×
27.06.2019
219.017.9923

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ОБЪЕМНЫХ ЗАГОТОВОК ВЫСОКОМАРГАНЦЕВОЙ СТАЛИ С РЕКРИСТАЛЛИЗОВАННОЙ МЕЛКОЗЕРНИСТОЙ СТРУКТУРОЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к технологии получения заготовок из высокомарганцевых сталей аустенитного класса с мелкозернистой структурой, используемых при изготовлении силовых элементов кузова автомобиля. Способ включает гомогенизационный отжиг при температуре 1423 К в течение 1 часа и горячую деформационно-термическую обработку. Указанную обработку проводят путем горячей прокатки заготовки до степени деформации 1 при температуре 1423 К и последующей термомеханической обработки путем ковки при постоянной температуре из интервала от 1073 до 1273 K с истинной степенью деформации не менее 1 при постоянной скорости деформации в интервале от 10 до 10 с с последующей мгновенной закалкой в воду. Способ позволяет получить однородную динамически рекристаллизованную мелкозернистую структуру в объемных заготовках высокомарганцевых сталей аустенитного класса с уникальным сочетанием высокой прочности и пластичности, произведение которых σ×δ составляет не менее 49 000 MПa×%. 2 ил., 1 табл., 2 пр.

Изобретение относится к области металлургии, преимущественно к обработке металлов давлением, а именно к технологии получения заготовок высокомарганцевых сталей аустенитного класса с мелкозернистой структурой, и может быть применено при изготовлении силовых элементов кузова автомобиля.

На сегодняшний день одними из наиболее перспективных материалов являются высокомарганцевые аустенитные стали с TWIP эффектом (twinning induced plasticity – пластичность наведенная двойникованием), используемые в автомобильной промышленности. Стали данного класса чрезвычайно пластичны и характеризуются высоким уровнем деформационного упрочнения, что делает их привлекательными для широкого применения в автомобильной промышленности. Однако, у таких материалов есть недостаток низкий предел текучести и прочности. Известно, что этот недостаток, возможно исправить за счет пластической деформации, при которой формируется мелкозернистая структура. Для применения таких сталей в качестве материалов для конструкции силовых элементов необходимо сочетание высокой прочности и пластичности. Величина, произведения временного сопротивления до разрушения на относительное удлинение, является основной характеристикой сталей, используемых для производства транспортных средств. Уникальным сочетанием пластичности и прочности обладают материалы с ультрамелкозернистой структурой [Y. Estrin, A. Vinogradov. Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater. 61 (2013) 782 - 817], которую можно получить за счет протекания динамической рекристаллизации при большой пластической деформации. Ранее было издано большое количество работ по получению листового проката из сталей данного класса [Kusakin, P.S., Kaibyshev, R.O. High-Mn twinning-induced plasticity steels: Microstructure and mechanical properties/ Reviews on Advanced Materials Science 2016, 44(4), с. 326-360], но зачастую листовой прокат не позволяет получить объемные заготовки. Для этого возможно использование других методов пластической деформации.

Известен способ получения ультрамелкозернитой высокомарганцевой стали, обладающей пределом текучести более 2 ГПа при относительном удлинении не менее 5%, отличающаяся тем, что она содержит в качестве стабилизаторов аустенита углерод в количестве более 0,5 вес.%, марганец более 15 вес.% и алюминий не более 2 вес.%, остальное – железо, при этом имеет структуру, состоящую из равноосных аустенитных зерен размером менее 200 нм с преимущественно большеугловыми разориентировками границ, причем в теле зерен присутствуют нанодвойники толщиной до 15 нм, а на границах зерен присутствуют зернограничные сегрегации атомов (С, Mn). Такие свойства были достигнуты после интенсивной пластической деформации методом кручения под высоким давлением. Недостатком указанного способа является низкое значение произведения пластичности и прочности обработанной стали, которое составляет 12 720 МПа×%, а также трудоемкий способ кручения под высоким давлением, который позволяет получать только мелкие образца размером: диаметр 10 мм и толщина 2,5 мм.

Наиболее близким к предлагаемому изобретению является способ получения объемных заготовок с мелкозернистой структурой в стали аустенитного класса с TWIP эффектом раскрытый в публикации [PAVEL KUSAKIN, KANEAKI TSUZAKI, DMITRI A. MOLODOV, RUSTAM KAIBYSHEV, and ANDREY BELYAKOV. Advanced Thermomechanical Processing for a High-Mn Austenitic Steel METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 47A, 2016, 5707]. Согласно способу, аустенитную сталь с TWIP эффектом химического состава Fe-0.62C-17.5Mn-1.5Al-0.03Si-0.007S-0.017P предварительно подвергали гомогенизационному отжигу в течении 5 часов при температуре 1423К, далее проводили горячую деформационно-термическую обработку при температуре 1423К с последующим отжигом в течении часа при температуре 1423 К. Далее часть образцов аустенитной стали с TWIP эффектом размером 300 мм в длину и с поперечным сечением 20×10 мм2 были подвергнуты термомеханической обработке методом многократной ковки при 873 К с последовательным изменением оси ориентации на 90°. А другая часть образцов размером 300 мм в длину и с поперечным сечением 20×10 мм2 были деформированы методом многократной ковки при температуре 673К с последовательным изменением оси ориентации на 90° и далее были подвергнуты отжигу в течении 1 часа при температуре 873 К. В обоих случаях истинная степень деформации за одну осадку составляла 0,7, суммарная степень деформации достигла 2,8. В результате чего после многократной ковки при 873 К средний размер зерна составил 17 мкм, а произведение предела прочности на удлинение σB × δ составило 24500 MPa×%. Второй режим многократной ковки при температуре 673 К и отжиге при 873 К позволил получить средний размер зерна - 2,8 мкм, а произведение предела прочности на удлинение составило 62100 MPa×%.

Недостатком данных обработок является с одной стороны длительный процесс ковки для набора необходимой степени деформации, с другой стороны при ковке 600°С сформированная структура имеет наклепанную структуру со среднем размером зерна 17 мкм и при этом произведение предела прочности на пластичность составляет 24 500 МПа х%. При многократной ковке 400°С с последующим отжигом при 600°С микроструктура в стали формируется за счет статической рекристаллизации, т.к. для формирования мелкозернистой структуры применяют статический отжиг, что усложняет способ получения.

Задачей изобретения является расширение арсенала способов изготовления объемных заготовок высокомарганцевых сталей аустенитного класса с рекристаллизованной мелкозернистой структурой.

Технический результат заключается в получении однородной динамически рекристаллизованной мелкозернистой структуры в объемных заготовках высокомарганцевых сталей аустенитного класса, благодаря чему происходит значительное повышение прочностных свойств стали при сохранении высоких показателей пластичности, а именно с уникальным сочетанием высокой прочности и пластичности, произведение которых σB × δ составляет не менее 49000 MPa×%.

Поставленная задача решается предложенным способом изготовления объемных заготовок высокомарганцевых сталей с TWIP эффектом, который включает гомогенизационный отжиг в течение 1 часа при температуре 1423 К и деформационно-термическую обработку при температуре 1423 К со степенью деформации 1. После чего заготовки подвергают термомеханической обработке, состоящей из ковки при постоянной температуре в диапазоне от 1223 до 1073К до истинной степени деформации 1 при скорости деформации в диапазоне от 10-2 до 10-4 с-1. После достижения заданной истиной степени деформации проводят мгновенную закалку в воду, которая фиксирует динамически рекристаллизованную структуру и не допускает процесса пост-динамической рекристаллизации.

Изобретение характеризуют изображения микроструктуры высокомарганцевой стали аустенитного класса Fe-0.6%C-17%Mn-0.05%Nb-1.5%, полученной после ковки по предложенному способу.

Фиг.1 Микроструктура высокомарганцевой стали аустенитного класса Fe-0.6%C-17%Mn-0.05%Nb-1.5% после проведения термомеханической обработки при 1073 К и различных скоростях деформации;

Фиг.2 Микроструктура высокомарганцевой стали аустенитного класса Fe-0.6%C-17%Mn-0.05%Nb-1.5% после проведения термомеханической обработки при 1223 К и различных скоростях деформации.

Толстыми линиями на изображениях микроструктуры стали указаны высокоугловые границы свыше 15°, тонкими линиями малоугловые границы от 2°до 15°

Примеры осуществления.

Пример 1. В примере осуществления использовали сталь Fe-0.6%C-17%Mn-0.05%Nb-1.5%Al предварительно гомогенизированную в течение 1 часа при температуре 1423 К. Деформационно-термическую обработку провели путем горячей прокатки при температуре 1423 К до степени деформации 1. Далее заготовку, высотой 16 мм и диаметром 8 мм, подвергли термомеханической обработке, состоящей из ковки при постоянной температуре 1073К и при скорости деформации в диапазоне от 10-2 до 10-4 с-1 до степени деформации 1, с последующей мгновенной закалкой в воду. В результате чего формируется динамически рекристаллизованная мелкозернистая структура с размером зерна 3-7 мкм. Сталь обладает высокими показателями прочности и пластичности. Произведение прочности и пластичности находится в интервале 49 000 – 59 000 МПа×%.

Пример 2. В примере осуществления использовали сталь Fe-0.6%C-17%Mn-0.05%Nb-1.5%Al предварительно гомогенизированную в течение 1 часа при температуре 1423 К. Деформационно-термическую обработку провели путем горячей прокатки при температуре 1423 К до степени деформации 1. Заготовка, высотой 16 мм и диаметром 8 мм, была подвергнута термомеханической обработке, состоящей из ковки при постоянной температуре 1223К и при скорости деформации в диапазоне от 10-2 до 10-4 с-1 до степени деформации 1, с последующей мгновенной закалкой в воду. В результате чего формируется динамически рекристаллизованная мелкозернистая структура с размером зерна 7-17 мкм. Сталь обладает высокими показателями прочности и пластичности. Произведение прочности и пластичности находится в интервале 54 000 – 63 000 МПа×%.

Механические испытания на растяжение проводили по ГОСТ 1497-84 при комнатной температуре, результаты испытаний представлены в таблице 1.

Таблица 1 Механические свойства высокомарганцевой стали аустенитного класса Fe-0.6%C-17%Mn-0.05%Nb-1.5%Al после обработки предложенным способом в сравнении с прототипом.

Приведенные примеры подтверждают достижение заявленного технического результата по достижению однородной динамически рекристаллизованной мелкозернистой структуры в объемных заготовках высокомарганцевых сталей аустенитного класса с уникальным сочетанием высокой прочности и пластичности, произведение которых σB × δ составляет не менее 49 000 MPa×%. При этом сокращаются временные и энергозатраты за счет сокращения таких операций, как отжиг после деформационно-термической обработки, снижения степени деформации в процессе термомеханической обработки объемной заготовки методом ковки и времени гомогенизационного отжига с 5 до 1 часа.

Способ получения объемных заготовок из высокомарганцевой стали с рекристаллизованной мелкозернистой структурой, включающий гомогенизационный отжиг при температуре 1423 К и горячую деформационно-термическую обработку, отличающийся тем, что гомогенизационный отжиг проводят в течение 1 часа, горячую деформационно-термическую обработку осуществляют путем горячей прокатки заготовки до степени деформации 1 при температуре 1423 К и последующей термомеханической обработки путем ковки при постоянной температуре из интервала от 1073 до 1273 K с истинной степенью деформации не менее 1 при постоянной скорости деформации в интервале от 10до 10с с последующей мгновенной закалкой в воду.
СПОСОБ ПОЛУЧЕНИЯ ОБЪЕМНЫХ ЗАГОТОВОК ВЫСОКОМАРГАНЦЕВОЙ СТАЛИ С РЕКРИСТАЛЛИЗОВАННОЙ МЕЛКОЗЕРНИСТОЙ СТРУКТУРОЙ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 142.
10.02.2019
№219.016.b926

Способ прогнозирования риска развития гипертонической болезни на основании молекулярно-генетических данных

Изобретение относится к области медицинской диагностики и предназначено для прогнозирования риска развития гипертонической болезни. У индивидуумов русской национальности, являющихся жителями Центрального Черноземья, выделяют ДНК из периферической венозной крови и проводят анализ полиморфизмов...
Тип: Изобретение
Номер охранного документа: 0002679401
Дата охранного документа: 08.02.2019
10.02.2019
№219.016.b935

Способ иммунокоррекции с использованием экстрактов жирных масел из семян чернушки дамасской и эхинацеи пурпурной

Изобретение относится к медицине, в частности к экспериментальной фармакологии, и предназначено для иммунокоррекции. Способ иммунокоррекции с использованием экстрактов жирных масел из семян чернушки дамасской и эхинацеи пурпурной, включающий воспроизведение иммунодефицита у лабораторных крыс...
Тип: Изобретение
Номер охранного документа: 0002679402
Дата охранного документа: 08.02.2019
14.02.2019
№219.016.b9f3

Способ прогнозирования риска развития ишемического инсульта с учетом генетических и средовых факторов

Изобретение относится к области медицинской диагностики и предназначено для прогнозирования риска развития ишемического инсульта. У индивидуумов русской национальности, являющихся жителями Центрального Черноземья, выделяют ДНК из венозной крови и проводят анализ полиморфизмов генов цитокинов...
Тип: Изобретение
Номер охранного документа: 0002679635
Дата охранного документа: 12.02.2019
14.02.2019
№219.016.ba23

Способ прогнозирования риска развития сочетания генитального эндометриоза и гиперпластических процессов эндометрия на основе молекулярно-генетических данных

Изобретение относится к области медицины, а именно к диагностике и гинекологии, и предназначено для выявления риска развития сочетания генитального эндометриоза и гиперпластических процессов эндометрия у женщин русской национальности, уроженок Центрального Черноземья. Для прогнозирования риска...
Тип: Изобретение
Номер охранного документа: 0002679637
Дата охранного документа: 12.02.2019
01.03.2019
№219.016.c8b8

Способ подготовки костной альвеолы к имплантации

Изобретение относится к медицине, а именно к стоматологии, и может быть использовано для подготовки костной альвеолы к имплантации. Для этого осуществляют внесение костнозамещающего материала в область дефекта, закрытие зоны аугментации, ушивание раны и установку имплантата. При этом...
Тип: Изобретение
Номер охранного документа: 0002680797
Дата охранного документа: 26.02.2019
27.04.2019
№219.017.3bb5

Способ прогнозирования риска развития ишемического инсульта

Изобретение относится к биотехнологии и представляет собой способ прогнозирования риска развития ишемического инсульта. Способ может быть использован для выявления риска развития острого нарушения мозгового кровообращения у индивидуумов русской национальности, являющихся жителями Центрального...
Тип: Изобретение
Номер охранного документа: 0002685859
Дата охранного документа: 23.04.2019
20.05.2019
№219.017.5c78

Способ коррекции стрептозотоцин-индуцированного сахарного диабета у крыс с использованием лекарственного средства на основе амида гетероциклических кислот

Изобретение относится к медицине и предназначено для коррекции сахарного диабета 2 типа в эксперименте. Проводят моделирование экспериментального сахарного диабета типа 2 путем внутрибрюшинного однократного введения стрептозотоцина в дозе 65 мг/кг с предварительным, за 15 мин, однократным...
Тип: Изобретение
Номер охранного документа: 0002687979
Дата охранного документа: 17.05.2019
20.05.2019
№219.017.5d13

Способ деформационно-термической обработки низколегированных медных сплавов

Изобретение относится к области металлургии, в частности к обработке медных сплавов, предназначенных для контактной сети высокоскоростного железнодорожного транспорта. Способ деформационно-термической обработки включает гомогенизационный отжиг при температуре 700-950°С в течение 1 ч, горячую...
Тип: Изобретение
Номер охранного документа: 0002688005
Дата охранного документа: 17.05.2019
20.05.2019
№219.017.5d16

Способ термомеханической обработки жаропрочной стали мартенситного класса

Изобретение относится к области металлургии, а именно к термомеханической обработке жаропрочной хромистой стали мартенситного класса, применяемой для изготовления элементов котлов и паропроводов, а также паровых турбин энергетических установок с рабочей температурой пара до 650°С. Для...
Тип: Изобретение
Номер охранного документа: 0002688017
Дата охранного документа: 17.05.2019
26.05.2019
№219.017.6153

Способ прогнозирования неразвивающейся беременности

Изобретение относится к области медицинской диагностики, может быть использовано для прогнозирования неразвивающейся беременности. Способ прогнозирования неразвивающейся беременности включает выделение РНК из эпителиальных клеток цервикального канала на сроке 6-10 недель беременности,...
Тип: Изобретение
Номер охранного документа: 0002689165
Дата охранного документа: 24.05.2019
Показаны записи 31-40 из 41.
20.05.2019
№219.017.5d13

Способ деформационно-термической обработки низколегированных медных сплавов

Изобретение относится к области металлургии, в частности к обработке медных сплавов, предназначенных для контактной сети высокоскоростного железнодорожного транспорта. Способ деформационно-термической обработки включает гомогенизационный отжиг при температуре 700-950°С в течение 1 ч, горячую...
Тип: Изобретение
Номер охранного документа: 0002688005
Дата охранного документа: 17.05.2019
20.05.2019
№219.017.5d16

Способ термомеханической обработки жаропрочной стали мартенситного класса

Изобретение относится к области металлургии, а именно к термомеханической обработке жаропрочной хромистой стали мартенситного класса, применяемой для изготовления элементов котлов и паропроводов, а также паровых турбин энергетических установок с рабочей температурой пара до 650°С. Для...
Тип: Изобретение
Номер охранного документа: 0002688017
Дата охранного документа: 17.05.2019
22.06.2019
№219.017.8e61

Способ получения листов высокопрочных аустенитных марганцовистых сталей

Изобретение относится к области металлургии. Для повышения прочности и пластичности с сохранением допустимых значений показателя пластичности аустенитную сталь с содержанием марганца более 15 мас.%, алюминия не менее 1,5 мас.% и обладающей TWIP-эффектом подвергают предварительному...
Тип: Изобретение
Номер охранного документа: 0002692151
Дата охранного документа: 21.06.2019
03.08.2019
№219.017.bc6d

Способ обработки жаропрочной мартенситной стали

Изобретение относится к области металлургии, а именно к технологии обработки жаропрочных мартенситных сплавов, применяемых в энергетической промышленности в качестве конструкционных материалов для производства котлов, роторов и другого оборудования тепловых электростанций нового поколения,...
Тип: Изобретение
Номер охранного документа: 0002696302
Дата охранного документа: 01.08.2019
08.08.2019
№219.017.bd14

Способ получения листов высокомарганцевой стали с улучшенными механическими свойствами

Изобретение относится к области металлургии, в частности к деформационно-термической обработке металлов, а точнее к способу получения листов из аустенитных высокомарганцевых TWIP сталей с энергией дефекта упаковки от 20 до 50 мДж/м, и может быть использовано в автомобилестроении для...
Тип: Изобретение
Номер охранного документа: 0002696789
Дата охранного документа: 06.08.2019
12.08.2019
№219.017.be60

Способ получения катанки из термостойкого алюминиевого сплава

Изобретение относится к области металлургии, а именно к способам получения изделий электротехнического назначения на основе алюминия, применяемых для изготовления электротехнической катанки и проводов высоковольтных линий электропередач. Способ включает приготовление расплава, содержащего,...
Тип: Изобретение
Номер охранного документа: 0002696794
Дата охранного документа: 06.08.2019
12.08.2019
№219.017.be8c

Алюминиево-циркониевый сплав

Изобретение относится к области металлургии, в частности к алюминиевым сплавам, используемым в качестве электротехнической катанки и проводов для линий электропередач. Алюминиево-циркониевый сплав содержит, мас.%: 0,22-0,4 Zr, 0,2-0,4 Si, 0,62-0,8 Fe, алюминий – остальное, при соотношении...
Тип: Изобретение
Номер охранного документа: 0002696797
Дата охранного документа: 06.08.2019
26.11.2019
№219.017.e6a9

Способ термомеханической обработки полуфабрикатов из термоупрочняемых al-cu-mg-ag сплавов

Изобретение относится к области металлургии, а именно к термомеханической обработке полуфабрикатов из термоупрочняемых Al-Cu-Mg-Ag сплавов для улучшения механических свойств и показателей жаропрочности готовых изделий, применяемых в современных газотурбинных двигателях наземного и авиационного...
Тип: Изобретение
Номер охранного документа: 0002707114
Дата охранного документа: 22.11.2019
24.12.2019
№219.017.f134

Способ получения сварных соединений термоупрочняемых алюминиевых сплавов с высоким пределом выносливости

Изобретение может быть использовано при сварке трением с перемешиванием термоупрочнямых алюминиевых сплавов, в частности 2ххх, 6ххх, 7ххх. После досварочной термической обработки Т6 осуществляют сварку трением с перемешиванием при частоте вращения инструмента от 1000 до 2500 об/мин и скорости...
Тип: Изобретение
Номер охранного документа: 0002709908
Дата охранного документа: 23.12.2019
24.12.2019
№219.017.f1c0

Низколегированный медный сплав

Изобретение относится к области металлургии, в частности к медным сплавам, используемым в качестве материала контактной сети высокоскоростного железнодорожного транспорта. Низколегированный медный сплав содержит олово, цинк, медь и примеси, в том числе свинец, железо и алюминий, при следующем...
Тип: Изобретение
Номер охранного документа: 0002709909
Дата охранного документа: 23.12.2019
+ добавить свой РИД