×
20.06.2019
219.017.8cf8

Способ регулирования температуры жидкого хладоносителя на выходе из испарителя парокомпрессионной холодильной установки

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к парокомпрессионным холодильным установкам и может быть использовано для регулирования температуры жидкого хладоносителя в различных технологических процессах. Заявлен способ регулирования температуры жидкого хладоносителя на выходе из испарителя парокомпрессионной холодильной установки, который включает измерение температуры хладоносителя на выходе из испарителя и регулирование объемной производительности, при этом фиксируют номинальное значение температуры хладоносителя на выходе из испарителя и диапазон ее регулирования. Для фиксированного значения номинальной температуры и диапазона ее регулирования расчетным путем определяют и фиксируют номинальное значение давления кипения хладагента в испарителе и диапазон его регулирования. Контролируют текущие значения температуры хладоносителя на выходе из испарителя, давления кипения хладагента и объемной производительности компрессора. Сравнивают полученные значения упомянутых температуры хладоносителя и давления кипения хладагента с их фиксированными соответствующими номинальными значениями, при этом номинальное значение температуры хладоносителя на выходе из испарителя поддерживают изменением объемной производительности компрессора в диапазоне номинальных значений давлений хладагента в испарителе, соответствующих номинальному диапазону регулирования температуры хладоносителя на выходе из испарителя с учетом расчетной зависимости Р=ƒ(t), где t - номинальные значения температуры хладоносителя на выходе из испарителя; Р - номинальные значения давления кипения хладагента в испарителе; ƒ - функция, зависящая от типа хладагента, хладоносителя и конструкции испарителя, получаемая в результате расчетов испарителя при различных величинах тепловой нагрузки на него. Технический результат - повышение точности регулирования температуры хладоносителя на выходе из испарителя свыше ±0,5°С. 2 ил.
Реферат Свернуть Развернуть

Изобретение относится к парокомпрессионным холодильным установкам и может быть использовано для регулирования температуры жидкого хладоносителя в различных технологических процессах, например, в системах жидкостного термостатирования космических аппаратов при наземных испытаниях, а также в других областях промышленности (фармацевтической, химической), а также при термостатировании различного электронного и оптического оборудования при их эксплуатации, а также для систем прецизионного кондиционирования серверных залов и ЦОД (центров обработки данных) для телекоммуникационных компаний.

Широко известные способы автоматического регулирования какой-либо величины (расхода, давления и т.п.) в установке заключаются в измерении текущего значения управляемой величины, сравнению ее с заданной, выработки по предварительно установленной зависимости управляющего воздействия на исполнительный блок на регулируемый процесс или объект управления. Эти общие принципы приведены в книге автора Воронова А.А. «Основы теории автоматического управления. Автоматическое регулирование непрерывных линейных систем», М., изд. Энергия, 1980 г., 312 с.

Обычно способы регулирования температуры осуществляются с помощью измерения температуры в определенных точках системы чувствительными элементами, вырабатывающими управляющие сигналы для исполнительных органов, непосредственно воздействующих на тепловые процессы.

Современные системы тепло- и холодоснабжения для поддержания заданной температурой теплоносителя являются, как минимум, двухконтурными, с основным контуром тепло- или холодоснабжения и контуром с потребителем тепла или холода. Поэтому управлять такими системами можно путем одновременного взаимосвязанного воздействия на регулирование температуры теплоносителя в контуре потребителя и регулированием расхода в основном контуре.

Известен способ регулирования температуры теплоносителя в системе терморегулирования космического аппарата (КА) с излучательным радиатором (патент RU 2187083, опубл. 10.08.2002, бюл. №22, МПК: G01K 17/10 (2000.01)), в котором с целью повышения точности регулирования температуры теплоносителя в системе, в начальный период эксплуатации КА при режимах функционирования КА с фиксированной внутренней и внешней тепловой нагрузкой на КА измеряют установившиеся температуры на входе и выходе излучательного радиатора (выполняющего роль холодильной машины), и для каждого значения этой нагрузки задают расход в контуре излучательного радиатора, определенный по предварительно рассчитанной формуле, связывающей характеристики радиатора, диапазон регулирования температуры и тепловую нагрузку на систему и обеспечивающий необходимую температуру хладоносителя в контуре потребителя (контур охлаждения жилых и приборных отсеков КА). Фактически, таким образом, проводят тарировку положения исполнительного механизма регулятора температуры в контуре излучательного радиатора в зависимости от тепловой нагрузки на систему. После чего в дальнейшем полете для каждого значения тепловой нагрузки задают и выдерживают соответствующее значение расхода в контуре излучательного радиатора (аналог холодильной машины) путем установки экипажем или по командной радиолинии из центра управления полетом исполнительного механизма регулятора расхода в соответствующее положение. Это обеспечивает достаточную для КА точность регулирования температуры в жилых (±3)°С и приборных (±5)°С отсеках. При этом экономится ресурс работы регулятора расхода, поскольку он значительное время полета находится в фиксированных положениях, при этом ресурс его исполнительного механизма не вырабатывается.

Данный способ регулирования был использован в системе терморегулирования долговременной орбитальной станции «Мир», которая поддерживала температуру в жилых отсеках в диапазоне (+18÷+25)°С. Именно такой широкий диапазон регулирования является недостатком данного способа, при этом способ является дискретным, т.е. для каждого значения тепловой нагрузки задается свое соотношение расходов.

Известен способ автоматического регулирования температуры в аппарате с обогревающей рубашкой по патенту RU 2167449, опубл. 20.05.2001, бюл. №14, МПК: G05D 23/19 (2000.01). Способ заключается в том, что по количеству потребляемой электроэнергии вычисляют эквивалентную мощность источника тепла, принимая ее в качестве заданной величины, измеряют температуры массы вещества внутри аппарата и жидкого теплоносителя в обогреваемой рубашке, внутренних и наружных поверхностей всех стенок аппарата, температуру воздуха вокруг аппарата, определяют коэффициенты теплоотдачи поверхностей стенок аппарата, вычисляют тепловые потоки и фактические значения тепловой мощности, сопоставляют с заданной величиной мощности, сопоставляют значение текущей температуры с заданной величиной температуры, а сигналы, пропорциональные разностям фактических величин эквивалентной мощности и температуры вещества и их заданных значений, подают на регуляторы мощности и температуры, вырабатывающие сигналы, воздействующие на источник тепла по заданным законам. Недостатками данного способа являются трудность его практической реализации вследствие сложных математических вычислений, при этом принимаются определенные расчетные допущения, снижающие достоверность полученных расчетным путем данных, которые, в свою очередь, снижают точность регулирования температуры. Поэтому этот способ регулирования можно использовать только в высокотемпературных процессах, где даже точность ±10°С является хорошим результатом.

Известен также патент RU №2325591, опубл. 27.05.2008, бюл. №15, МПК: F24D 19/10 (2006.01) под названием «Способ автоматического регулирования расхода тепла в тепловой сети при двухконтурной системе отопления», в котором, требуемая температура в тепловой сети при двухконтурной системе отопления обеспечивается путем поддержания заданных соотношений между давлениями и температурами в прямом и обратном трубопроводах сети. При этом сигналы с датчиков давления и температур подаются в микропроцессорные контроллеры, а изменение расхода теплоносителя и его регулирование осуществляется побудителями расхода с частотными преобразователями.

Недостаток способа - невысокая точность поддержания температуры (±3÷4)°С, приемлемая для систем тепло-водоснабжения с положительными температурами теплоносителей в гидравлических контурах, но недостаточная технологических процессов, требующих более высокой точности поддержания температуры на входе в охлаждаемое оборудование.

Наиболее близким к предлагаемому техническому решению является способ регулирования температуры хладоносителя в холодильной установке по а.с. СССР №397721, опубл. 17.09.1973, бюл. №37, МПК: F25B 49/00, выбранный за прототип.

Способ заключается в том, что в холодильной установке с испарителем и потребителем, поддерживают температуру хладоносителя на выходе из испарителя изменением расхода хладоносителя, циркулирующего через испаритель.

Недостатком данного способа является низкая энергоэффективность и его недостаточная точность поддержания температуры в охлаждаемом объекте, поскольку производительность холодильного компрессора регулируется только путем его пуска и остановки по сигналу двухпозиционного реле температуры, установленного на выходе хладоносителя из испарителя. А частые включения холодильного компрессора вследствие высоких значений пускового тока, в 1,5-2 раза превышающего рабочий ток компрессора, ведет к повышенному энергопотреблению при использовании этого способа регулирования. Что касается точности регулирования температуры хладоносителя, то способ-прототип отличается достаточной инерционностью и поэтому может применяться, когда требуется поддерживать температуру охлаждаемого объекта в достаточно широком диапазоне регулирования температуры, например, +5±2°С. Включение происходит, когда температура охлаждаемого объекта достигает верхнего предела срабатывания, выключение, соответственно, когда эта температура достигает нижнего предела, что не позволяет получать точность регулирования температуры хладоносителя на выходе из испарителя с точностью до ±0,5°С, которая нужна для термостатирования оптических и электронных устройств в различных условиях, а также нужна при термостатировании приборного оборудования летательных аппаратов и для прецизионного кондиционирования центров обработки данных (ЦОД) телекоммуникационных компаний.

Использование предлагаемого способа регулирования температуры жидкого хладоносителя позволяет получить точность регулирования температуры хладоносителя на выходе из испарителя с точностью 0,5°С и выше.

В настоящее время возрастают требования к современным системам термостатирования оборудования для космических аппаратов, оптикоэлектронных устройств, системам прецизионного кондиционирования серверных залов и ЦОД телекоммуникационных компаний в части точности поддержания температуры жидких хладоносителей, при этом в качестве хладоносителей для таких систем рекомендуется использовать воду и нетоксичные водные растворы. Работа систем термостатирования с использованием таких хладоносителей всегда связаны с опасностью их замерзания внутри испарителя при работе вблизи температуры их замерзания с последующим разрушением теплообменной поверхности испарителя, поскольку при снижении температуры кипения хладагента в испарителе на 3÷5°С ниже температуры его замерзания, хладоноситель начинает примерзать к стенкам труб и если этот процесс оперативно не остановить, теплообменная батарея замерзнет и потеряет герметичность, поскольку превращаясь в лед вода и водные растворы увеличиваются в объеме.

Поэтому при работе с системами прецизионного термостатирования задача повышения точности поддержания температуры хладоносителя в очень узком температурном диапазоне имеет два аспекта, во-первых обеспечить требования разработчиков к точности поддержания температуры, а во-вторых, при работе с хладоносителями на основе воды и водных растворов обеспечивая до ±0,5°С, можно надежно контролировать охлаждение хладоносителя вблизи его температуры замерзания и гарантированно не допускать намерзания льда внутри испарителя холодильной установки.

Задачей изобретения является повышение точности регулирования температуры хладоносителя на выходе из испарителя путем измерения давления кипения хладагента и поддержание его в заданном расчетом диапазоне, соответствующем требуемому диапазону поддержания температуры путем соответствующего изменения объемной производительности компрессора холодильной установки.

Техническим результатом изобретения является повышение точности регулирования температуры хладоносителя на выходе из испарителя свыше ±0,5°С, что позволяет получать непосредственно в испарителях парокомпрессионных холодильных установок хладоноситель с заданной стабильной температурой для систем жидкостного термостатирования космических аппаратов при наземных испытаниях, а также поддержание заданного температурного режима различного электронного и оптического оборудования при их эксплуатации или наземной отработке.

Технический результат достигается тем, что в способе регулирования температуры жидкого хладоносителя на выходе из испарителя парокомпрессионной холодильной установки, включающим измерение температуры хладоносителя на выходе из испарителя и регулирование объемной производительности, при этом фиксируют номинальное значение температуры хладоносителя на выходе из испарителя и диапазон ее регулирования, для фиксированного значения номинальной температуры и диапазона ее регулирования расчетным путем определяют и фиксируют номинальное значение давления кипения хладагента в испарителе и диапазон его регулирования, контролируют текущие значения температуры хладоносителя на выходе из испарителя, давления кипения хладагента и объемной производительности компрессора, сравнивают полученные значения упомянутых температуры хладоносителя и давления кипения хладагента с их фиксированными соответствующими номинальными значениями, при этом номинальное значение температуры хладоносителя на выходе из испарителя поддерживают изменением объемной производительности компрессора в диапазоне номинальных значений давлений хладагента в испарителе, соответствующих фиксированному номинальному диапазону регулирования температуры хладоносителя на выходе из испарителя с учетом расчетной зависимости:

где:

tвых.ном. - номинальные температуры хладоносителя на выходе из испарителя;

Ркип.ном. - номинальные значения давления кипения хладагента в испарителе;

ƒ - функция, зависящая от типа хладагента, хладоносителя и конструкции испарителя, получаемая в результате расчетов испарителя при различных величинах тепловой нагрузки на него.

Сущность изобретения заключается в следующем.

Способ позволяет регулировать процесс теплообмена внутри испарительного теплообменника парокомпрессионной холодильной установки, предназначенного для получения в испарителе хладоносителя заданной температуры с точностью выше 0,5°С для термостатирования оборудования. Для этого используют расчетную зависимость (1) теплообмена в испарителе, связывающую температуру хладоносителя на выходе из испарителя с давлением кипения хладагента в испарителе, контролируя эти параметры при работе холодильной установки. Таким образом, температуру кипения хладагента в испарителе, обеспечивающую требуемую точность поддержания температуры хладоносителя на выходе из испарителя, регулируют с помощью электронного контроллера, управляя объемной производительностью компрессора в соответствии с расчетной зависимостью (1) и измеренными значением температуры хладоносителя на выходе из испарителя и давлением кипения хладагента в испарителе. При отклонении температуры хладоносителя на выходе из испарителя от номинальной, изменяя объемную производительность компрессора предложенный способ регулирования позволяет изменить температуру кипения хладагента в испарителе - вернуть температуру хладагента на выходе из испарителя к своему номинальному значению. Реализация предложенного способа на изготовленной установке наземного термостатирования доказала возможность получения хладоносителя с заданной температурой и точностью поддержания не менее ±0,5°С, что гарантированно исключит замерзание хладоносителей на основе воды и водных растворов внутри испарителя при работе с температурами вблизи точки их замерзания.

Реализацию предложенного способа регулирования температуры жидкого хладоносителя на выходе из испарителя парокомпрессионной холодильной установки рассмотрим на примере установки, схема которой показана на фиг. 1, где обозначено:

1 - контур хладагента;

2 - компрессор;

3 - регулятор объемной производительности компрессора (частотный привод);

4 - конденсатор воздушного охлаждения;

5 - расширительное устройство;

6 - испаритель;

7 - полость хладагента;

8 - полость хладоносителя;

9 - датчик давления хладагента в испарителе;

10 - электронный контроллер;

11 - контур хладоносителя;

12 - насос;

13 - охлаждаемый объект;

14 - датчик температуры.

На фиг. 2 представлен график расчетной зависимости, введенный в электронный контроллер, связывающий давление кипения хладагента в испарителе с температурой хладоносителя на выходе из испарителя.

Парокомпрессорная холодильная установка содержит контур хладагента 1 и контур хладоносителя 11, связанные в тепловом отношении испарителем 6. В контуре хладагента 1 установлен датчик давления 9, в контуре хладоносителя датчик температуры 14 соответственно, электрически связанные с электронным контроллером 10. Контур хладагента 1 состоит из последовательно соединенных компрессора 2 с регулятором объемной производительности 3, выполненным, например, в виде частотного привода, который электрически связан с электронным контроллером 10, конденсатора воздушного охлаждения 4, расширительного устройства 5, полости хладагента 7 испарителя 6. Контур хладоносителя 11 включает в себя последовательно соединенные полость хладоносителя 8 испарителя 6, насос 12, охлаждаемый объект 13.

Способ регулирования температуры жидкого хладоносителя на выходе из испарителя парокомпрессионной холодильной установки осуществляется следующим образом. Предположим, что холодильная установка работает в стационарном режиме, при котором температура хладоносителя на выходе из испарителя 6 составляет +1,5°С. Номинальный диапазон значений температур хладоносителя на выходе из полости хладоносителя 8 испарителя 6, введенный в электронный контроллер 10, соответствует номинальной температуре хладоносителя +1,5°С±0,5°С на выходе из испарителя. Номинальной температуре хладоносителя +1,5°С на выходе из испарителя 6 соответствует температура кипения хладагента в испарителе минус 2°С и давление кипения хладагента 4,8 бар в полости хладагента 7 испарителя 6. Номинальный диапазон температуры хладоносителя Δtвых.ном., с которой он должна поступать к потребителю 13 составляет +1,5±0,5°С, т.е. +1÷+2°С. Тепловой расчет конкретного испарителя 6 при различных величинах тепловой нагрузки на хладагенте R507A (ГОСТ Р ИСО 17584-2015) по программе производителя испарителя, показывает, что температуры кипения хладагента для заданного температурного диапазона хладоносителя составляет -1÷-3°С. По термодинамическим таблицам хладагентов определяют давление кипения хладагента R507A (ГОСТ Р ИСО 17584-2015) в испарителе 6: при температуре кипения хладагента минус 1°С давление кипения составляет 5,0 бар, а при температуре кипения минус 3°С давление кипения должно быть 4,6 бар, т.е. поддерживая изменением объемной производительности компрессора 2 в полости 7 испарителя 6 давление хладагента в диапазоне от 5,0 бар до 4,6 бар холодильная установка будет гарантированно поддерживать температуру хладоносителя на выходе из полости хладоносителя 8 испарителя 6 в заданном номинальном диапазоне +1÷+2°С. На фиг. 2 представлена расчетная зависимость полученная для конкретного испарителя 6, связывающая необходимый номинальный диапазон температур хладоносителя на выходе из полости 8 испарителя Δtвых.ном. с номинальным давлением кипения Ркип.ном. хладагента в полости 7 испарителя 6 и соответствующими этому диапазону температурами кипения хладагента tкип.. Изменение объемной производительности компрессора 2 с регулятором производительности 3 в виде частотного привода осуществляется следующим образом.

При работе холодильной установки фиксируют номинальную температуру хладоносителя на выходе из испарителя 6 Δtвых.ном=1,5°С и диапазон ее регулирования ±0,5°С. Для указанной выше номинальной температуры и диапазона ее регулирования расчетным путем определяют и фиксируют номинальное давление кипения хладагента в испарителе и диапазон его регулирования 4,8±0,2 бар. Таким образом, получают расчетное соотношение между значениями температурой хладоносителя tвых.ном на выходе из испарителя 6 и значениями давления кипения Ркип.ном. хладагента в полости 7 испарителя 6. Это соотношение вводят в электронный контроллер 10, с помощью которого осуществляют регулирование температуры жидкого хладоносителя на выходе из испарителя. В процессе работы холодильной установки контролируют текущие значения температур хладоносителя tвых.ном. на выходе из полости 8 испарителя 6 с помощью датчика температуры 14 и давления кипения хладагента Ркип.ном. в полости 7 испарителя 6 с помощью датчика давления 9. Полученные текущие значения указанных выше параметров сравнивают с фиксированными значением номинальной температуры хладоносителя +1,5°С на выходе из полости 8 испарителя 6 и давления кипения 4,8 бар хладагента в полости 7 испарителя 6, заложенными в память электронного контроллера 10.

При повышении температуры температуры хладоносителя tвых.ном. на выходе из полости 8 испарителя 6, фиксируемого датчиком температуры 14 например, на 0,5°С относительно номинальной температуры в контроллере +1,5°С, давление кипения хладагента в полости 7 испарителя 6 будет уменьшаться относительно номинального давления кипения 4,8 бар и достигнет значения 4,6 бар. С помощью электронного контроллера 10 формируют управляющий сигнал на регулятор объемной производительности 3 (частотный привод) компрессора 2, который увеличивает объемную производительность компрессора за счет увеличения частоты вращения его коленчатого вала. Тем самым, в полость 7 испарителя 6 поступает большее количество хладагента, что ведет к росту его давления кипения Ркип.ном., измеряемого датчиком давления 9, и, соответственно, к возврату температуры кипения к значению tкип.=-2°С, соответствующей номинальной температуре температуры хладоносителя на выходе из испарителя +1,5°С.

Если с помощью датчика температуры 14 фиксируют понижение температуры хладоносителя tвых.ном. на выходе из полости 8 испарителя 6, например, на 0,5°С относительно номинальной температуры +1,5°С и опуститься до +1°С (при этом давление кипения хладагента в полости 7 испарителя 6 будет увеличиваться относительно номинального значения 4,8 бар и достигнет значения 5,0 бар), то с помощью электронного контроллера 10 формируют управляющий сигнал на регулятор объемной производительности 3 (частотный привод) компрессора 2, который уменьшает объемную производительность компрессора за счет уменьшения частоты вращения его коленчатого вала. Тем самым, в полость 7 испарителя 6 поступает меньшее количество хладагента, что ведет к понижению его давления кипения Ркип.ном., измеряемого датчиком давления 9 до значения 4,8 бар, и, соответственно, к возврату температуры кипения к значению tкип.=-2°С, соответствующей номинальной температуре хладоносителя на выходе из испарителя +1,5°С.

Таким образом, осуществляется регулирование температуры жидкого хладоносителя в испарителе парокомпрессионной холодильной машины, что позволяет повысить точность термостатирования различных объектов как при наземной отработке, так и при натурных испытаниях.


Способ регулирования температуры жидкого хладоносителя на выходе из испарителя парокомпрессионной холодильной установки
Способ регулирования температуры жидкого хладоносителя на выходе из испарителя парокомпрессионной холодильной установки
Источник поступления информации: Роспатент

Показаны записи 1-10 из 112.
19.01.2018
№218.016.00e2

Способ испытания пневмогидравлической системы

Изобретение относится к ракетно-космической технике и может быть применено в различных видах техники, где используется пневмогидравлическая система. Заявленный способ испытания пневмогидравлической системы включает подачу контрольного газа в пневмогидравлическую систему, контроль испытательного...
Тип: Изобретение
Номер охранного документа: 0002629697
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.0105

Способ наблюдения наземных объектов с движущегося по околокруговой орбите космического аппарата

Способ наблюдения наземных объектов с движущегося по околокруговой орбите космического аппарата (КА) относится к области дистанционного мониторинга природных и техногенных процессов. Способ наблюдения наземных объектов с движущегося по околокруговой орбите КА включает определение текущих...
Тип: Изобретение
Номер охранного документа: 0002629694
Дата охранного документа: 31.08.2017
20.01.2018
№218.016.1dc2

Способ контроля текущего состояния панели солнечной батареи космического аппарата

Изобретение относится к космической технике. Способ контроля текущего состояния панели солнечной батареи (СБ) космического аппарата (КА) включает разворот СБ относительно направления на Солнце, измерение значений тока от СБ, сравнение измеренных значений тока с задаваемыми значениями и контроль...
Тип: Изобретение
Номер охранного документа: 0002640943
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1dd9

Ракетный разгонный блок

Изобретение относится к ракетно-космической технике. Ракетный разгонный блок содержит криогенный бак окислителя с дополнительными придонными перегородками, заборным устройством, штангой датчика уровня криогенного топлива, маршевый двигатель. Криогенный бак окислителя снабжен каплеотражателем,...
Тип: Изобретение
Номер охранного документа: 0002640941
Дата охранного документа: 12.01.2018
13.02.2018
№218.016.22c3

Способ определения уровня диэлектрического вещества

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, используемых в качестве датчиков физических процессов (температуры, давления, уровня жидких и сыпучих сред и др.) на промышленных объектах, транспортных средствах, а также в...
Тип: Изобретение
Номер охранного документа: 0002642166
Дата охранного документа: 24.01.2018
13.02.2018
№218.016.2438

Способ определения положения фронтальной части ледника с находящегося на околокруговой орбите космического аппарата

Предложенный способ относится к области дистанционного мониторинга природных процессов, в частности роста и движения ледников. Способ определения положения фронтальной части ледника с находящегося на околокруговой орбите КА включает определение текущих параметров орбиты, съемку с КА ледника и...
Тип: Изобретение
Номер охранного документа: 0002642544
Дата охранного документа: 25.01.2018
17.02.2018
№218.016.2aa2

Электронасосный агрегат

Изобретение относится к машиностроению и может быть использовано в системах терморегулирования изделий авиационной и ракетной техники. Электронасосный агрегат содержит корпус (1) и установленные в нем электродвигатель (4) и двухопорный полый вал (5) насоса с по крайней мере одним рабочим...
Тип: Изобретение
Номер охранного документа: 0002642877
Дата охранного документа: 29.01.2018
17.02.2018
№218.016.2bb6

Способ определения параметров движения наблюдаемого с космического аппарата ледника

Изобретение относится к области дистанционного мониторинга опасных природных процессов и может быть использовано для определения параметров движения фронтальной части ледника. Сущность: с космического аппарата выполняют съемку ледника и неподвижных характерных наземных точек в моменты, взятые...
Тип: Изобретение
Номер охранного документа: 0002643224
Дата охранного документа: 31.01.2018
10.05.2018
№218.016.3b52

Протяженная рукоятка многофункционального инструмента для использования в условиях невесомости

Изобретение относится к космической технике, в частности к средствам фиксации в условиях невесомости элементов предметной среды, особенно инструментов. Протяженная рукоятка многофункционального инструмента для использования в условиях невесомости выполнена с продольным сквозным пазом. В пазу...
Тип: Изобретение
Номер охранного документа: 0002647427
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.3c0c

Способ управления стационарным плазменным двигателем

Изобретение относится к исследованию и эксплуатации электроракетных стационарных плазменных двигателей. В способе, включающем запуск двигателя, сравнение измеренных значений разрядного тока с верхним допустимым его значением, и в случае превышения предельного значения выключение двигателя с...
Тип: Изобретение
Номер охранного документа: 0002647749
Дата охранного документа: 19.03.2018
Показаны записи 1-10 из 16.
10.01.2013
№216.012.191a

Устройство для плавления снега теплом холодильной установки

Изобретение относится к устройствам для плавления снега. Устройство для плавления выполнено в виде теплоизолированного бункера, предварительно заполненного водой, в нижней части которого установлена нагревательная секция, сверху которой, но ниже уровня воды, установлена съемная защитная...
Тип: Изобретение
Номер охранного документа: 0002471918
Дата охранного документа: 10.01.2013
27.02.2013
№216.012.2bfb

Способ оттаивания воздухоохладителя холодильной установки

Способ оттаивания включает периодическую подачу тепла во внутренний объем воздухоохладителя, создание и измерение в межреберном пространстве воздухоохладителя направленного сквозного светового потока. В процессе пусконаладочных работ после установки воздухоохладителя в холодильной камере...
Тип: Изобретение
Номер охранного документа: 0002476786
Дата охранного документа: 27.02.2013
10.06.2013
№216.012.4980

Льдоаккумулятор для производства ледяной воды

Льдоаккумулятор для производства ледяной воды включает теплоизолированную емкость с водой, которая гидравлически связана с потребителями ледяной воды, внутри емкости установлена основная теплообменная секция холодильной установки и дополнительная теплообменная секция для охлаждения воды внешним...
Тип: Изобретение
Номер охранного документа: 0002484396
Дата охранного документа: 10.06.2013
10.10.2013
№216.012.725c

Система термостатирования оборудования космического объекта

Изобретение относится к системам термостатирования (СТС) энергоемкого оборудования космических объектов (КО). СТС содержит две двухполостные жидкостные термоплаты (22), на которые устанавливается оборудование. Термоплаты размещены в приборной зоне обитаемого отсека (1). Внешний радиатор (12)...
Тип: Изобретение
Номер охранного документа: 0002494933
Дата охранного документа: 10.10.2013
20.04.2015
№216.013.41b2

Система терморегулирования стыковочного модуля обитаемой орбитальной станции

Изобретение предназначено для терморегулирования модулей долговременных орбитальных станций. Система терморегулирования содержит средства теплопереноса, электронагреватели со средствами управления и датчиковую аппаратуру на внутренней поверхности корпуса модуля. Средствами теплопереноса служат...
Тип: Изобретение
Номер охранного документа: 0002548316
Дата охранного документа: 20.04.2015
20.01.2016
№216.013.9fd6

Способ удаления инея в воздушном испарителе

Способ удаления инея в воздушном испарителе заключается в периодическом воздействии на иней направленным электромагнитным излучением в инфракрасном диапазоне частот, энергии которого достаточно для расплавления инея. Границы сечения направленного инфракрасного потока не выходят за периметр...
Тип: Изобретение
Номер охранного документа: 0002572560
Дата охранного документа: 20.01.2016
20.03.2016
№216.014.caec

Способ получения ледяной шуги

Изобретение относится к способам получения ледяной шуги с использованием холодильных установок и может быть реализовано в рыбодобывающей, молочной и птицеперерабатывающей отраслях промышленности. По сравнению с аналогами способ позволяет получать непрерывный поток ледяной шуги с равномерными...
Тип: Изобретение
Номер охранного документа: 0002577462
Дата охранного документа: 20.03.2016
10.04.2016
№216.015.2caa

Электропривод постоянного тока

Изобретение относится к области электротехники и может быть использовано в системах широкого класса изделий в качестве электропривода постоянного тока при автономном источнике электроэнергии ограниченной мощности, например, в служебных системах космических аппаратов. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002579153
Дата охранного документа: 10.04.2016
19.01.2018
№218.016.09ff

Способ воздушного охлаждения тепловыделяющей аппаратуры, расположенной снаружи летательных аппаратов, и система для его реализации

Изобретения относятся к авиационной технике. Способ воздушного охлаждения тепловыделяющей аппаратуры, расположенной снаружи летательных аппаратов, включает тепловой контакт между тепловыделяющими поверхностями аппаратуры и воздушными термоплатами (2), движение атмосферного воздуха через...
Тип: Изобретение
Номер охранного документа: 0002632057
Дата охранного документа: 02.10.2017
16.06.2018
№218.016.6399

Способ воздушного термостатирования отсеков космического аппарата при наземных испытаниях и устройство для его осуществления

Группа изобретений относится к оборудованию для наземных испытаний объектов ракетно-космической техники. Способ воздушного термостатирования отсеков космического аппарата (КА) включает нагнетание воздуха из окружающей среды, его охлаждение, осушку, нагревание и подачу в термостатируемый отсек...
Тип: Изобретение
Номер охранного документа: 0002657603
Дата охранного документа: 14.06.2018
+ добавить свой РИД