×
22.06.2019
219.017.8e61

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ЛИСТОВ ВЫСОКОПРОЧНЫХ АУСТЕНИТНЫХ МАРГАНЦОВИСТЫХ СТАЛЕЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии. Для повышения прочности и пластичности с сохранением допустимых значений показателя пластичности аустенитную сталь с содержанием марганца более 15 мас.%, алюминия не менее 1,5 мас.% и обладающей TWIP-эффектом подвергают предварительному гомогенизационному отжигу при температуре 1223 – 1423 K в течение 1 ч, последующей горячей ковке при температуре 1223 – 1423 K до суммарной истинной степени деформации в диапазоне 1 - 1,19, затем второму гомогенизационному отжигу при температуре 1223 – 1423 K в течение не менее двух часов, последующей горячей прокатке без промежуточного подогрева при температуре 773 – 1423 K до суммарной истинной деформации в диапазоне 1,6 – 1,99, отжигу в течение в течение 1 ч при 1223-1423 K. После отжига осуществляют холодную деформацию путем прокатки при температуре 293 K до истинной степени деформации в диапазоне 0,22 – 0,4. Упомянутая сталь может использоваться в автомобилестроении для производства несущих конструкций автомобиля, а также в строительстве, в том числе - для изготовления демпфирующих элементов, используемых в сейсмостойких сооружениях. 4 ил.

Изобретение относится к области металлургии, а именно к деформационной обработке аустенитных марганцовистых сталей в холодном состоянии, которые могут использоваться в автомобилестроении для производства несущих конструкций автомобиля, а также в строительстве, в том числе - для изготовления демпфирующих элементов, используемых в сейсмостойких сооружениях.

Одними из наиболее перспективных высокопрочных сталей нового поколения являются высокомарганцевые стали с TWIP эффектом. Основным недостатком таких сталей является низкий предел текучести, который ограничивает их более широкое применение. Однако стали данного класса чрезвычайно пластичны, и характеризуются высоким уровнем деформационного упрочнения, что делает их привлекательными для широкого применения в автомобильной промышленности. Очень большое деформационное упрочнение обеспечивается за счет деформационного двойникования, которое приводит к структурному упрочнению по закону Холла-Петча, и деформационного упрочнения благодаря росту плотности дислокаций при деформации [C.M. Young, O.D. Sherby. Sub-Grain Formation and Sub-Grain-Boundary Strengthening in Fe-Based Materials. J. Iron Steel Inst. 211 (1973) 640]. Существует несколько подходов к повышению прочностных характеристик высокомарганцевых сталей, однако одним из наиболее эффективных способов, который может быть использован для получения в сталях оптимального сочетания механических свойств, является деформация при комнатной температуре. Холодная деформационная обработка приводит к развитию деформационного двойникования в стали и вызывает резкое увеличение плотности дислокаций, что в свою очередь приводит к существенному упрочнению. Однако с увеличением степени деформации за процессами двойникования следует формирование полос сдвига, что приводит к деградации пластичности. Отсюда следует, что наиболее эффективным способом получения листов высокомарганцевых сталей, которые будут сочетать высокую прочность и пластичность, является холодная деформационная обработка до относительно невысоких степеней деформации, чтобы в стали развивались процессы деформационного двойникования.

Из уровня техники известны способы обработки высокомарганцевых сталей для повышения прочностных характеристик.

Изобретение согласно патенту WO 2013064698 A3 (опубликован 01.05.2014) относится к способу деформационно-термической обработки для получения высокопрочных компонентов из литой стали, обладающей эффектами TWIP-TRIP. Способ деформационно-термической обработки заключается в том, что полуфабрикаты или формованные детали из литой стали отливаются с использованием традиционных методов литья и без жестких допусков размеров, при этом конечная температура после литья составляет 1150-1300°C. Следующим этапом является горячая прокатка при температуре от 850 до 950°C. После горячей прокатки сталь наматывается при температуре 550-800°C. Затем полуфабрикаты или формованные детали подвергаются холодной обработке со степенью обжатия от 20% до 100% для аустенитных сталей и от 20% до 60% для аустенитно-мартенситных сталей. В процессе холодной обработки полуфабрикаты или формованные детали охлаждаются до 80°C.

Основным недостатком данного способа является большая энергозатратность процесса и необходимость применения специального оборудования.

Способ деформационно-термической обработки для изготовления горячекатаных полос из деформируемой, в частности способной к хорошей холодной глубокой вытяжке легкой конструкционной стали, описан в изобретении RU 2359765 С2 (опубликован 27.06.2009). Сталь, согласно изобретению, состоит из основных элементов Fe, Mn, Si и Al и обладает высокой прочностью на растяжение и TRIP- и/или TWIP-свойствами. При этом расплав разливают в горизонтальной разливочной установке близко к окончательным размерам в черновую полосу в диапазоне 6-20 мм в защитном газе. Деформационно-термическая обработка заключается в том, что черновую полосу пропускают через находящееся в защитном газе устройство для гомогенизации в сочетании с выборочным поддержанием температуры, охлаждением или нагревом, затем черновую полосу подвергают горячей прокатке, по меньшей мере, в один проход с общей степенью деформации, по меньшей мере, 50%, а после охлаждения наматывают в виде горячекатаной полосы, причем в зависимости от соотношения скоростей разливки и прокатки процесс горячей прокатки осуществляют напрямую или отдельно.

Недостатком способа является отсутствие данных по прочностным свойствам стали, что делает оценку эффективности применения данного метода затруднительной.

Наиболее близкий к предложенному изобретению способ деформационно-термической обработки аустенитных высокомарганцевых сталей с TWIP-эффектом, принятый за прототип, описан в патенте RU 2618678 С1 (опубликован 10.05.2017). Согласно способу аустенитную сталь с содержанием марганца более 15 мас.%, алюминия не менее 1,5 мас.% и обладающей TWIP-эффектом подвергают предварительно гомогенизационному отжигу при температуре 1223 – 1423 K в течение 2 - 8 часов, затем проводят многократную ковку слитка при температуре 1223 – 1423 K с суммарной истинной степенью деформации не менее 1,2. После ковки сталь подвергают второму гомогенизационному отжигу при 1223 – 1423 K в течение 2 - 8 часов и последующей многократной горячей прокатке без промежуточного подогрева при 773 – 1423 K с суммарной истинной степенью деформации не менее 2. Горячекатаную сталь подвергают отжигу в течение 1-2 часов при 1223 – 1423 K, холодной деформации путем прокатки при температуре 293 K до суммарной истинной степени не менее 3, с последующим рекристаллизационным отжигом в интервале температур 873 – 973 K в течение 30 – 60 минут.

Недостатком данного способа является то, что представленная обработка не позволяет достигнуть необходимых механических свойств, в частности, предел прочности не превышает 1000 МПа, а также прокатка до истинной степени деформации 3 является энергозатратным процессом.

Задачей предлагаемого изобретения является разработка способа получения листов высокопрочных аустенитных марганцовистых сталей с содержанием марганца более 15 мас.%, алюминия не менее 1,5 мас.% и с TWIP эффектом, позволяющего устранить недостатки прототипа.

Технический результат заключается в следующем: повышение прочностных характеристик сталей данного класса с содержанием марганца не менее 15% и алюминия не менее 1,5%, при комнатной температуре, с сохранением допустимых значений показателя пластичности, за счет обширного деформационного двойникования и формирования полос сдвига.

Дополнительный технический результат: снижение энергозатрат за счет уменьшения значения истинной степени деформации до 0,22 – 0,4 при холодной прокатке, значения суммарной истинной степени деформации 1-19 при горячей ковке и 1,6 – 1,99 при многократной горячей прокатке, сокращение времени предварительного гомогенизационного отжига и исключения рекристаллизационного отжига после холодной прокатки в интервале температур 873 – 973 K в течение 30 – 60 минут.

Поставленную задачу можно решить предложенным способом получения листов высокопрочных аустенитных марганцовистой сталей с содержанием марганца не менее 15% и алюминия не менее 1,5%, включающим предварительный гомогенизационный отжиг при температуре 1223 – 1423 K, последующую горячую ковку при температуре 1223 – 1423 K, второй гомогенизационный отжиг при температуре 1223 – 1423 K, последующую горячую прокатку без промежуточного подогрева и отжиг при температуре 1223 – 1423 K, и последующую холодную деформацию путем прокатки при температуре 293 K, в который внесены следующие новые признаки:

- предварительный гомогенизационный отжиг проводят в течение 1 часа;

- последующую горячую ковку проводят до суммарной истинной степени деформации не менее 1 и не более 1,19;

- второй гомогенизационный отжиг проводят в течение не менее 2-х часов;

- горячую прокатку без промежуточного подогрева проводят до получения суммарной истинной деформации в диапазоне 1,6 – 1,99;

- отжиг проводят в течение не более 1 часа;

- холодную деформацию осуществляют путем прокатки при комнатной температуре до истинной степени деформации в диапазоне 0,22 – 0,4, не более, т.к. будет потеряно оптимальное соотношение пластичности и прочности.

Предполагаемое изобретение поясняют следующие графические материалы:

Фиг. 1 – Таблица 1. Механические свойства и параметры микроструктуры листов аустенитных аустенитных марганцовистых TWIP сталей.

Фиг. 2 – микроструктура стали Fe - 0,3%C - 17%Mn - 1,5%Al, подвергнутой холодной прокатке до истинной степени деформации 0,22.

Фиг. 3 – микроструктура стали Fe - 0,3%C - 23%Mn - 1,5%Al, подвергнутой холодной прокатке до истинной степени деформации 0,22.

Фиг. 4 – микроструктура стали Fe - 0,6%C - 17%Mn - 1,5%Al, подвергнутой холодной прокатке до истинной степени деформации 0,22.

Примеры осуществления:

Пример 1. Слиток аустенитной марганцовистой стали Fe - 0,3%C - 17%Mn - 1,5%Al был повергнут предварительной термообработке. Для этого сначала исходный материал в литом состоянии в виде слитка размерами 140×140×140 мм3 был подвергнут гомогенизационному отжигу в печи при температуре 1423 K в течение 4-х часов, затем слиток был прокован при температуре 1423 K до суммарной истинной степени деформации 1 за несколько проходов. После чего слиток был подвергнут второму гомогенизационному отжигу при температуре 1423 K в течение 2-х часов и прокатан в интервале температур 1423 – 773 K в несколько проходов, суммарная истинная деформация составила 1,6, в данном случае все стадии прокатки проводились без промежуточного подогрева. После прокатки стальная заготовка была подвергнута отжигу в течение 1 часа при температуре 1423 K. Затем стальная заготовка была подвергнута холодной прокатке при комнатной температуре (~ 273 K), в результате которой были получены листы высокомарганцевой стали с истинной степенью деформации 0,22 -0,4.

Пример 2. Слиток аустенитной марганцовистой стали Fe - 0,3%C - 23%Mn - 1,5%Al был повергнут предварительной термообработке. Для этого сначала исходный материал в литом состоянии в виде слитка размерами 140×140×140 мм3 был подвергнут гомогенизационному отжигу в печи при температуре 1423 K в течение 4-х часов, затем слиток был прокован при температуре 1423 K до суммарной истинной степени деформации 1 за несколько проходов. После чего слиток был подвергнут второму гомогенизационному отжигу при температуре 1423 K в течение двух часов и прокатан в интервале температур 1423 – 773 K в несколько проходов, суммарная истинная деформация составила 1,6, в данном случае все стадии прокатки проводились без промежуточного подогрева. После прокатки стальная заготовка была подвергнута отжигу в течение 1 часа при температуре 1423 K. Затем стальная заготовка была подвергнута холодной прокатке при комнатной температуре (~ 273 K), в результате которой были получены листы высокомарганцевой стали с истинной степенью деформации 0,22.

Пример 3. Слиток аустенитной марганцовистой стали Fe - 0,6%C - 23%Mn - 1,5%Al был повергнут предварительной термообработке. Для этого сначала исходный материал в литом состоянии в виде слитка размерами 140×140×140 мм3 был подвергнут гомогенизационному отжигу в печи при температуре 1423 K в течение 4-х часов, затем слиток был прокован при температуре 1423 K до суммарной истинной степени деформации 1 за несколько проходов. После чего слиток был подвергнут второму гомогенизационному отжигу при температуре 1423 K в течение двух часов и прокатан в интервале температур 1423 – 773 K в несколько проходов, суммарная истинная деформация составила 1,6, в данном случае все стадии прокатки проводились без промежуточного подогрева. После прокатки стальная заготовка была подвергнута отжигу в течение 1 часа при температуре 1423 K. Затем стальная заготовка была подвергнута холодной прокатке при комнатной температуре (~ 273 K), в результате которой были получены листы высокомарганцевой стали с истинной степенью деформации 0,22.

Из полученных листов были вырезаны образцы для испытаний на одноосное растяжение при комнатной температуре. Образцы были вырезаны вдоль направления прокатки.

В таблице на фигуре 1 представлены результаты механических испытаний листов сталей, полученных по примерам 1-3. Механические испытания на растяжения проводились по ГОСТ 1497-84 при комнатной температуре.

На фигурах 2 - 4 представлена микроструктура листов аустенитной марганцовистой сталей, полученных предложенных способом.

Таким образом, достигнута задача по повышению прочностных характеристик сталей данного класса с содержанием марганца не менее 15% и алюминия не менее 1,5%, при комнатной температуре, с сохранением допустимых значений показателя пластичности, наряду со снижением энергозатрат при осуществлении предложенного способа.

Повышенные показатели прочности и пластичности с сохранением допустимых значений показателя пластичности обеспечиваются формированием в листах аустенитных марганцовистых сталей обширного деформационного двойникования и формирования полос сдвига.

Способ получения листов аустенитных марганцовистых сталей с содержанием марганца более 15 мас.%, алюминия не менее 1,5 мас.% и обладающих TWIP-эффектом, включающий предварительный гомогенизационный отжиг при температуре 1223 - 1423 K, последующую горячую ковку при температуре 1223 – 1423 K, второй гомогенизационный отжиг при температуре 1223 - 1423 K в течение не менее двух часов, последующую горячую прокатку без промежуточного подогрева при температуре 773 – 1423 K, отжиг в течение 1 часа при 1223 - 1423 K и последующую холодную деформацию путем прокатки при температуре 293 K, отличающийся тем, что предварительный гомогенизационный отжиг проводят в течение 1 часа, горячую ковку проводят до суммарной истинной степени деформации в диапазоне 1 - 1,19, горячую прокатку проводят до суммарной истинной деформации в диапазоне 1,6 – 1,99, а после отжига осуществляют холодную деформацию путем прокатки до истинной степени деформации в диапазоне 0,22 – 0,4.
СПОСОБ ПОЛУЧЕНИЯ ЛИСТОВ ВЫСОКОПРОЧНЫХ АУСТЕНИТНЫХ МАРГАНЦОВИСТЫХ СТАЛЕЙ
СПОСОБ ПОЛУЧЕНИЯ ЛИСТОВ ВЫСОКОПРОЧНЫХ АУСТЕНИТНЫХ МАРГАНЦОВИСТЫХ СТАЛЕЙ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 142.
12.12.2018
№218.016.a582

Способ ингибирования нуклеарного фактора каппа в с использованием 5-гидрокисиникотинат 3-(2,2,2-триметилгидразиний) пропионата калия в культуре клеток

Изобретение относится к медицине, в частности к экспериментальной фармакологии, и может быть использовано для ингибирования нуклеарного фактора каппа В (NF-kB). Способ включает добавление бактериального липополисахарида в концентрации 1 мкг/мл к свежевыделенным по стандартной методике на...
Тип: Изобретение
Номер охранного документа: 0002674443
Дата охранного документа: 10.12.2018
19.12.2018
№218.016.a835

Способ упрочнения гидрозакладочного массива

Изобретение относится к способу упрочнения гидрозакладочного массива и может быть использовано при добыче минерального сырья при отработке устойчивых руд камерными системами с гидрозакладкой выработанного пространства. Способ включает гидрозакладку камеры мелкодисперсным материалом без вяжущих....
Тип: Изобретение
Номер охранного документа: 0002675118
Дата охранного документа: 17.12.2018
26.12.2018
№218.016.aa9b

Способ ингибирования нуклеарного фактора каппа в с использованием 5-гидроксиникотината калия в культуре клеток

Изобретение относится к медицине и касается способа ингибирования нуклеарного фактора каппа В в культуре клеток, включающего добавление бактериального липополисахарида в концентрации 1 мкг/мл к свежевыделенным по стандартной методике на градиенте плотности фиколла мононуклеарным клеткам крови...
Тип: Изобретение
Номер охранного документа: 0002675693
Дата охранного документа: 24.12.2018
26.12.2018
№218.016.abd3

Способ получения композиционного сорбента

Изобретение относится к получению композиционного сорбента, который может быть использован для охраны окружающей среды. Проводят синтез гидроксиапатита путём перемешивания суспензии монтмориллонитовой глины с насыщенным раствором гидроксида кальция с последующим введением раствора...
Тип: Изобретение
Номер охранного документа: 0002675866
Дата охранного документа: 25.12.2018
24.01.2019
№219.016.b304

Способ прогнозирования риска развития сочетания миомы матки и аденомиоза с использованием генетических данных

Изобретение относится к области медицинской диагностики, в частности к способу прогнозирования риска развития сочетания миомы матки и аденомиоза. Способ включает выделение ДНК из периферической венозной крови, анализ комбинации полиморфизмов генов rs2241423, rs7766109, rs4953655 и rs9939609....
Тип: Изобретение
Номер охранного документа: 0002677866
Дата охранного документа: 22.01.2019
24.01.2019
№219.016.b322

Высокопрочный медный сплав

Изобретение относится к области металлургии, в частности к медным сплавам, используемым в качестве материала контактной сети высокоскоростного железнодорожного транспорта. Медный сплав содержит, мас.%: магний 0,15-0,35, мишметалл МЦ50Ж3 0,05-0,1, медь - остальное. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002677902
Дата охранного документа: 22.01.2019
31.01.2019
№219.016.b57e

Способ прогнозирования риска развития гипертонической болезни с учетом генетических и средовых факторов

Изобретение относится к области медицины, а именно к прогнозированию риска развития гипертонической болезни у индивидуумов русской национальности, являющихся жителями Центрального Черноземья. Для этого проводят выделение ДНК из периферической венозной крови. Анализ полиморфизмов генов,...
Тип: Изобретение
Номер охранного документа: 0002678441
Дата охранного документа: 29.01.2019
03.02.2019
№219.016.b6bd

Способ профилактики ишемически-реперфузионных повреждений почек карбамилированным дарбэпоэтином в эксперименте

Изобретение относится к медицине и предназначено для профилактики ишемически-реперфузионных повреждений почек в эксперименте. Лабораторным крысам-самцам линии Wistar при моделировании ишемически-реперфузионных повреждений почек путём наложения атравматичных зажимов на почечные ножки на 40 минут...
Тип: Изобретение
Номер охранного документа: 0002678768
Дата охранного документа: 01.02.2019
07.02.2019
№219.016.b7b7

Способ прогнозирования риска развития сочетания миомы матки и гиперпластических процессов эндометрия

Изобретение относится к области медицинской диагностики, в частности к способу прогнозирования риска развития сочетания миомы матки и гиперпластических процессов эндометрия. Способ включает выделение ДНК из периферической венозной крови, анализ комбинации полиморфизмов генов rs4633, rs757647,...
Тип: Изобретение
Номер охранного документа: 0002678970
Дата охранного документа: 05.02.2019
07.02.2019
№219.016.b7ee

Способ коррекции тремора в эксперименте

Изобретение относится к медицине, в частности к экспериментальной фармакологии, и может быть использовано для коррекции тремора в эксперименте. Способ включает однократное ежедневное внутрижелудочное введение крысам корригирующего агента в дозе 10 мг/кг в течение 10 дней, а в последний день...
Тип: Изобретение
Номер охранного документа: 0002678977
Дата охранного документа: 05.02.2019
Показаны записи 21-30 из 40.
19.01.2018
№218.016.061e

Способ получения листов из высокомарганцевой стали

Изобретение относится к области металлургии, а именно к получению листов из высокомарганцевой стали, используемых в областях, требующих хорошей способности к холодной формовке, в частности в автомобилестроении. Для повышения пластичности на уровне 30% и прочности стали осуществляют...
Тип: Изобретение
Номер охранного документа: 0002631069
Дата охранного документа: 18.09.2017
19.01.2018
№218.016.063b

Способ получения листов из хладостойкой высокопрочной аустенитной стали

Изобретение относится к области металлургии и может быть применено для изготовления элементов конструкций различного назначения, включая объекты инфраструктуры, транспорт и судостроение, рассчитанные для применения в условиях Крайнего Севера. Для повышения показателя ударной вязкости при...
Тип: Изобретение
Номер охранного документа: 0002631067
Дата охранного документа: 18.09.2017
19.01.2018
№218.016.064d

Способ деформационно-термической обработки низколегированной стали

Изобретение относится к области металлургии, а именно к деформационно-термической обработке заготовок из низколегированных сталей, предназначенных для эксплуатации в арктических условиях. Для повышения прочностных свойств и ударной вязкости при отрицательных температурах способ включает...
Тип: Изобретение
Номер охранного документа: 0002631068
Дата охранного документа: 18.09.2017
17.02.2018
№218.016.2a3e

Способ деформационно-термической обработки высокомарганцевой стали

Изобретение относится к области металлургии, в частности к обработке металлов давлением, а именно к технологии получения заготовок из стали аустенитного класса, обладающей эффектом TWIP (Twinning Induced Plactisity – пластичности, наведенной двойникованием). Для получения высоких демпфирующих...
Тип: Изобретение
Номер охранного документа: 0002643119
Дата охранного документа: 30.01.2018
17.02.2018
№218.016.2a71

Способ изготовления сварных конструкций из термически неупрочняемых алюминиевых сплавов

Изобретение может быть использовано при изготовлении сварных конструкций из термически неупрочняемых алюминиевых сплавов с применением сварки трением с перемешиванием. Осуществляют равноканальное угловое прессование исходной заготовки по маршруту ВС не менее чем за 8 проходов с комбинированием...
Тип: Изобретение
Номер охранного документа: 0002643029
Дата охранного документа: 29.01.2018
10.05.2018
№218.016.3956

Способ изготовления долговечного инструмента для сварки трением с перемешиванием алюминиевых сплавов

Изобретение относится к области сварки трением. Для получения инструмента для сварки трением с перемешиванием алюминиевых сплавов с высокой технологичностью, высокой надежностью и долговечностью в процессе эксплуатации при температуре вплоть до 500°С исходную заготовку из инструментальной...
Тип: Изобретение
Номер охранного документа: 0002647043
Дата охранного документа: 13.03.2018
09.06.2018
№218.016.5ae5

Жаропрочная сталь мартенситного класса

Изобретение относится к области металлургии, а именно к жаропрочным хромистым сталям мартенситного класса, применяемым для изготовления лопаток турбин энергетических установок с рабочей температурой пара до 650°C. Сталь содержит компоненты в следующем соотношении, мас.%: углерод 0,08–0,12;...
Тип: Изобретение
Номер охранного документа: 0002655496
Дата охранного документа: 28.05.2018
24.01.2019
№219.016.b322

Высокопрочный медный сплав

Изобретение относится к области металлургии, в частности к медным сплавам, используемым в качестве материала контактной сети высокоскоростного железнодорожного транспорта. Медный сплав содержит, мас.%: магний 0,15-0,35, мишметалл МЦ50Ж3 0,05-0,1, медь - остальное. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002677902
Дата охранного документа: 22.01.2019
19.04.2019
№219.017.3421

Способ получения сверхпластичных заготовок из алюминиевых сплавов на основе системы алюминий-магний-скандий

Изобретение предназначено для оптимизации технологического процесса сверхпластической формовки изделий сложной формы. Способ включает отливку слитка, получение из него заготовки равноканальным угловым прессованием с противодавлением. Сокращение продолжительности формообразующих операций,...
Тип: Изобретение
Номер охранного документа: 0002465365
Дата охранного документа: 27.10.2012
20.05.2019
№219.017.5d13

Способ деформационно-термической обработки низколегированных медных сплавов

Изобретение относится к области металлургии, в частности к обработке медных сплавов, предназначенных для контактной сети высокоскоростного железнодорожного транспорта. Способ деформационно-термической обработки включает гомогенизационный отжиг при температуре 700-950°С в течение 1 ч, горячую...
Тип: Изобретение
Номер охранного документа: 0002688005
Дата охранного документа: 17.05.2019
+ добавить свой РИД