шин и резинотехнических изделий, и может быть применено в нефтехимической промышленности. Получение цис-1,4-полиизопрена проводят полимеризацией изопрена в растворе изопентановой...
Тип: Изобретение
Номер охранного документа: 02184123
Дата охранного документа: 27.06.2002
+ добавить свой РИД