×
27.06.2019
219.017.992c

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ДИЗЕЛЬНОГО ТОПЛИВА

Вид РИД

Изобретение

Аннотация: Изобретение относится к каталитическим способам получения малосернистых дизельных топлив из углеводородного сырья с высоким содержанием серы. Описан способ получения дизельного топлива, заключающийся в превращении прямогонного дизельного топлива с высоким содержанием серы в присутствии предварительно сульфидированного гетерогенного катализатора, содержащего металл VIII группы и металл VIB группы, нанесенные на оксид алюминия AlО, имеющего объем пор 0,3-0,7 мл/г, удельную поверхность 200-350 м/г и средний диаметр пор 9-13 нм. Катализатор перед стадией сульфидирования содержит следующие компоненты: соединения кобальта с концентрацией, мас.%: 2,5-7,5 в пересчете на СоО, соединения молибдена с концентрацией 12-25 в пересчете на МоО, соединения лимонной кислоты с концентрацией 15-35 в пересчете на лимонную кислоту, соединения бора 0,5-3 в пересчете на BO, оксид алюминия AlO - остальное, при этом кобальт, молибден, лимонная кислота и бор могут входить в состав комплексных соединений различной стехиометрии. Процесс проводят при температуре 320-370°С, давлении 0,5-10 МПа, весовом расходе сырья 0,5-5 ч объемном отношении водород/сырье 100-1000 м/м. Технический результат - получение дизельных топлив с содержанием серы менее 50 ppm. 2 з.п. ф-лы, 1 табл.

Изобретение относится к каталитическим способам получения малосернистых дизельных топлив из углеводородного сырья с высоким содержанием серы.

Получение дизельных топлив с низким содержанием серы является одной из наиболее важных задач современной нефтепереработки. В настоящее время в странах западной Европы установлены нормы, по которым содержание серы в дизельных топливах не должно превышать 50 ppm. В ближайшие годы правительство России также планирует ввести аналогичные ограничения. Основным фактором, ограничивающим широкое получение малосернистых дизельных топлив, является то, что для их получения на существующих катализаторах необходимо как можно более высокое давление водорода, в то время как для существующего оборудования большинства российских НПЗ предельно достижимым давлением является 3,5 МПа. В соответствии с вышесказанным чрезвычайно важной задачей является создание новых процессов получения малосернистых дизельных топлив, основанных на использовании новых катализаторов, позволяющих получать дизельные топлива с содержанием серы менее 50 ppm при давлениях не выше 3,5 МПа.

Известны различные способы гидроочистки дизельных топлив, в том числе и сложные многоступенчатые процессы с высоким давлением водородсодержащего газа или процессы с многослойной загрузкой различных катализаторов, однако основным недостатком для них является высокое остаточное содержание серы в получаемых дизельных топливах.

Так известен способ получения малосернистого дизельного топлива [РФ 2100408, C10G 65/04, 27.12.97], по которому процесс гидроочистки осуществляется в две стадии с промежуточным подогревом газосырьевой смеси с использованием на первой стадии алюмоникельмолибденового катализатора с преобладающим радиусом пор 9-12 нм и на второй стадии алюмоникельмолибденового или алюмокобальтмолибденового катализатора с преобладающим радиусом пор 4-8 нм при массовом соотношении катализаторов первой и второй стадий 1:2-6. Процесс проводят при температуре 250-350°С на первой стадии и 320-380°С на второй стадии. Основным недостатком этого способа является высокое содержание серы в получаемом дизельном топливе, как правило, оно лежит в интервале 100-500 ppm.

Известен способ гидроочистки дизельных фракций [Смирнов В.К., Капустин В.М., Ганцев В.А. Химия и технология топлив и масел. №3, 2002, с.3] заключающийся в пропускании сырья при 330-335°С, давлении 2,5-2,7 МПа, при соотношении водородсодержащий газ/сырье 250-300 м33 и объемной скорости подачи сырья 2,5-3 ч-1 через реактор, заполненный смесью катализаторов РК-012 + ТНК-2000(АКМ) + ТНК-2003(АНМ). В этом процессе достигается остаточное содержание серы в получаемой дизельной фракции на уровне 800-1200 ppm.

Чаще всего процессы гидрообессеривания нефтяного сырья проводят в присутствии катализаторов, содержащих оксиды кобальта и молибдена, нанесенные на оксид алюминия. Так, известен катализатор и способ гидроочистки нефтяного сырья в присутствии этого катализатора [РФ 2192923, B01J 27/188, C10G 45/08, 20.10.2002]. Процесс проводят при 200-480°С при давлении 0,5-20 МПа при расходе сырья 0,05-20 ч-1 и расходе водорода 100-3000 л/л сырья, при этом используют катализатор на основе оксида алюминия, который содержит в пересчете на содержание оксида, мас.%: 2-10 оксида кобальта СоО, 10-30 оксида молибдена МоО3 и 4-10 оксида фосфора P2O5, с площадью поверхности по методу БЭТ в интервале 100-300 м2/г и средним диаметром пор в интервале 8-11 нм.

Наиболее близким к предлагаемому техническому решению является катализатор и способ гидрообессеривания нефтяного сырья [Заявка РФ №2002124681, 7 C10G 45/08, B01J 23/887, 10.05.2004], где процесс гидроочистки ведут при температуре 310-340°С, давлении 3,0-5,0 МПа, при соотношении водород/сырье 300-500 нм33 и объемной скорости подачи сырья 1,0-4,0 ч-1 при этом используют катализатор, содержащий в своем составе оксид кобальта, оксид молибдена и оксид алюминия, отличающийся тем, что он имеет соотношение компонентов, мас.%: оксид кобальта 3,0-9,0, оксид молибдена 10,0-24,0, оксид алюминия - остальное, удельную поверхность 160-250 м2/г, механическую прочность на раздавливание 0,6-0,8 кг/мм2. Основным недостатком такого катализатора и способа проведения процесса гидроочистки является высокое содержание серы в получаемых продуктах.

Общим недостатком для прототипа и всех вышеперечисленных процессов гидрообессеривания и катализаторов для этих процессов является то, что с их использованием не удается достичь остаточного содержания серы в дизельных топливах на уровне 50 ppm и ниже, при проведении процесса гидрообессеривания при следующих условиях: температура не выше 360°С, давление не выше 5 МПа, объемное отношение водород/сырье не выше 500, массовом расходе сырья не ниже 1 ч-1.

Изобретение решает задачу создания улучшенного способа гидрообессеривания углеводородного сырья, характеризующегося низким содержанием серы в получаемом дизельном топливе при достаточно мягких условиях проведения процесса.

Поставленная задача решается проведением процесса гидрообессеривания дизельного топлива с высоким содержанием серы при температуре 320-370°С, давлении 0,5-10 МПа, весовом расходе сырья 0,5-5 ч-1, объемном отношении водород/сырье 100-1000 м33 в присутствии катализатора, содержащего следующие компоненты, мас.%: соединения кобальта с концентрацией 2,5-7,5 в пересчете на CoO, соединения молибдена с концентрацией 12-25 в пересчете на MoO3, соединения лимонной кислоты с концентрацией 15-35 в пересчете на лимонную кислоту, соединения бора 0,5-3 в пересчете на В2O3, оксид алюминия Al2О3 - остальное. При этом кобальт, молибден, лимонная кислота и бор могут входить в состав комплексных соединений различной стехиометрии.

Наличие соединений лимонной кислоты в составе катализатора перед стадией сульфидирования является необходимым условием для максимальной селективности дальнейшего превращения нанесенных соединений металлов в сульфидные соединения определенного строения - активные центры второго поколения, близкие к описанным в [S.Eijsbouts, L.C.A.van den Oetelaar, R.R.van Puijenbroek, J. of Catal. 229(2005) 352-364]. Использование катализатора, не содержащего лимонную кислоту, не приводит к положительному результату. При этом в составе катализатора лимонная кислота находится не в свободном виде, а в форме координированных к молибдену лигандов, что подтверждается данными ИК-спектроскопии. Спектр катализатора содержит полосы поглощения, типичные для координационных соединений лимонной кислоты, и не содержит полос, типичных для свободной лимонной кислоты. Кобальт и молибден также входят в состав комплексных соединений, наличие которых в катализаторе подтверждено данными РФЭ-, ИК- и EXAFS спектроскопии, однако точная идентификация этих соединений затруднена.

В связи с этим отличительным признаком предлагаемого катализатора является химический состав - содержание металлов в пересчете на оксиды и соединений лимонной кислоты в пересчете на чистую лимонную кислоту.

При этом полученный катализатор имеет объем пор 0,3-0,7 мл/г, удельную поверхность 200-350 м2/г и средний диаметр пор 9-13 нм.

Основным отличительным признаком предлагаемого способа получения малосернистого дизельного топлива по сравнению с прототипом является то, что процесс гидрообессеривания углеводородного сырья проводят в присутствии гетерогенного катализатора, содержащего оксид металла VIII группы и оксид металла VIB группы, нанесенные на оксид алюминия Al2О3, имеющего объем пор 0,3-0,7 мл/г, удельную поверхность 200-350 м2/г и средний диаметр пор 9-13 нм, отличающегося тем, что используемый катализатор содержит следующие компоненты: соединения кобальта с концентрацией 2,5-7,5% в пересчете на СоО, соединения молибдена с концентрацией 12-25% в пересчете на МоО3, соединения лимонной кислоты с концентрацией 15-35% в пересчете на лимонную кислоту, соединения бора 0,5-3% в пересчете на В2О3, оксид алюминия Al2О3 - остальное, при этом кобальт, молибден, лимонная кислота и бор могут входить в состав комплексных соединений различной стехиометрии.

Технический эффект предлагаемого способа получения малосернистого дизельного топлива обусловлен тем, что используемый катализатор имеет максимальную активность в целевых реакциях протекающих при гидроочистке дизельных топлив. За счет этого обеспечивается получение дизельных топлив с содержанием серы менее 50 ppm.

Описание предлагаемого технического решения.

Готовят катализатор следующего состава, мас.%: концентрация соединений кобальта 2,5-7,5 в пересчете на СоО, концентрация соединений молибдена 12-25 в пересчете на МоО3, концентрация соединений лимонной кислоты 15-35 в пересчете на лимонную кислоту, концентрация соединений бора 0,5-3 в пересчете на В2О3, оксид алюминия Al2О3 - остальное. Для приготовления катализатора используют носитель на основе оксида алюминия в виде фракции или экструдатов различного размера, имеющий следующие основные характеристики: объем пор 0,3-0,7 мл/г, удельная поверхность 200-350 м2/г и средний диаметр пор 9-13 нм.

Далее навеску полученного катализатора либо сульфидируют при атмосферном давлении и 400°С в потоке сероводорода в течение 2 часов, либо обрабатывают раствором диметилдисульфида в дизельном топливе при 320-340°С, либо не проводят отдельной стадии предварительного сульфидирования, но в этом случае в качестве сульфидирующего агента выступают сернистые соединения, входящие в состав подвергаемого гидроочистке дизельного топлива. В качестве исходного сырья используют прямогонное дизельное топливо с содержанием серы 1,06% S (10600 ppm). Процесс гидроочистки проводят при температуре 350°С, давлении 3,5 МПа, массовом расходе дизельного топлива 2 ч-1, объемном отношении водород/дизельное топливо 500.

В приведенных ниже примерах детально описано настоящее изобретение и проиллюстрировано его осуществление.

Пример 1. 18 г оксида алюминия, сформованного в виде экструдатов диаметром не более 2 мм и длиной не более 10 мм и имеющего удельную поверхность 330 м2/г, объем пор 0,7 см3/г и средний диаметр пор 120, пропитывают избытком раствора, который готовят следующим образом.

В 20 см3 дистиллированной воды растворяют при нагревании до 60°С и перемешивании 10,4 г парамолибдата аммония (МН4)6Мо7O24×4Н2O. После его полного растворения к раствору при перемешивании и нагревании при той же температуре добавляют 11,28 г лимонной кислоты С6Н8O7, перемешивание продолжают до полного растворения и образования желтоватого раствора. Далее к полученному раствору порциями добавляют 8,51 г нитрата кобальта Со(NO3)2×6Н2O и перемешивание продолжают до его полного растворения. После этого к раствору добавляют 1,18 г оксида бора В2O3, перемешивание и нагрев продолжают до отсутствия в растворе видимых взвешенных частиц. Далее объем раствора доводят дистиллированной водой до 40 см2.

Пропиточный раствор и носитель контактируют в течение 30 мин, далее избыток раствора сливают, катализатор переносят в чашку Петри, в которой и провяливают его в течение 12 ч. Далее катализатор сушат в токе воздуха при 175°С 2 ч.

Полученный катализатор имеет следующий состав, мас.%: соединения кобальта с концентрацией 4,0 в пересчете на СоО, соединения молибдена с концентрацией 15,4 в пересчете на МоО3, соединения лимонной кислоты с концентрацией 20,5 в пересчете на лимонную кислоту, соединения бора 2,0 в пересчете на В2O3, оксид алюминия Al2O3 - остальное.

Перед проведением процесса получения малосернистого дизельного топлива из катализатора готовят фракцию 0,25-0,5 мм, навеску катализатора массой 2 г сульфидируют при атмосферном давлении и 400°С в потоке сероводорода, идущего с расходом 1 л/час, в течение 2 ч. Далее проводят гидрообессеривание прямогонного дизельного топлива с начальным содержанием серы 1,06% S (10600 ppm). Процесс проводят при температуре 350°С, давлении 3,5 МПа, массовом расходе дизельного топлива 2 ч-1, объемном отношении водород/дизельное топливо 500. Остаточное содержание серы в получаемом дизельном топливе не превышает 35 ppm.

В примерах 2-8, приведенных в таблице, показано влияние химического состава используемых катализаторов на остаточное содержание серы в получаемых дизельных топливах.

Катализаторы из примеров 2-6 сульфидируют аналогично примеру 1. Катализатор из примера 7 перед проведением гидроочистки сульфидируют раствором диметилдисульфида (1 мас%.) в дизельном топливе при температуре 340°С, давлении 3,5 МПа, массовом расходе дизельного топлива 2 ч-1, объемном отношении водород/дизельное топливо 300 в течение 8 ч. Катализатор из примера 8 перед проведением гидроочистки выдерживают в течение 8 ч в дизельном топливе с содержанием серы 1,06% S (10600 ppm) при температуре 340°С, давлении 3,5 МПа, массовом расходе дизельного топлива 4 ч-1, объемном отношении водород/дизельное топливо 100. Далее катализаторы испытывают аналогично примеру 1.

Таблица
Влияние химического состава катализаторов на остаточное содержание серы в получаемых дизельных топливах. Условия проведения процесса гидрообессеривания аналогичны примеру 1.
№ примераСодержание в катализаторе, мас.%Содержание серы в дизельном топливе, ppm
CoOMoO3В2O3С6Н8O7
22,512,00,515,050
37,525,03,035,045
44,617,01,522,040
55,519,01,125,035
67,525,02,535,040
74,517,50,620,035
84,017,50,620,050

1.Способполучениядизельноготопливагидрообессериваниемпрямогонногодизельноготопливасвысокимсодержаниемсерывприсутствиипредварительносульфидированногогетерогенногокатализатора,содержащегооксидметаллаVIIIгруппыиоксидметаллаVIBгруппы,нанесенныенаоксидалюминияAlО,имеющегообъемпор0,3-0,7мл/г,удельнуюповерхность200-350м/гисреднийдиаметрпор9-13нм,отличающийсятем,чтоиспользуемыйкатализаторпередстадиейсульфидированиясодержитследующиекомпоненты:соединениякобальтасконцентрацией,мас.%:2,5-7,5впересчетенаCoO,соединениямолибденасконцентрацией12-25впересчетенаMoO,соединениялимоннойкислотысконцентрацией15-35впересчетеналимоннуюкислоту,соединениябора0,5-3впересчетенаВО,оксидалюминияAlО-остальное,приэтомкобальт,молибден,лимоннаякислотаибормогутвходитьвсоставкомплексныхсоединенийразличнойстехиометрии.12.Способпоп.1,отличающийсятем,чтопроцесспроводятпритемпературе320-370°С,давлении0,5-10МПа,весовомрасходесырья0,5-5чобъемномотношенииводород/сырье100-1000м/м.23.Способпоп.1или2,отличающийсятем,чтопередпроведениемпроцессагидрообессериваниякатализаторпредварительносульфидируютпутемегообработкиприповышеннойтемпературегазообразнымилисодержащимсяврастворесеросодержащимсоединением.3
Источник поступления информации: Роспатент

Показаны записи 11-20 из 22.
18.05.2019
№219.017.5414

Способ получения цеолита

Предложен способ получения цеолита типа ZSM-5, включающий смешение в воде источников кремния, дополнительных элементов, щелочи и затравки, проведение кристаллизации, ионного обмена, разделения полученных пульп, модифицирования, грануляции, сушки, прокалки и извлечения основных компонентов из...
Тип: Изобретение
Номер охранного документа: 0002276656
Дата охранного документа: 20.05.2006
18.05.2019
№219.017.5623

Установка и способ термоударной обработки сыпучих материалов

Изобретение относится к области химической промышленности. Может найти применение во всех случаях, когда необходима термическая обработка сыпучих материалов в узком интервале температур: в производстве катализаторов, носителей, адсорбентов, осушителей, для проведения процессов сушки, охлаждения...
Тип: Изобретение
Номер охранного документа: 0002343970
Дата охранного документа: 20.01.2009
19.06.2019
№219.017.87b3

Катализатор, способ его приготовления и способ получения бензойной кислоты

Изобретение относится к области органического синтеза, а именно к способу получения бензойной кислоты (СНСООН, бензолкарбоновая кислота) каталитическим окислением бензилового спирта раствором пероксида водорода, а также к катализаторам для его осуществления и способу их получения. Описан...
Тип: Изобретение
Номер охранного документа: 0002335341
Дата охранного документа: 10.10.2008
19.06.2019
№219.017.87ff

Наноструктурированный микропористый углеродный материал

Предложен материал, представляющий собой наноструктурированную клеткоподобную систему, состоящую из ячеек из 1-2 графитоподобных монослойных частиц размером 1-2 нм, с удельной поверхностью S=3170-3450 м/г, суммарным объемом пор V=1,77-2,97 см/г, объемом микропор V=1,48-1,87 см/г и характерным...
Тип: Изобретение
Номер охранного документа: 0002307704
Дата охранного документа: 10.10.2007
27.06.2019
№219.017.992a

Устройство для беспламенного сжигания сбросных газов

Изобретение может быть использовано для сжигания сбросных газов, в том числе высокого давления, в процессе добычи и переработки природного газа и нефти. Корпус горелочного устройства, установленного на газоподводящем стволе, выполнен коническим с расширением вверху, в корпусе дополнительно...
Тип: Изобретение
Номер охранного документа: 0002266469
Дата охранного документа: 20.12.2005
27.06.2019
№219.017.9930

Способ приготовления катализатора и способ очистки газовых смесей от оксида углерода

Изобретение относится к катализатору и процессу каталитического метода очистки газовых смесей от оксида углерода. Описан способ приготовления оксидного медно-цериевого катализатора процесса очистки газовых смесей от СО, в котором синтез катализатора ведут через получение полимерного...
Тип: Изобретение
Номер охранного документа: 0002381064
Дата охранного документа: 10.02.2010
27.06.2019
№219.017.9931

Катализатор, способ его приготовления (варианты) и способ гидродеоксигенации жирных кислот, их эфиров и триглицеридов

Изобретение относится к области получения углеводородов путем каталитической гидродеоксигенации животных жиров, растительных масел, эфиров жирных кислот, свободных жирных кислот и разработки катализатора для этого процесса. Описан катализатор гидродеоксигенации кислородсодержащих алифатических...
Тип: Изобретение
Номер охранного документа: 0002356629
Дата охранного документа: 27.05.2009
27.06.2019
№219.017.9932

Способ регулирования дисперсности углеродметаллических катализаторов (варианты)

Изобретение относится к области приготовления нанесенных на пористый углерод металлических катализаторов с управляемой дисперсностью частиц активного компонента, эффективных при осуществлении структурно-чувствительных реакций. Описан способ регулирования дисперсности катализатора, включающего...
Тип: Изобретение
Номер охранного документа: 0002374172
Дата охранного документа: 27.11.2009
27.06.2019
№219.017.9934

Катализатор, способ его получения и процесс дегидрирования c-c-парафиновых углеводородов в олефины

Изобретение относится к области получения олефиновых углеводородов каталитическим дегидрированием соответствующих парафиновых С-С углеводородов и может найти применение в химической и нефтехимической промышленности. Описан катализатор дегидрирования С-С-парафиновых углеводородов в олефины,...
Тип: Изобретение
Номер охранного документа: 0002322290
Дата охранного документа: 20.04.2008
27.06.2019
№219.017.9936

Хроматографическая капиллярная колонка открытого типа со структурированным сорбентом

В хроматографической капиллярной колонке открытого типа, состоящей из капилляра, на внутреннюю поверхность которого равномерно по длине колонки нанесен слой удерживающего вещества, который выполнен в виде неразрывной пленки с регулярной пористой структурой со средним диаметром в диапазоне 2-30...
Тип: Изобретение
Номер охранного документа: 0002324175
Дата охранного документа: 10.05.2008
Показаны записи 11-20 из 112.
20.11.2015
№216.013.9149

Способ каталитической переработки легкого углеводородного сырья

Изобретение относится к способам каталитической переработки легкого углеводородного сырья, в частности к переработке углеводородных фракций С, и может найти применение в нефтегазовой, нефтеперерабатывающей и нефтехимической промышленности. Предложен способ, включающий нагрев легкого...
Тип: Изобретение
Номер охранного документа: 0002568809
Дата охранного документа: 20.11.2015
20.02.2016
№216.014.ce9c

Катализатор гидроочистки бензина каталитического крекинга

Изобретение относится к области катализа, а именно к катализаторам гидроочистки бензина каталитического крекинга с получением компонента товарного бензина с низким содержанием серы при минимальном снижении октанового числа, и может быть использовано в нефтеперерабатывающей промышленности....
Тип: Изобретение
Номер охранного документа: 0002575637
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.cf9f

Способ гидроочистки бензина каталитического крекинга

Изобретение относится к области нефтепереработки, а именно к способам гидроочистки бензина каталитического крекинга с получением продукта компонента товарного бензина с низким содержанием серы при минимальном снижении октанового числа, и может быть использовано в нефтеперерабатывающей...
Тип: Изобретение
Номер охранного документа: 0002575639
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.e961

Способ приготовления катализатора гидроочистки бензина каталитического крекинга

Изобретение относится к способу получения катализатора селективной гидроочистки бензина каталитического крекинга, включающему в свой состав кобальт и молибден в форме оксидов; кремний в форме аморфного алюмосиликата, алюминий в форме оксида алюминия и аморфного алюмосиликата, при этом...
Тип: Изобретение
Номер охранного документа: 0002575638
Дата охранного документа: 20.02.2016
10.04.2016
№216.015.3159

Способ подготовки скважинной продукции газоконденсатного месторождения

Изобретение относится к газовой промышленности и может быть использовано для транспортировки газов по трубопроводам. Скважинную продукцию газоконденсатного месторождения (I) сепарируют (1) с получением газа входной сепарации (II), водного конденсата (III) и углеводородного конденсата (IV),...
Тип: Изобретение
Номер охранного документа: 0002580136
Дата охранного документа: 10.04.2016
13.01.2017
№217.015.7ac5

Способ оценки степени деформаций диафиза трубчатой кости и определения величины и уровня коррекции деформации для ее хирургического исправления

Изобретение относится к медицине, ортопедии и касается определения параметров при хирургической коррекции формы трубчатой кости. Для оценки степени деформаций диафиза трубчатой кости с определением величины и уровня коррекции деформации для ее хирургического исправления проводят...
Тип: Изобретение
Номер охранного документа: 0002600070
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.863a

Способ гидрокрекинга углеводородного сырья

Изобретение относится к способу гидрокрекинга углеводородного сырья, заключающемуся в превращении высококипящего сырья при температуре 360-440°С, давлении 6-20 МПа, массовом расходе сырья 0,5-1,5 ч, объемном отношении водород/сырье 800-2000 нм/м в присутствии гетерогенного катализатора. При...
Тип: Изобретение
Номер охранного документа: 0002603776
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8a12

Катализатор и процесс гидродеоксигенации растительного сырья с его использованием

Изобретение относится к катализаторам гидродеоксигенации и процессу гидродеоксигенации растительных масел, содержащих триглицериды жирных кислот, с целью получения углеводородов дизельной фракции. Катализатор для процесса гидродеоксигенации растительного сырья включает активный компонент, в...
Тип: Изобретение
Номер охранного документа: 0002602278
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.9965

Катализатор, способ его приготовления и способ гидрооблагораживания дизельных дистиллятов

Изобретение относится к катализаторам гидрооблагораживания дизельных дистиллятов, способу получения катализатора и способу гидрооблагораживания дизельных дистиллятов с целью получения экологически чистых дизельных топлив и может быть использовано в нефтеперерабатывающей промышленности. Описан...
Тип: Изобретение
Номер охранного документа: 0002609834
Дата охранного документа: 06.02.2017
25.08.2017
№217.015.a4ea

Катализатор гидрокрекинга углеводородного сырья

Изобретение относится к катализатору гидрокрекинга углеводородного сырья, включающему никель, молибден, алюминий и кремний. При этом никель и молибден содержатся в форме биметаллических комплексных соединений [Ni(HO)(L)][MoO(CHO)], где L - частично депротонированная форма лимонной кислоты CНО;...
Тип: Изобретение
Номер охранного документа: 0002607905
Дата охранного документа: 11.01.2017
+ добавить свой РИД