×
27.06.2019
219.017.9894

Результат интеллектуальной деятельности: Электрохимический способ получения микрокристаллов вольфрам-молибденового сплава

Вид РИД

Изобретение

Аннотация: Изобретение относится к области высокотемпературной электрохимии, в частности к электролитическому получению микрокристаллического осадка сплава вольфрам-молибден, и может быть использовано для изготовления устройств, применяемых в условиях повышенных температур, а именно: оснащения водородных и вакуумных печей, изготовления мешалок в стекольной промышленности, тепловых установок для получения монокристаллов сапфиров, отжиговых печей уранового топлива, элементов теплообменников и т.д., а также в радиоэлектронной промышленности при изготовлении электровакуумных приборов. Микрокристаллы вольфрам-молибденового сплава получают электролизом расплавов 90 мол.% NaWO- 10 мол.% WO и 80 мол.% NaWO - 20 мол.% WO при температуре 700-800°С, в импульсном потенциостатическом режиме, при напряжении 970-1500 мВ и длительности импульса напряжения 15 с. При этом в качестве катода используют молибденовую фольгу, а в качестве анода – платину. Способ позволяет при снижении температуры процесса и сокращении его длительности нарабатывать микрокристаллический порошок вольфрам-молибденового сплава, который в дальнейшем может быть использован для изготовления изделий методами порошковой металлургии. 8 ил., 6 пр.

Изобретение относится к области высокотемпературной электрохимии, в частности к электролитическому получению микрокристаллического осадка сплава вольфрам–молибден, и может быть использовано для изготовления устройств, применяемых в условиях повышенных температур: оснащения водородных и вакуумных печей, изготовления мешалок в стекольной промышленности; тепловых установок для получения монокристаллов сапфиров; отжиговых печей уранового топлива; элементов теплообменников, и т.д., а также в радиоэлектронной промышленности при изготовлении электровакуумных приборов.

Вольфрам – молибденовый сплав может быть получен путем сплавления чистых компонентов. Согласно фазовой диаграмме (фиг. 1), в зависимости от состава получаемого сплава, необходимая для сплавления температура варьируется в пределах 2623–3422°С [1]. Столь высокие температуры затрудняют практическое использование этого способа.

Известен электролитический способ получения сплошных слоев молибден-вольфрамовых сплавов из хлоридного расплава на графите [2].

В этой работе опыты проводили в кварцевом электролизере, герметично закрываемом кварцевой крышкой, снабженной патрубками для шлюзового устройства катода, ввода анода и термопары. В электролизер ставили цилиндрический стакан из плавленого кварца, который являлся контейнером для расплавленного электролита.

В качестве электролита-растворителя использовали эквимольную смесь химически чистых хлоридов натрия и калия, которые сушили при 100–400°С. В качестве хлорирующего агента применяли смесь хлора и аргона в соотношении (по объему) 1:1. Через 10 ч хлорирования концентрация молибдена в расплаве достигала 20 вес.%, после чего расплав в хлораторе замораживали под атмосферой аргона и хранили в эксикаторе.

Катодами служили брусочки из графита марки АРВ площадью 2–4 см2, закрепленные на вольфрамовых токоподводах. Электролиз проводили под атмосферой аргона, очищенного от кислорода и влаги пропусканием через адсорберы с едким кали, пятиокисью фосфора, активированной медью, нагретой до 500°С, и циркониевой стружкой, нагретой до 700°С.

Предварительный электролиз проводили с молибденовым анодом при температуре 800°С и катодной плотности тока 0,10 А/см2. Его прекращали после устойчивого осаждения на катоде сплошных ровных слоев молибдена. Затем в электролизер вводили анод из вольфрама (пластина или пруток диаметром 5 мм) марки «ч» и делали серию электроосаждений. Обычно во время электролиза катод подвергали вибрации.

Этот способ позволяет получать сплошные покрытия молибден–вольфрамового сплава на брусочках из графита, однако процесс занимает несколько часов. Кроме этого этим способом невозможно получить микрокристаллы сплава.

Наиболее близким к заявляемому решению аналогом (прототипом) является электроосаждение молибдена и молибден-вольфрамовых сплавов из вольфраматно-молибдатных расплавов [3].

Электролиз в данной работе проводили в алундовом тигле, помещенном в алундовую пробирку в атмосфере воздуха. Электролитом служил вольфрамат щелочного металла (лития, натрия или калия) марки «х.ч.», который предварительно сплавляли с необходимым количеством вольфрамового ангидрида; концентрацию молибдена задавали навесками триоксида молибдена марки «х.ч.».

Перед опытом электролит подвергали очистному электролизу при катодной плотности тока 0,025 А/см2 до устойчивого получения сплошного металлического осадка. Способ позволяет получать сплошные покрытия молибден-вольфрамового сплава на никелевых подложках.

Катоды – никелевые пластины (1×1 см) на молибденовом токоподводе; анод – вольфрамовая или молибденовая спираль из прутка диаметром 3–5 мм. Однако данный способ не позволяет получить микрокристаллы вольфрам-молибденового сплава. Кроме того, процесс проводится при температуре 800–900°С.

Технической задачей изобретения является разработка способа получения микрокристаллов вольфрам-молибденового сплава.

Для этого заявленный способ, как и прототип, включает электролиз расплавов, содержащих вольфрамат натрия, и отличается тем, что электролиз ведут из расплавов 90 мол.% Na2WO4 – 10 мол.% WO3 и 80 мол.% Na2WO4 – 20 мол.% WO3 при температуре 700 – 800°С, в импульсном потенциостатическом режиме, при напряжении 970 – 1500 мВ и длительности импульса напряжения 15 с, при этом в качестве анода используют платиновую проволоку, а в качестве катода – молибденовую фольгу. В этом случае приэлектродный слой электролита обогащается растворяющимся с подложки молибденом и в момент подачи импульса происходит соосаждение вольфрама и молибдена.

В отличие от прототипа, где процесс проводят при температуре 800–900°С, в заявленном способе осаждение ведут при 700–800°С. В прототипе осаждение проводится в течение нескольких часов, в то время как в предлагаемом способе микрокристаллы получают в течение 15 секунд.

Таким образом, новый технический результат заключается в возможности наработки микрокристаллического порошка вольфрам – молибденового сплава, который в дальнейшем может быть использован для изготовления изделий методами порошковой металлургии, при снижении температуры процесса и сокращении его длительности.

Изобретение иллюстрируется рисунками, где на фиг.1 представлена фазовая диаграмма «молибден-вольфрам»; на фиг.2 - СЭМ изображение поверхности Mo катода, E = –1200 мВ, 15 с, 90 мол.% Na2WO4 – 10 мол.% WO3, Т = 700ºС, совмещенное с МРСА анализом; на фиг.3 - СЭМ изображение поверхности Mo катода с осадком вольфрама в виде кубиков, E = –1200 мВ, 15 с, 90 мол.% Na2WO4 – 10 мол.% WO3, Т = 700ºС, совмещенное с МРСА анализом; на фиг.4 - СЭМ изображение поверхности Mo катода E = –1000 мВ, 15 c, 90 мол.% Na2WO4 – 10 мол.% WO3, Т = 700ºС, совмещенное с МРСА анализом; на фиг.5 - СЭМ изображение поверхности Mo катода с осадком вольфрама в виде кубиков, E = –1500 мВ, 15 с, 90 мол.% Na2WO4 – 10 мол.% WO3, Т = 700ºС, совмещенное с МРСА анализом; на фиг. 6 - СЭМ изображение поверхности Mo катода, E = –1200 мВ, 15 с, 90 мол.% Na2WO4 – 10 мол.% WO3, Т = 750ºС, совмещенное с МРСА анализом; на фиг. 7 - СЭМ изображение поверхности Mo катода, E = –1200 мВ, 15 с, 90 мол.% Na2WO4 – 10 мол.% WO3, Т = 800ºС, совмещенное с МРСА анализом; на фиг. 8 - СЭМ изображение поверхности Mo катода, E = –970 мВ, 15 с, 80 мол.% Na2WO4 – 20 мол.% WO3, Т = 800ºС, совмещенное с МРСА анализом.

Для проведения эксперимента электрохимическую ячейку помещали в шахтную печь, температуру в которой поддерживали с помощью терморегулятора «Варта ТП 703». Вблизи электродов (в электролите) температуру измеряли с помощью платина - платинородиевой термопары.

Одиночный импульс напряжения прямоугольной формы определённой величины (относительно платина-кислородного электрода сравнения) и длительности подавался на ячейку. В качестве источника питания служил потенциостат Autolab 302N (Netherland).

По окончании опыта катодный осадок отмывали в щелочном растворе, затем промывали в дистиллированной воде и спирте, после чего сушили при комнатной температуре.

Морфологию и элементный состав осадков исследовали методом сканирующей электронной микроскопии на электронном микроскопе MIRA -3 LMU (TESCAN), оснащенном энергодисперсионным спектрометром X – Max 80 (Oxford Instuments). Рентгенофазовый анализ проводили на установке RIGAKU D/MAX- 2200VL/PC (Rigaku Corporation, Japan) в Cu Kα - излучении. Эти исследования показали, что на молибденовой фольге в расплавах 90 мол.% Na2WO4 – 10 мол.% WO3 и 80 мол.% Na2WO4 – 20 мол.% WO3 осаждаются микрокристаллы вольфрам – молибденового сплава, в которых содержание молибдена в сплаве достигает 10 ат.%. Размер микрокристаллов составляет 0.5-4.5 мкм. Следует отметить, что на поверхности осадка присутствует адсорбированный кислород, содержание которого может достигать 1 – 2 мас.%.

Изобретение проиллюстрировано следующими примерами:

Пример 1. Электролиз ведут в расплаве, содержащем 90 мол.% Na2WO4 и 10 мол. % WO3 при Т = 700ºС с использованием платинового анода, причём в качестве катода служит молибденовая фольга. На ячейку подают одиночный импульс напряжения прямоугольной формы. Величина импульса напряжения составляет –1200 мВ, длительность импульса – 15 с. На катоде формируется осадок в виде сплошного W покрытия (фиг. 2, точка 1), W – Mo сплава (фиг. 2, точки 2, 4, 5) и ОВБ кубической структуры (фиг. 2, точка 3).

Возможно, также, образование осадка чистого вольфрама в виде кубиков (фиг. 3, точки 4, 5).

Пример 2. Электролиз ведут в расплаве, содержащем 90 мол.% Na2WO4 и 10 мол. % WO3 при Т = 700ºС с использованием платинового анода, причём в качестве катода служит молибденовая фольга. На ячейку подают одиночный импульс напряжения прямоугольной формы. Величина импульса напряжения составляет –1000 мВ, длительность импульса – 15 с. На поверхности катода формируется осадок, состоящий из смеси оксидов MoO2 и WO2 (фиг. 4). Микрокристаллический осадок W – Mo сплава отсутствует.

Пример 3. Электролиз ведут в расплаве, содержащем 90 мол.% Na2WO4 и 10 мол. % WO3 при Т = 700ºС с использованием платинового анода, причём в качестве катода служит молибденовая фольга. На ячейку подают одиночный импульс напряжения прямоугольной формы. Величина импульса напряжения составляет –1500 мВ, длительность импульса – 15 с. При этом на катоде формируется осадок в виде сплошного вольфрамового покрытия и кубиков металлического вольфрама (фиг.5).

Микрокристаллический осадок W – Mo сплава отсутствует.

Пример 4. Электролиз ведут в расплаве, содержащем 90 мол.% Na2WO4 и 10 мол. % WO3 при Т = 750ºС с использованием платинового анода, причём в качестве катода служит молибденовая фольга. На ячейку подают одиночный импульс напряжения прямоугольной формы. Величина импульса напряжения составляет –1200 мВ, длительность импульса – 15 с.

На катоде образуются: ОВБ кубической структуры, оксиды молибдена и вольфрама (фиг. 6, точка 2), W–Mo сплав в виде сплошного покрытия (фиг. 6, точка 1), W–Mo сплав в виде кубиков (фиг. 6, точки 5, 6), чистый W (фиг. 6, точка 4).

Пример 5. Электролиз ведут в расплаве, содержащем 90 мол.% Na2WO4 и 10 мол. % WO3 при Т = 800ºС с использованием платинового анода, причём в качестве катода служит молибденовая фольга. На ячейку подают одиночный импульс напряжения прямоугольной формы. Величина импульса напряжения составляет –1200 мВ, длительность импульса – 15 с.

При этом на катоде образуется осадок, состоящий из оксидов Mo и W, а так же сплава W–Mo в виде сплошного слоя и микрокристаллических кубиков (фиг. 7).

Пример 6. Электролиз ведут в расплаве, содержащем 80 мол.% Na2WO4 и 20 мол. % WO3 при Т = 800ºС с использованием платинового анода, причём в качестве катода служит молибденовая фольга. На ячейку подают одиночный импульс напряжения прямоугольной формы. Величина импульса напряжения составляет –970 мВ, длительность импульса – 15 с.

При этом на катоде присутствует W–Mo сплав (фиг. 8, точки 1, 3, 4) и металлический вольфрам (фиг. 8, точка 2).

Приведенные данные подтверждают, что совокупность существенных признаков заявленного способа обеспечивает получение микрокристаллов W–Mo сплава на молибденовой подложке.

Список литературы

1. Диаграммы состояния двойных металлических систем: Справочник: В 3 т.: Т. 3. Кн. I / Под общ. ред. Н.П. Лякишева. – М.: Машиностроение, 2001. – 872 с.: ил. (с. 466).

2. Барабошкин А.Н., Валеев З.И., Таланова М.И., Мартемьянова З.С. Электроосаждение сплошных слоев молибден-вольфрамовых сплавов из хлоридного расплава. Тр. ин-та электрохимии АН СССР, 1976, вып. 23, с. 52–59.

3. Тарасова К.П., Барабошкин А.Н., Мартемьянова З.С., Бычин В.П. Электроосаждение молибдена и молибден-вольфрамовых сплавов из вольфраматно-молибдатных расплавов. Защита металлов, 1981, т. 17, №3. с. 371–374.

Cпособ электрохимического получения микрокристаллов вольфрам–молибденового сплава, включающий электролиз расплавов, содержащих вольфрамат натрия, отличающийся тем, что электролиз ведут из расплавов 90 мол.% NaWO– 10 мол.% WO и 80 мол.% NaWO – 20 мол.% WO при температуре 700–800°С, в импульсном потенциостатическом режиме, при напряжении 970–1500 мВ и длительности импульса напряжения 15 с, при этом в качестве анода используют платиновую проволоку, а в качестве катода – молибденовую фольгу.
Электрохимический способ получения микрокристаллов вольфрам-молибденового сплава
Электрохимический способ получения микрокристаллов вольфрам-молибденового сплава
Электрохимический способ получения микрокристаллов вольфрам-молибденового сплава
Электрохимический способ получения микрокристаллов вольфрам-молибденового сплава
Электрохимический способ получения микрокристаллов вольфрам-молибденового сплава
Электрохимический способ получения микрокристаллов вольфрам-молибденового сплава
Электрохимический способ получения микрокристаллов вольфрам-молибденового сплава
Электрохимический способ получения микрокристаллов вольфрам-молибденового сплава
Источник поступления информации: Роспатент

Показаны записи 31-40 из 94.
20.04.2015
№216.013.42dc

Способ определения коэффициента диффузии горючих газов в азоте

Изобретение направлено на высокоточное измерение коэффициентов диффузии горючих газов в азоте или иных инертных газах в широком температурном диапазоне посредством кислородпроводящего твердого электролита. Способ заключается в пропускании электрического тока через электрохимическую ячейку,...
Тип: Изобретение
Номер охранного документа: 0002548614
Дата охранного документа: 20.04.2015
20.08.2015
№216.013.6f9b

Способ определения химического коэффициента обмена и химического коэффициента диффузии кислорода в оксидных материалах

Изобретение относится к физической химии и электрохимии твердых электролитов и может быть использовано для определения химического коэффициента обмена и химического коэффициента диффузии кислорода в оксидных материалах со смешанной электронной и кислород-ионной проводимостью. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002560141
Дата охранного документа: 20.08.2015
20.09.2015
№216.013.7bf0

Амперометрический способ измерения концентрации горючих газов в азоте

Изобретение направлено на возможность измерения горючего газа в смеси с азотом или другим инертным газом. Способ заключается в том, что в поток анализируемого горючего газа помещают электрохимическую ячейку с полостью, образованной герметично соединенными между собой двумя дисками из твердого...
Тип: Изобретение
Номер охранного документа: 0002563325
Дата охранного документа: 20.09.2015
20.11.2015
№216.013.92b2

Способ определения концентрации протонов в протон-проводящих оксидных материалах

Изобретение относится к физической химии и электрохимии твердых электролитов и может быть использовано для определения концентрации протонов в протон-проводящих оксидных материалах в атмосфере сухого водорода. Способ определения концентрации протонов в протон-проводящих оксидах заключается в...
Тип: Изобретение
Номер охранного документа: 0002569172
Дата охранного документа: 20.11.2015
10.12.2015
№216.013.97e9

Способ получения тонкоплёночного твердого электролита для электрохимических устройств

Изобретение относится к области электротехники, а именно к получению оксидной пленки электролита толщиной, соизмеримой с размером пор материала электрода, более простым и технологичным, а также более экономичным способом, чем ионно-плазменный. Тонкую газоплотную оксидную пленку электролита...
Тип: Изобретение
Номер охранного документа: 0002570509
Дата охранного документа: 10.12.2015
27.01.2016
№216.014.bc91

Батарея элементов тепловых химических источников тока

Изобретение относится к области электротехники, а именно к термоактивируемым химическим источникам тока. Батарея содержит внутреннюю и внешнюю герметичные оболочки с полостью между ними и два слоя теплоизоляции, образующих корпус, в котором расположена сборка из электрохимических элементов,...
Тип: Изобретение
Номер охранного документа: 0002573860
Дата охранного документа: 27.01.2016
10.03.2016
№216.014.bf06

Способ тонкослойного электролитического получения свинца

Изобретение относится к способу получения свинца. Способ включает электролиз в расплаве галогенидов солей с использованием жидкометаллических катода и анода из чернового свинца. При этом электролиз ведут с использованием пропитанной расплавом галогенидов солей керамической диафрагмы,...
Тип: Изобретение
Номер охранного документа: 0002576409
Дата охранного документа: 10.03.2016
27.03.2016
№216.014.dd29

Электрохимический способ получения сложных гибридных каталитических систем на основе модифицированного углерода, содержащих на поверхности оксидные вольфрамовые бронзы

Изобретение относится к электрохимическому способу получения сложных гибридных каталитических систем на основе модифицированного углерода, содержащих на поверхности оксидные вольфрамовые бронзы, в котором каталитические системы получают из расплава 30 мол.% KWO, 25 мол.% LiWO и 45 мол.% WO в...
Тип: Изобретение
Номер охранного документа: 0002579119
Дата охранного документа: 27.03.2016
10.04.2016
№216.015.2be7

Способ определения коэффициента диффузии газов в твердых электролитах

Изобретение относится к аналитической технике и может быть использовано для измерения значений коэффициентов диффузии в твердых электролитах, обладающих проводимостью по ионам исследуемых газов, таких, например, как водород, кислород, фтор, хлор и некоторые другие. Согласно изобретению в...
Тип: Изобретение
Номер охранного документа: 0002579183
Дата охранного документа: 10.04.2016
10.05.2016
№216.015.3b02

Амперометрический способ измерения концентрации аммиака в азоте

Изобретение относится к области газового анализа и может быть использовано для решения технологических задач и задач экологического контроля. Концентрацию аммиака в анализируемом газе определяют по зависимости изменения величины одной из электрических характеристик электрохимической ячейки от...
Тип: Изобретение
Номер охранного документа: 0002583162
Дата охранного документа: 10.05.2016
Показаны записи 31-40 из 56.
27.04.2019
№219.017.3d05

Способ электролитического получения алюминия

Изобретение относится к получению алюминия электролизом криолит-глиноземного расплава. Способ включает загрузку на этапе пуска электролизера в качестве электролита смеси криолита со фторидом алюминия с содержанием фторида алюминия от 25 до 35 мас.%. Обеспечивается сокращение времени пуска...
Тип: Изобретение
Номер охранного документа: 0002686408
Дата охранного документа: 25.04.2019
09.05.2019
№219.017.4cfa

Способ получения игольчатых оксидных вольфрамовых бронз

Изобретение относится к области высокотемпературной электрохимии, в частности к способу получение электролизом игольчатых оксидных вольфрамовых бронз, и может быть использовано в медицине, электротехнике, радиотехнике и в химической промышленности для изготовления ион-селективных элементов для...
Тип: Изобретение
Номер охранного документа: 0002354753
Дата охранного документа: 10.05.2009
09.06.2019
№219.017.7d54

Способ получения нано- и микроволокон кремния электролизом диоксида кремния из расплавов солей

Изобретение относится к производству электролитического кремния в виде нановолокон или микроволокон с использованием сырья - диоксида кремния. Сущность изобретения: способ получения нано- или микрооволокон кремния характеризуется тем, что процесс электролиза SiO ведут в расплаве LiF (0÷3) - KCl...
Тип: Изобретение
Номер охранного документа: 0002427526
Дата охранного документа: 27.08.2011
09.06.2019
№219.017.7e1f

Инертный анод для электролитического получения металлов

Изобретение относится к области цветной металлургии и электролитическому получению металлов и может быть использовано при получении алюминия электролизом криолит-глиноземного расплава с применением инертных анодов. Инертный анод содержит металлическую фазу и керамическую фазу, включающую оксид...
Тип: Изобретение
Номер охранного документа: 0002401324
Дата охранного документа: 10.10.2010
09.06.2019
№219.017.7e28

Способ получения алюминиевых сплавов электролизом

Изобретение относится к цветной металлургии, в частности для получения сплавов на основе алюминия электрохимическим способом. Способ включает введение в расплавленный алюминий катода легирующих элементов из малорастворимого анода путем растворения его в калиевом криолит-глиноземном расплаве,...
Тип: Изобретение
Номер охранного документа: 0002401327
Дата охранного документа: 10.10.2010
14.07.2019
№219.017.b451

Способ получения алюминия электролизом расплава

Изобретение относится к цветной металлургии и способу электролитического получения алюминия. Способ включает электролиз расплава KF-NaF-AlF с добавками АlО при температуре электролита 700-900°С и поддержание криолитового отношения (KF+NaF)/AlF от 1,1 до 1,9. Электролиз ведут при анодной...
Тип: Изобретение
Номер охранного документа: 0002415973
Дата охранного документа: 10.04.2011
19.07.2019
№219.017.b611

Способ контроля содержания глинозема при электролизе криолит-глиноземного расплава

Изобретение относится к получению алюминия электролизом криолит-глиноземного расплава, в частности к способу контроля содержания глинозема при электролизе криолит-глиноземного расплава. Способ включает определение эмпирической линейной зависимости концентрации глинозема в криолит-глиноземном...
Тип: Изобретение
Номер охранного документа: 0002694860
Дата охранного документа: 17.07.2019
03.08.2019
№219.017.bc0f

Установка для очистки галогенидных солей

Изобретение относится к области химической технологии и может быть использовано для получения особо чистых галогенидных солей методом зонной перекристаллизации, применяемых, в частности, при пирохимической переработке ядерного топлива, химическом и электрохимическом синтезе элементов и...
Тип: Изобретение
Номер охранного документа: 0002696474
Дата охранного документа: 01.08.2019
02.10.2019
№219.017.cfc0

Способ переработки оксидного ядерного топлива

Изобретение относится к ядерной энергетике и может быть использовано преимущественно в замкнутом ядерном топливном цикле (ЗЯТЦ). Способ включает восстановление компонентов оксидного ядерного топлива при электролизе расплава хлорида лития с добавкой оксида лития в количестве не менее 1 мас. % с...
Тип: Изобретение
Номер охранного документа: 0002700934
Дата охранного документа: 24.09.2019
15.11.2019
№219.017.e214

Электрохимический способ формирования кристаллов оксидных вольфрамовых бронз из нановискеров (варианты)

Изобретение относится к вариантам электрохимического способа формирования кристаллов оксидных вольфрамовых бронз из нановискеров. Один из вариантов включает электролиз поливольфраматного расплава с использованием платинового анода, в котором электроосаждение ведут при 700°C в импульсном...
Тип: Изобретение
Номер охранного документа: 0002706006
Дата охранного документа: 13.11.2019
+ добавить свой РИД