×
29.06.2019
219.017.99fc

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ПОЛИМЕРИЗАЦИИ И СОПОЛИМЕРИЗАЦИИ СОПРЯЖЕННЫХ ДИЕНОВЫХ УГЛЕРОДОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области нефтехимии, конкретно к получению катализаторов полимеризации и сополимеризации сопряженных диеновых углеводородов, и может найти применение при производстве цис-1,4-полимеров и цис-1,4-сополимеров в промышленности синтетического каучука. Описан способ получения катализатора полимеризации и сополимеризации сопряженных диеновых углеводородов путем смешения в углеводородном растворителе соединения редкоземельного элемента (А), сопряженного диена (В), алкилирующего агента (С) и источника галогена (D). В качестве источника галогена (D) используют как арилдиметилгалогениды, так и их смеси с алкилалюминийхлоридами. Процесс проводят при мольном соотношении компонентов (A):(B):(C):(D), равном 1:1-100:10-100:0,3-3. Технический результат - разработка способа получения катализатора полимеризации и сополимеризации сопряженных диеновых углеводородов, обладающего высокой активностью и позволяющего получать полимеры, имеющие низкую полидисперсность, что обеспечивает их хорошие технологические свойства и высокий уровень физико-механических показателей резин на их основе. 1 з.п. ф-лы, 1 табл.

Изобретение относится к области нефтехимии, конкретно к получению катализаторов полимеризации и сополимеризации сопряженных диеновых углеводородов, и может найти применение при производстве цис-1,4-полимеров и цис-1,4-сополимеров в промышленности синтетического каучука.

Известен способ получения катализатора полимеризации диенов путем предварительного взаимодействия в углеводородном растворителе карбоксилата лантаноида, имеющего атомный номер от 57 до 60, с триизобутилалюминием или диизобутилалюминийгидридом, галогенорганическим соединением, выбранным из числа алюминийгалогенидов, алкилалюминийгалогенидов, и сопряженного диена (Патент США №3794604, МПК С 08 F 1/14, опубл. 1974). Мольное соотношение лантаноид : алюминий : галоген : сопряженный диен находится в пределах 1:4-200:0,1-6:5-500. Смесь выдерживают при комнатной температуре от нескольких минут до нескольких дней, а затем используют при полимеризации диеновых углеводородов.

Получаемый таким образом катализатор характеризуется стабильностью во времени, однако имеет низкую активность (выход полибутадиена составляет всего 74 кг/г-ат церия) и относительно невысокую стереоселективность действия (содержание цис-1,4 звеньев в полимере около 97%).

Известен способ получения катализатора полимеризации и сополимеризации сопряженных диенов путем взаимодействия алюминийорганического соединения, алкоголята неодима и алюминийгалогенидов либо алкилалюминийгалогенидов непосредственно в углеводородном растворе (со)мономера (Патент США №4429089, МПК С 08 F 004/72, С 08 F 036/04, опубл. 1984). Мольное соотношение лантаноид : алюминий : галоген находится в пределах 1:1-120:0,1-10.

Получаемый таким образом катализатор характеризуется более высокой, чем описанный в предыдущем аналоге (выход полимера до 200 кг/г-ат неодима), но недостаточной активностью. Содержание цис-1,4 звеньев в полимере при этом достигает 98,1%.

Наиболее близким по технической сущности к предлагаемому изобретению является способ, в соответствии с которым катализатор полимеризации сопряженных диенов получают путем взаимодействия в углеводородном растворителе соединений индивидуальных редкоземельных металлов или их смесей с галогенорганическим соединением, выбранным из группы первичных, вторичных или третичных алкил-, циклоалкил-, арил-, алкиларил", винил-, алкокси-, эпоксигалогенидов, и триалкилалюминием или диизобутилалюминийгидридом (Патент США №4461883, МПК С 08 F 4/14, С 08 F 4/52, С 08 F 2/06, опубл. 1984). Мольное соотношение лантаноид : алюминий : галоген находится в пределах 1:30-200:0,5-3. Катализатор готовят смешением компонентов при комнатной температуре в любом порядке в присутствии или отсутствии мономера и выдерживают 15 мин. Катализатор стабилен во времени, позволяет получать полимеры с содержанием цис-1,4-звеньв до 99%, его активность достигает 280 кг полибутадиена на 1 г-атом неодима в час. В случае сополимеризации при использовании катализатора оптимального состава при мольном соотношении лантаноид : алюминий : галоген, равном 1:50:2, выход сополимера за 1 час составляет более 500 кг/г-атом неодима.

Недостатками описанного способа является то, что используемые для приготовления катализатора галогенорганические соединения малодоступны и дороги; полученный полибутадиен с использованием вышеуказанного катализатора имеет высокую характеристическую вязкость (более 5,15 дл/г), а сополимер бутадиена с изопреном 6,02 дл/г; значительный расход алюминийорганического соединения, необходимый для достижения максимальной активности, приводит не только к увеличению себестоимости катализатора, но и повышенному содержанию золы в каучуке, что сужает область его применения.

Задачей предлагаемого технического решения является разработка способа, позволяющего получать высокоактивный катализатор полимеризации и сополимеризации сопряженных диеновых углеводородов, используя при этом доступные компоненты, а также дающего возможность получать полимеры с необходимой вязкостью по Муни и низкой полидисперсностью, что обеспечивает их хорошие технологические свойства и высокий уровень физико-механических показателей резин на основе полученных (со)полимеров.

Поставленная задача решается тем, что в предлагаемом способе катализатор полимеризации и сополимеризации сопряженных диеновых углеводородов получают путем взаимодействия в углеводородном растворителе соединения редкоземельного элемента (А), сопряженного диена (В), алкилирующего агента (С) и источника галогена (D), при этом в качестве источника галогена (D) используют арилдиметилгалогенид или смесь арилдиметилгалогенида с алкилалюминийхлоридом, выдерживая мольное соотношение компонентов (A):(B):(C):(D), равным 1:1-100:10-100:0,3-3.

Мольное соотношение арилдиметилгалогенид : алкилалюминийхлорид в компоненте (D) выдерживают равным 1:0-99.

В качестве соединения редкоземельного элемента (А) используют соли, образованные неодимом, празеодимом, лантаном, церием или их смесями с альфа-разветвленными насыщенными С620 или нафтеновыми кислотами, предпочтительно использование неодеканоата неодима, нафтената неодима, октаноата неодима, неодеканоата празеодима, нафтената празеодима, октаноата празеодима, неодеканоата лантана, октаноата лантана, неодеканоата церия, октаноата церия, неодеканоата дидима, нафтената дидима, октаноата дидима.

В качестве сопряженного диена (В) используют бутадиен, изопрен, пиперилен или их смеси.

В качестве алкилирующего агента (С) используют соединения из группы, содержащей триизобутилалюминий (ТИБА), диизобутилалюминийгидрид (ДИБАГ), триэтилалюминий (ТЭА) или смеси указанных соединений.

В качестве растворителей для компонентов (А), (В), (С), (D) используют ароматические и алифатические углеводороды, например толуол, гексан и др.

В качестве источника галогена (D) используют арилдиметилгалогениды, например, такие как гексахлор-п-ксилол (ГХПК), п-метилтрихлорметилбензол (МТХМБ), дихлор-п-ксилол (ДХПК) и др., так и их смеси с алкилалюминийхлоридами следующего состава: AlRnCl3-n, R - алифатический С2-C8 углеводородный радикал, n=1-2. В случае использования смеси возможно раздельное введение арилдиметилгалогенида и алкилалюминийхлорида.

Использование в качестве источника галогена (D) арилдиметилгалогенидов либо их смесей с алкилалюминийхлоридами позволит значительно уменьшить себестоимость катализатора и, следовательно, полимера. Гораздо меньшая токсичность и пожароопасность арилдиметилгалогенидов и их смесей с алкилалюминийхлоридами по сравнению с индивидуальными алкилалюминийхлоридами дает возможность использования реагентов в виде концентрированных растворов, что приводит к уменьшению расхода растворителя при приготовлении катализатора. Высокая активность катализатора, синтезируемого предлагаемым способом, приводит не только к значительному уменьшению расходных норм на катализатор, но и к меньшему содержанию золы в каучуке, что позволяет использовать его не только в шинной, но и в медицинской и пищевой промышленности.

Использование высокоактивного катализатора, получаемого предлагаемым способом, приводит к практически полной конверсии мономера, что в свою очередь позволяет уменьшить потери как мономера, так и растворителя при регенерации циркулирующих реагентов.

Катализатор готовят смешением растворов соединения редкоземельного элемента (А), сопряженного диена (В), алкилирующего агента (С) и источника галогена (D). После смешения всех компонентов катализатора в реакторе смесь выдерживают от 0,5 до 24 часов при температуре 15-50°С и используют при полимеризации и сополимеризации сопряженных диеновых углеводородов, например, таких как бутадиен, изопрен, пиперилен.

(Со)полимеризацию проводят в алифатических, алициклических или ароматических углеводородах, например в гексане, циклогексане, толуоле и т.д., при температуре 0-120°С. По окончании полимеризации катализатор дезактивируют, а полимер высаживают введением этанола, содержащего антиоксидант.

Активность катализатора оценивают в кг полимера на 1 г-атом редкоземельного металла за 1 час. Полученный полимер анализируют на содержание цис-1,4-звеньев, полидисперсность (Mw/Mn) и вязкость по Муни.

Осуществление предлагаемого способа получения катализатора (со)полимеризации сопряженных диеновых углеводородов иллюстрируют приведенные ниже примеры.

Пример 1

В стеклянный реактор, предварительно прогретый в вакууме и заполненный сухим азотом, помещают 0,3 мл (0,0225 ммоль) гексанового раствора неодеканоата неодима, к которому последовательно при перемешивании добавляют 0,1 мл (0,225 ммоль) толуольного раствора пиперилена, 0,25 мл (0,225 ммоль) толуольного раствора диизобутилалюминийгидрида, 0,25 мл (0,225 ммоль) толуольного раствора триизобутилалюминия, 0,2 мл (0,01125 ммоль) толуольного раствора ГХПК. При этом мольное соотношение редкоземельный элемент : сопряженный диен : алкилирующий агент : источник галогена составляет 1:10:20:0,5.

Содержимое реактора выдерживают в течение 24 часов при температуре 25°С до полного созревания каталитического комплекса.

Полученный катализатор с концентрацией ионов неодима 0,020 г-ат/л используют при полимеризации бутадиена. В предварительно прогретую в вакууме при 150-200°С и заполненную сухим азотом стеклянную ампулу с самозатягивающейся резиновой пробкой загружают 40 мл гексанового раствора, содержащего 3,24 г бутадиена, ампулу термостатируют при 60°С и добавляют с помощью шприца 0,3 мл катализатора. Мольное отношение бутадиена к неодиму при этом равно 10000.

Через 1 час полимер выделяют, сушат до постоянной массы. Условия проведения опыта и полученные данные приведены в таблице.

Пример 2

В стеклянный реактор, предварительно прогретый в вакууме и заполненный сухим азотом, помещают 0,3 мл (0,0225 ммоль) октаноата празеодима, к которому последовательно при перемешивании добавляют 0,1 мл (1,12 ммоль) толуольного раствора бутадиена, 0,5 мл (0,225 ммоль) толуольного раствора дизобутилалюминийгидрида, 0,2 мл (0,0067 ммоль) толуольного раствора ГХПК. При этом мольное соотношение редкоземельный элемент : сопряженный диен : алкилирующий агент : источник галогена составляет 1:100:10:0,3.

Содержимое реактора выдерживают в течение 24 часов при температуре 25°С до полного созревания каталитического комплекса.

Полученный катализатор с концентрацией ионов празеодима 0,020 г-ат/л используют при полимеризации изопрена. В предварительно прогретую в вакууме при 150-200°С и заполненную сухим азотом стеклянную ампулу с самозатягивающейся резиновой пробкой загружают 40 мл циклогексанового раствора, содержащего 4,08 г изопрена, ампулу термостатируют при 60°С и добавляют с помощью шприца 0,3 мл катализатора. Мольное отношение изопрена к празеодиму при этом равно 10000.

Через 1 час полимер выделяют, сушат до постоянной массы. Условия проведения опыта и полученные данные приведены в таблице.

Пример 3

В стеклянный реактор, предварительно прогретый в вакууме и заполненный сухим азотом, помещают 0,3 мл (0,0225 ммоль) нафтената церия, к которому последовательно при перемешивании добавляют 0,1 мл (0,45 ммоль) толуольного раствора изопрена, 0,5 мл (2,25 ммоль) толуольного раствора триизобутилалюминия, 0,2 мл толуольного раствора, содержащего МТХМБ (0,0004 ммоль) и диизобутилалюминийхлорид (ДИБАХ) (0,0668 ммоль). При этом мольное соотношение редкоземельный элемент : сопряженный диен : алкилирующий агент : источник галогена составляет 1:20:100:3.

Содержимое реактора выдерживают в течение 24 часов при температуре 25°С до полного созревания каталитического комплекса.

Полученный катализатор с концентрацией ионов церия 0,020 г-ат/л используют при сополимеризации бутадиена и изопрена. В предварительно прогретую в вакууме при 150-200°С и заполненную сухим азотом стеклянную ампулу с самозатягивающейся резиновой пробкой загружают 40 мл толуольного раствора, содержащего 2,754 г бутадиена и 0,612 г изопрена. Мольное соотношение бутадиена и изопрена при этом равно 85:15. Ампулу термостатируют при 60°С и добавляют с помощью шприца 0,3 мл катализатора. Мольное отношение мономеров к церию при этом равно 10000.

Через 1 час полимер выделяют, сушат до постоянной массы. Условия проведения опыта и полученные данные приведены в таблице.

Пример 4

В стеклянный реактор, предварительно прогретый в вакууме и заполненный сухим азотом, помещают 0,3 мл (0,0225 ммоль) неодеканоата дидима, к которому последовательно при перемешивании добавляют 0,05 мл (0,0112 ммоль) толуольного раствора пиперилена, 0,05 мл (0,0112 ммоль) толуольного раствора изопрена, 0,5 мл (0,675 ммоль) толуольного раствора триэтилалюминия, 0,2 мл толуольного раствора, содержащего ГХПК (0,0045 ммоль) и этилалюминийсесквихлорид (ЭАСХ) (0,0045 ммоль). При этом молъное соотношение редкоземельный элемент : сопряженный диен : алкилирующий агент : источник галогена составляет 1:1:30:0,4.

Содержимое реактора выдерживают в течение 24 часов при температуре 25°С до полного созревания каталитического комплекса.

Полученный катализатор с концентрацией ионов дидима 0,020 г-ат/л используют при сополимеризации бутадиена и пиперилена. В предварительно прогретую в вакууме при 150-200°С и заполненную сухим азотом стеклянную ампулу с самозатягивающейся резиновой пробкой загружают 40 мл гексанового раствора, содержащего 2,754 г бутадиена и 0,612 г пиперилена. Мольное соотношение бутадиена и пиперилена при этом равно 85:15. Ампулу термостатируют при 60°С и добавляют с помощью шприца 0,3 мл катализатора. Мольное отношение мономеров к дидиму при этом равно 10000.

Через 1 час полимер выделяют, сушат до постоянной массы. Условия проведения опыта и полученные данные приведены в таблице.

Пример 5

В стеклянный реактор, предварительно прогретый в вакууме и заполненный сухим азотом, помещают 0,3 мл (0,0225 ммоль) неодеканоата неодима, к которому последовательно при перемешивании добавляют 0,1 мл (0,45 ммоль) толуольного раствора пиперилена, 0,5 мл (0,675 ммоль) толуольного раствора диизобутилалюминийгидрида, 0,2 мл толуольного раствора, содержащего ДХПК (0,001 ммоль) и диизобутилалюминийхлорид (ДИБАХ) (0,044 ммоль). При этом мольное соотношение редкоземельный элемент : сопряженный диен : алкилирующий агент : источник галогена составляет 1:20:30:2.

Содержимое реактора выдерживают в течение 24 часов при температуре 25°С до полного созревания каталитического комплекса.

Полученный катализатор с концентрацией ионов неодима 0,020 г-ат/л используют для полимеризации бутадиена. В предварительно прогретую в вакууме при 150-200°С и заполненную сухим азотом стеклянную ампулу с самозатягивающейся резиновой пробкой загружают 40 мл гексанового раствора, содержащего 3,24 г бутадиена, ампулу термостатируют при 60°С и добавляют с помощью шприца 0,3 мл катализатора. Мольное отношение бутадиена к неодиму при этом равно 10000.

Через 1 час полимер выделяют, сушат до постоянной массы. Условия проведения опыта и полученные данные приведены в таблице.

Как видно из приведенных примеров, предлагаемый способ позволяет получать высокоактивный катализатор полимеризации и сополимеризации сопряженных диеновых углеводородов. Полимеры, получаемые с использованием катализатора, имеют низкую полидисперсность, что обеспечивает их хорошие технологические свойства и высокий уровень физико-механических показателей резин на их основе.

Таблица
№ примераСоединение редкоземельного элемента (А)Сопряженный диен (В)Алкилирующий агент (С)Источник галогена (D)РастворительМольное соотношение (А):(В):(С):(D)Мольное соотношение арилдиметилга-логенид:алкил алюминийхлоридСопряженный диеновый углеводородСодержание цис-1,4-звеньев, %Активность, кг/г-атомПолидисперсность (Mw/Mn)Вязкость по Муни, ед.
1Неодеканоат неодимаПипериленДИБАГ ТИБАГХПКГексан1:10:20:0,51:0Бутадиен99,27242,745,1
2Октаноат празеодимаБутадиенДИБАГГХПКЦиклогексан1 100:10:0,31:0Изопрен99,46452,949,4
3Нафтенат церияИзопренТИБАМТХМБ ДИБАХТолуол1:20:100:31:99Бутадиен Изопрен97,97042,843,2
4Неодеканоат дидимаПиперилен ИзопренТЭАГХПК ЭАСХГексан1:1:30:0,41:1Бутадиен Пиперилен97,46943,044,3
5Неодеканоат неодимаПипериленДИБАГДХПК ДИБАХГексан1:10:30:21:44Бутадиен98,07113,144,4

1.Способполучениякатализатораполимеризацииисополимеризациисопряженныхдиеновыхуглеводородовпутемсмешениявуглеводородномрастворителесоединенияредкоземельногоэлемента(А),сопряженногодиена(В),алкилирующегоагента(С)иисточникагалогена(D),отличающийсятем,чтовкачествеисточникагалогена(D)используютарилдиметилгалогенидилисмесьарилдиметилгалогенидаиалкилалюминийхлорида,приэтоммольноесоотношениекомпонентов(A):(B):(C):(D)выдерживаютравным1:1-100:10-100:0,3-3.12.Способполучениякатализатораполимеризацииисополимеризациисопряженныхдиеновыхуглеводородовпоп.1,отличающийсятем,чтомольноесоотношениеарилдиметилгалогенид:алкилалюминийхлоридвисточникегалогена(D)выдерживаютравным1:0-99.2

Источник поступления информации: Роспатент

Показаны записи 41-45 из 45.
29.06.2019
№219.017.a038

Способ очистки низших алканов

Изобретение относится к способу очистки низших алканов от метанола путем контакта сырья с катализатором, содержащим оксид алюминия при повышенных температуре и давлении, характеризующемуся тем, что в качестве катализатора используют алюмоплатиновый катализатор и контакт проводят при температуре...
Тип: Изобретение
Номер охранного документа: 0002402515
Дата охранного документа: 27.10.2010
29.06.2019
№219.017.a03c

Способ получения полимеров бутадиена

Настоящее изобретение относится к области получения каучуков растворной полимеризацией бутадиенов. Описан способ получения полимеров бутадиена непрерывной полимеризацией мономера в среде углеводородного растворителя в присутствии инициирующей системы, отличающийся тем, что в качестве...
Тип: Изобретение
Номер охранного документа: 0002402574
Дата охранного документа: 27.10.2010
29.06.2019
№219.017.a07e

Способ получения полимеров бутадиена и сополимеров бутадиена со стиролом

Настоящее изобретение относится к области получения каучуков растворной полимеризацией полибутадиена или сополимеров бутадиена со стиролом. Описан способ получения полибутадиена или сополимеров бутадиена со стиролом полимеризацией соответствующих мономеров в среде углеводородного растворителя в...
Тип: Изобретение
Номер охранного документа: 0002405000
Дата охранного документа: 27.11.2010
29.06.2019
№219.017.a21a

Способ получения цис-1,4-полиизопрена

Изобретение относится к области получения синтетического изопренового каучука, используемого для производства шин и резинотехнических изделий, и может быть применено в нефтехимической промышленности. Получение цис-1,4-полиизопрена проводят полимеризацией изопрена в растворе изопентановой...
Тип: Изобретение
Номер охранного документа: 02184123
Дата охранного документа: 27.06.2002
13.07.2019
№219.017.b3b0

Способ получения этиленпропиленового каучука

Изобретение относится к области получения синтетических каучуков, в частности этиленпропиленовых каучуков, и может быть применено в нефтехимической промышленности. Способ проводят сополимеризацией этилена и пропилена в среде углеводородного растворителя в присутствии циклического диенового...
Тип: Изобретение
Номер охранного документа: 0002394845
Дата охранного документа: 20.07.2010
Показаны записи 51-60 из 74.
11.03.2019
№219.016.d6f3

Способ выделения бензола

Использование: нефтехимия. Сущность: проводят экстрактивную ректификацию в присутствии экстрагента, содержащего в основном алифатический N-алкиламид, при этом в точку колонны экстрактивной ректификации, расположенную между местом ввода экстрагента и верхом колонны подают толуол. Технический...
Тип: Изобретение
Номер охранного документа: 0002291849
Дата охранного документа: 20.01.2007
10.04.2019
№219.017.09db

Способ получения цеолита типа а в качестве адсорбента

Изобретение относится к способам получения цеолита типа А, используемого в качестве адсорбента для осушки различных газов, очистки газовых сред от примесей. Каолин смешивают с огнеупорной глиной, увлажняют водным раствором пластификатора, перемешивают, формуют в гранулы, сушат, проводят...
Тип: Изобретение
Номер охранного документа: 0002466091
Дата охранного документа: 10.11.2012
19.04.2019
№219.017.31e0

Ингибитор коррозии

Изобретение относится к области защиты металлов от коррозии и может быть использовано в системах оборотного водоснабжения и теплоснабжения химических, нефтехимических, энергетических и других промышленных предприятий. Ингибитор включает смесь ортофосфатов и триполифосфатов щелочных металлов,...
Тип: Изобретение
Номер охранного документа: 0002458184
Дата охранного документа: 10.08.2012
19.04.2019
№219.017.3331

Способ получения этиленпропиленового каучука

Изобретение относится к области получения этиленпропиленовых каучуков и может быть использовано в нефтехимической промышленности. Описан способ получения этиленпропиленового каучука сополимеризацией этилена и пропилена в среде углеводородного растворителя. Сополимеризация проходит в присутствии...
Тип: Изобретение
Номер охранного документа: 0002434023
Дата охранного документа: 20.11.2011
18.05.2019
№219.017.5617

Покрытие

Изобретение относится к области строительства, в частности к покрытию. Технический результат заключается в повышении коррозионной стойкости, долговечности конструкции, увеличении несущей способности, облегчении технологии монтажа и обеспечении защиты окружающей среды. Покрытие включает...
Тип: Изобретение
Номер охранного документа: 0002345198
Дата охранного документа: 27.01.2009
18.05.2019
№219.017.5a6c

Способ пиролиза углеводородов в присутствии водяного пара

Изобретение относится к процессам пиролиза углеводородов в присутствии водяного пара под действием электромагнитного излучения сверхвысокочастотного диапазона, при этом водяной пар перед подачей на смешение в проточном режиме предварительно обрабатывают электромагнитным излучением...
Тип: Изобретение
Номер охранного документа: 0002400522
Дата охранного документа: 27.09.2010
29.06.2019
№219.017.99fb

Способ разделения c углеводородных фракций

Использование: нефтехимия. Сущность: проводят ректификацию С углеводородных фракций, полученных в результате крекинга и/или пиролиза углеводородного сырья в присутствии экстрагента аминного типа, при этом на ректификацию дополнительно подают бутилен-изобутиленовую фракцию, полученную в...
Тип: Изобретение
Номер охранного документа: 0002268870
Дата охранного документа: 27.01.2006
29.06.2019
№219.017.9aa7

Способ получения стирола жидкофазной дегидратацией метилфенилкарбинолсодержащего сырья (варианты)

Изобретение относится к нефтехимической и химической промышленности и предназначено для получения стирола жидкофазной дегидратацией метилфенилкарбонила. Варианты способа осуществляют жидкофазной дегидратацией метилфенилкарбинолсодержащего сырья в присутствии катализатора кислотного типа в...
Тип: Изобретение
Номер охранного документа: 0002296114
Дата охранного документа: 27.03.2007
29.06.2019
№219.017.9ad5

Жидкая композиция карбоксилата редкоземельного элемента, способ получения этой композиции и способ полимеризации

Изобретение относится к области химической технологии, в частности к жидкой композиции карбоксилатов редкоземельных элементов, к процессу их получения и способам полимеризации сопряженных диенов в присутствии каталитической системы, содержащей карбоксилаты редкоземельных соединений. Описана...
Тип: Изобретение
Номер охранного документа: 0002297407
Дата охранного документа: 20.04.2007
29.06.2019
№219.017.9c93

Способ получения бутилкаучука

Изобретение относится к области получения каучуков, а именно к способу получения бутилкаучука. Получение бутилкаучука предлагаемым способом включает процесс приготовления катализаторного раствора. Катализатор - хлористый алюминий, протонированный водой. Приготовление катализаторного раствора...
Тип: Изобретение
Номер охранного документа: 0002394844
Дата охранного документа: 20.07.2010
+ добавить свой РИД