×
20.06.2019
219.017.8ccc

Результат интеллектуальной деятельности: Способ получения отливок из дисперсно-упрочненных сплавов на основе алюминия или магния

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии легких сплавов, в частности к способам получения литьем сплавов на основе алюминия и магния. Способ получения отливок из дисперсно-упрочненных сплавов на основе алюминия или магния включает предварительный нагрев герметичной цилиндрической камеры, на боковых стенках и верхней крышке которой выполнено теплозащитное покрытие, погружение нижнего конца патрубка, установленного в днище камеры, в тигель плавильной печи с расплавом, создание вакуума для заполнения герметичной камеры расплавом, перемещение герметичной камеры с расплавом к литейной форме, введение нижнего конца патрубка герметичной камеры в металлоприемник литейной формы и заливку в нее расплава путем подачи под давлением инертного газа в герметичную камеру, при этом предварительный нагрев герметичной камеры осуществляют до температуры не ниже (450÷500)°С посредством кондуктивного и лучистого теплообмена с расплавом металла в тигле плавильной печи, нагретым до температуры не ниже 700°С, при этом патрубок герметичной камеры выполняют из титанового сплава с покрытием из нитрида титана на внешних боковых стенках, в процессе заполнения герметичной камеры расплавом в нее непрерывно подают порошок тугоплавкого соединения с одновременным механическим перемешиванием, а после заполнения герметичной камеры расплавом его дополнительно перемешивают в течение не менее 60 с. Изобретение направлено на повышение качества отливок из упрочненных алюминиевых и магниевых сплавов и снижение энергозатрат при их получении. 4 ил., 1 пр.

Изобретение относится к области металлургии легких сплавов, в частности к способам получения и литья сплавов на основе алюминия и магния с повышенной прочностью за счет введения в них упрочняющих дисперсных тугоплавких модификаторов. Дисперсно-упрочненные легкие сплавы используются для изготовления методом литья под давлением отдельных деталей, обладающих высокими эксплуатационными характеристиками при малом весе, в ряде отраслей промышленности (ракетно-космическая, авиационная, автомобильная и др.).

Одним из перспективных направлений повышения прочностных характеристик сплавов на основе алюминия и магния является введение в их состав дисперсных добавок из тугоплавких соединений (оксидов, карбидов, боридов различных металлов).

Известны способы получения упрочненных сплавов на основе алюминия и магния, основанные на введении в расплав металла мелкодисперсных порошков или брикетов из высокопрочных керамических частиц (модификаторов). Для обеспечения равномерности распределения частиц модификатора в объеме расплава, повышающей прочностные характеристики сплавов, проводят активацию расплава металла механическим перемешиванием, воздействием ультразвука или электромагнитного поля [1-3].

Конечной целью технологического процесса является получение конкретных изделий путем заливки расплава в литейные формы. При традиционно используемых способах заливки сплавов из тигля плавильной печи с помощью ковшов или дозаторов возможно окисление химически активных алюминиевых и магниевых сплавов при контакте с окружающим воздухом. Для получения высококачественных изделий используют различные способы заливки расплава металла в литейные формы.

Известен способ литья под действием перепада давления [4], в котором газопроницаемая форма, содержащая гофрированную трубку для заполнения металла, уплотненно соединенную с нижним концом литникового канала, погружается в расположенную внизу ванну расплава для заполнения множества полостей формы во время литья. Когда полости формы заполняются жидким металлом из расположенной внизу ванны расплава, трубка для заполнения металла закрывается в гофрированном положении во время ее погружения в ванну расплава для исключения утечки жидкого металла при последующем удалении ее из ванны расплава.

Известен способ литья вакуумным всасыванием химически активных металлов [5], который включает размещение газопроницаемой формы со стояками и металлопроводом в герметичной камере, подачу металла в тигель с кожухом, заполненным инертным газом, погружение нижнего конца метаталлопровода в тигель с жидким металлом через отверстие в крышке кожуха, создание вакуума в герметичной камере для заполнения формы расплавом металла. При этом с целью предотвращения поступления воздуха в кожух, давление инертного газа в нем поддерживается выше атмосферного.

Наиболее близким к заявляемому способу является способ, реализуемый с помощью устройства для заливки жидкого металла в литейные формы [6]. Способ включает предварительный нагрев герметичной камеры электроспиралью, подключенной к источнику напряжения, заполнение камеры расплавом металла из тигля плавильной печи через патрубок путем вакуумирования камеры. После заполнения камеры патрубок выводят из тигля и вводят в литейную форму, проводят заливку расплава металла в форму путем подачи в камеру инертного газа под давлением.

К недостаткам способа относятся большие затраты электроэнергии для нагрева и поддержания высокой температуры камеры. Кроме того, упрочнение алюминиевого и магниевого сплава предварительно осуществляют в тигле плавильной печи, которая, как правило, имеет большой объем. В процессе многократного ввода расплава в камеру и его заливки в литейные формы возможно гравитационое расслоение упрочняющих частиц в матрице расплава, находящихся длительное время в тигле. Это может привести к ухудшению прочностных характеристик сплава.

Техническим результатом настоящего изобретения является повышение качества и снижение энергозатрат при получении отливок конкретных изделий из упрочненных алюминиевых и магниевых сплавов.

Для достижения указанного технического результата разработан способ получения отливок из дисперсно-упрочненных сплавов на основе алюминия или магния, включающий предварительный нагрев герметичной цилиндрической камеры, на боковых стенках и верхней крышке которой выполнено теплозащитное покрытие, погружение нижнего конца патрубка, установленного в днище камеры, в тигель плавильной печи с расплавом, создание вакуума для заполнения герметичной камеры расплавом, перемещение герметичной камеры с расплавом к литейной форме, введение нижнего конца патрубка герметичной камеры в металлоприемник литейной формы и заливку в нее расплава путем подачи под давлением инертного газа в герметичную камеру. Предварительный нагрев герметичной камеры осуществляют до температуры не ниже (450÷500)°С посредством кондуктивного и лучистого теплообмена с расплавом металла в тигеле плавильной печи, нагретого до температуры не ниже 700°С. Патрубок герметичной камеры выполняют из титанового сплава с покрытием из нитрида титана на внешних боковых стенках. В процессе заполнения герметичной камеры расплавом в нее непрерывно подают порошок тугоплавкого соединения с одновременным механическим перемешиванием, а после заполнения герметичной камеры расплавом его дополнительно перемешивают в течение не менее 60 с.

Положительный эффект изобретения обусловлен следующими факторами.

1. Выполнение теплозащитного покрытия на боковых стенках и верхней крышке герметичной камеры позволяет снизить потери тепла в процессе ее предварительного нагрева, заполнения расплавом металла и заливки расплава в литейные формы. При этом отсутствие теплозащитного покрытия на днище камеры обеспечивает интенсивный нагрев камеры за счет лучистого теплообмена с расплавом металла в тигле плавильной печи (Фиг. 1).

2. Предварительный нагрев герметичной камеры предотвращает остывание и кристаллизацию расплава в процессе заполнения камеры. Температура предварительного нагрева (не ниже (450÷500)°С) определена экспериментально и обеспечивает сохранение металла в камере в расплавленном состоянии с учетом значений температуры плавления алюминия (658°С) и магния (651°С) и температуры расплава металла в тигле плавильной печи (не ниже 700°С).

3. Выполнение патрубка из титанового сплава с нанесенным на его внутренние стенки покрытием из нитрида титана обеспечивает несмачиваемость патрубка расплавленным металлом, что повышает надежность работы запорного элемента (шарового крана).

4. Температура нагрева расплава металла в тигле плавильной печи (не ниже 700°С) определена экспериментально и предотвращает остывание расплава ниже температуры плавления в герметичной камере в процессе ее заполнения.

5. Упрочнение алюминиевых и магниевых сплавов непосредственно в герметичной камере в процессе заполнения камеры расплавом металла путем введения в камеру порошка тугоплавкого соединения с одновременным механическим перемешиванием позволяет очистить расплав металла от газовых включений, эффективно использовать модифицирующие тугоплавкие частицы порошка, обеспечить условия для зарождения большого числа равномерно расположенных центров (зародышей) кристаллизации, что позволяет, в конечном счете, получить в отливке мелкозернистую структуру.

6. Дополнительное перемешивание расплава металла после заполнения герметичной камеры позволяет повысить равномерность распределения упрочняющих частиц в объеме расплава. Время дополнительного перемешивания (не менее 60 с.) определено экспериментально с учетом результатов металлографического анализа полученных образцов упрочненных сплавов.

Сущность изобретения поясняется чертежами.

Фиг. 1. - Схема устройства для реализации способа (стадия заполнения камеры расплавом металла).

Фиг. 2. - Схема устройства для реализации способа (стадия заполнения литейной формы).

Фиг. 3. - Общий вид устройства для реализации способа.

Фиг. 4. - Структура полученного сплава: без упрочнения (Фиг. 4а) и упрочненного сплава (Фиг. 4б).

Пример реализации способа

Сущность заявляемого способа поясняется схемами (Фиг. 1, Фиг. 2). В днище герметичной цилиндрической камеры 1 установлен патрубок 2 с шаровым краном 3. На боковых стенках и верхней крышке камеры 1 выполнено теплозащитное покрытие 4. На оси симметрии камеры 1 установлен вращающийся смеситель 5 с электроприводом 6. В верхней части камеры 1 расположены штуцер 7 для ввода порошка тугоплавких соединений, штуцер 8 с вентилем 9 для подключения камеры 1 к системе вакуумирования и штуцер 10 с вентилем 11 для подачи в камеру 1 инертного газа.

Заявляемый способ реализуют следующим образом. Герметичную камеру перемещают к тиглю 12 плавильной печи с расплавом металла 13, погружают нижний конец патрубка 2 в расплав металла 13 (Фиг. 1) и проводят предварительный нагрев камеры 1 за счет кондуктивного и лучистого теплообмена камеры 1 с расплавом металла 13, нагретого до температуры не ниже 700°С. Нагрев камеры 1 контролируют размещенным в ней датчиком температуры (на Фиг. 1 не показан). После нагрева камеры 1 до температуры не ниже (450÷500)°С открывают шаровой кран 3 и вентиль 9 при закрытом вентиле 11. За счет создаваемого в камере 1 вакуума происходит ее заполнение расплавом металла через патрубок 2. Одновременно включают электропровод 6 вращающегося смесителя 5 и подают в камеру 1 порошок тугоплавких соединений через штуцер 7. В процессе заполнения камеры 1 расплавом металла проводят равномерное перемешивание смесителем 5 расплава с порошком тугоплавких соединений, что обеспечивает упрочнение алюминиевого или магниевого сплава. После заполнения герметичной цилиндрической камеры 1 расплавом металла до заданного уровня, контролируемого датчиком уровня расплава (на Фиг. 1 не показан), шаровой кран 3 и вентиль 9 закрывают, перекрывают штуцер 7 подачи порошка и проводят дополнительное перемешивание смесителем 5 расплава в камере 1 в течение не менее 60 с.

После дополнительного перемешивания герметичную цилиндрическую камеру 1 перемещают к литейной форме 14 и вводят нижний конец патрубка 2 в металлоприемник 15 литейной формы 14 (Фиг. 2). Фотография устройства для перемещения камеры 1 приведена на Фиг. 3. Для заполнения литейной формы открывают шаровой кран 3 и вентиль 11. Инертный газ через штуцер 10 поступает в верхнюю часть герметичной цилиндрической камеры 1 и вытесняет упрочненный расплав через металлоприемник 15 в литейную форму 14.

Эффективность заявляемого способа подтверждена проведением экспериментов по упрочнению алюминиевого сплава АК7 наночастицами оксида алюминия (0.2 мас. %) в герметичной цилиндрической камере (разливочном резервуаре) объемом 10 л. Металлографический анализ показал равномерную мелкозернистую структуру полученного упрочненного сплава. На Фиг. 4 приведены фотографии структуры сплава без упрочняющих частиц (Фиг. 4а) и упрочненного сплава (Фиг. 4б).

Таким образом, из приведенного примера следует, что предлагаемый способ обеспечивает достижение технического результата изобретения -повышение качества и снижение энергозатрат при получении отливок из упрочненных алюминиевых и магниевых сплавов за счет использования теплоты расплава металла в плавильной печи.

ЛИТЕРАТУРА

1. Патент РФ №1797218, МПК B22F 9/04, С22С 1/05. Способ получения дисперсно-упрочненных алюминиевых сплавов / Ф.Г. Ловшенко, Г.Ф. Ловшенко; опубл. 10.09.1996.

2. Патент РФ №2323991, МПК С22С 1/10, С22С 1/00, D22F 3/02, B22F 3/26, В82В 3/00. Литой композиционный материал на основе алюминиевого сплава и способ его получения / А.В. Панфилов, Д.Н. Бранчуков, А.А. Панфилов [и др.]; опубл. 10.05.2008.

3. Патент РФ №2567779, МПК С22С 1/10, С22С 21/00, B82Y 30/00. Способ получения модифицированных алюминиевых сплавов / В.А. Архипов, В.Х. Даммер, А.Б. Ворожцов [и др.]; опубл. 10.11.2015 Бюл. №31.

4. Patent US №4589466, МПК B22D 37/00, B22D 18/04, B22D 18/06. Metal casting / George D. Chandley, Eugene W. Thomas; опубл. 20.05.1986.

5. Патент СССР №1722218, МПК B22D 18/06. Способ литья вакуумным всасыванием в газопроницаемую форму и устройство для его осуществления / Джордж Д. Чендли; опубл. 23.03.92 Бюл. №11.

6. Свидетельство РФ на полезную модель №1449, МПК B22D 39/06, B22D 35/04. Устройство для заливки жидкого металла в литейные формы / В.Х. Даммер, А.С. Капанец, В.В. Солдатенко; опубл. 16.01.1996 Бюл. №1.

Способ получения отливок из дисперсно-упрочненных сплавов на основе алюминия или магния, включающий предварительный нагрев герметичной цилиндрической камеры, на боковых стенках и верхней крышке которой выполнено теплозащитное покрытие, погружение нижнего конца патрубка, установленного в днище камеры, в тигель плавильной печи с расплавом, создание вакуума для заполнения герметичной камеры расплавом, перемещение герметичной камеры с расплавом к литейной форме, введение нижнего конца патрубка герметичной камеры в металлоприемник литейной формы и заливку в нее расплава путем подачи под давлением инертного газа в герметичную камеру, отличающийся тем, что предварительный нагрев герметичной камеры осуществляют до температуры не ниже (450÷500)°С посредством кондуктивного и лучистого теплообмена с расплавом металла в тигле плавильной печи, нагретым до температуры не ниже 700°С, при этом патрубок герметичной камеры выполняют из титанового сплава с покрытием из нитрида титана на внешних боковых стенках, в процессе заполнения герметичной камеры расплавом в нее непрерывно подают порошок тугоплавкого соединения с одновременным механическим перемешиванием, а после заполнения герметичной камеры расплавом его дополнительно перемешивают в течение не менее 60 с.
Способ получения отливок из дисперсно-упрочненных сплавов на основе алюминия или магния
Способ получения отливок из дисперсно-упрочненных сплавов на основе алюминия или магния
Способ получения отливок из дисперсно-упрочненных сплавов на основе алюминия или магния
Способ получения отливок из дисперсно-упрочненных сплавов на основе алюминия или магния
Источник поступления информации: Роспатент

Показаны записи 11-20 из 29.
29.05.2018
№218.016.5710

Способ самоорганизации оптически активного ансамбля диамагнитных наночастиц электрон-ион

Изобретение относится к квантовой технике. Способ самоорганизации оптически активного ансамбля диамагнитных наночастиц электрон-ион заключается в создании объема когерентности, где на каждую молекулу резонансно по энергии воздействуют векторной суммой коллектива полей, состоящего из...
Тип: Изобретение
Номер охранного документа: 0002655052
Дата охранного документа: 23.05.2018
21.10.2018
№218.016.94ab

Устройство для создания компактного кластера монодисперсных пузырьков

Изобретение относится к аэрационным устройствам, предназначенным для введения газа в жидкую среду, в частности к устройствам для получения компактного кластера пузырьков одинакового размера. Устройство включает размещенный в нижней части резервуара с жидкостью коллектор в виде цилиндрической...
Тип: Изобретение
Номер охранного документа: 0002670228
Дата охранного документа: 19.10.2018
19.01.2019
№219.016.b1e9

Снаряд для стрельбы в водной среде

Изобретение относится к снарядам, движущимся в водной среде. Снаряд содержит корпус, в котором размещен реактивный двигатель с центральным соплом, баллистический наконечник, выполненный в виде усеченного конуса, и кольцевое сопло для вдува газа в водную среду. В качестве реактивного двигателя...
Тип: Изобретение
Номер охранного документа: 0002677506
Дата охранного документа: 17.01.2019
29.03.2019
№219.016.eddd

Установка для исследования динамики всплытия пузырькового кластера в жидкости

Изобретение относится к области разработки установок для лабораторных исследований физических процессов, в частности для исследования закономерностей всплытия компактного пузырькового кластера в жидкости. Установка включает прозрачную призматическую кювету с жидкостью, устройство для...
Тип: Изобретение
Номер охранного документа: 0002683147
Дата охранного документа: 26.03.2019
11.04.2019
№219.017.0b63

Линейный реверсивный вибродвигатель

Изобретение относится к электротехнике и может быть использовано как исполнительный элемент для прецизионных перемещений в оптико-механических приборах, в технологическом оборудовании для микроэлектроники, в системах автоматического наведения, в механических сканирующих устройствах и...
Тип: Изобретение
Номер охранного документа: 0002684395
Дата охранного документа: 09.04.2019
24.05.2019
№219.017.5ddb

Способ измерения интегрального коэффициента излучения поверхности твердого материала

Изобретение относится к области измерений в теплофизике, в частности к способам определения интегрального коэффициента излучения поверхности твердых материалов, и может быть использовано при измерении интегрального коэффициента излучения теплозащитных материалов. Способ включает измерение...
Тип: Изобретение
Номер охранного документа: 0002688911
Дата охранного документа: 22.05.2019
07.06.2019
№219.017.756c

Способ получения потока капель с регулируемым дисперсным составом

Изобретение относится к средствам распыливания жидкостей и растворов и может быть использовано в двигателестроении, химической и лакокрасочной промышленности. Способ получения потока капель с регулируемым дисперсным составом включает распыливание жидкости в газообразной среде центробежной...
Тип: Изобретение
Номер охранного документа: 0002690802
Дата охранного документа: 05.06.2019
13.06.2019
№219.017.818e

Способ оценки взрыво- и пожароопасности химических источников тока

Изобретение относится к области производства и испытаний химических элементов питания и может быть использовано для оценки их взрыво- и пожароопасности при эксплуатации. Пробивание корпуса цилиндрической батареи осуществляют по ее диаметру заостренным металлическим стержнем диаметром (4÷5) мм в...
Тип: Изобретение
Номер охранного документа: 0002691196
Дата охранного документа: 11.06.2019
19.07.2019
№219.017.b678

Способ определения коэффициента сопротивления твердых сферических частиц в неизотермических условиях

Изобретение относится к области разработки способов и устройств для лабораторных исследований физических процессов, в частности для исследования закономерностей движения твердых частиц в жидкости. Способ включает введение частиц в кювету с вязкой жидкостью, выполненную в виде правильной призмы...
Тип: Изобретение
Номер охранного документа: 0002694793
Дата охранного документа: 16.07.2019
02.10.2019
№219.017.cf04

Судоподъемный комплекс, твердотопливный газогенератор и способ судоподъема

Изобретение относится к судостроению, а именно к судоподъемным и аварийно-спасательным работам. Судоподъемный комплекс содержит траверсу в виде замкнутой трубы, внутренними перегородками разделенной на балластные цистерны, причем, в средних боковых и концевых цистернах установлены...
Тип: Изобретение
Номер охранного документа: 0002700431
Дата охранного документа: 17.09.2019
Показаны записи 11-20 из 80.
27.06.2015
№216.013.58bc

Форсунка для распыления расплавленных металлов

Изобретение относится к порошковой металлургии, а именно к получению порошка распылением расплава металла. Форсунка содержит корпус с кольцевой щелью для подачи газа, ниппель с центральным каналом для подачи расплава и защитный стальной чехол, ниппель изготовлен из пьезоэлектрического...
Тип: Изобретение
Номер охранного документа: 0002554257
Дата охранного документа: 27.06.2015
10.08.2015
№216.013.6b82

Способ получения металлических порошков распылением расплавов

Изобретение относится к области порошковой металлургии. Струю металлического расплава диспергируют окружающим ее концентрическим потоком распыляющего газа с наложением звуковых колебаний. Звуковые колебания создают посредством не менее двух одинаковых упругих прямоугольных пластин,...
Тип: Изобретение
Номер охранного документа: 0002559080
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.6f15

Камуфляжный материал инфракрасного диапазона

Изобретение относится к средствам укрытия и маскировки и может использоваться для повышения качества камуфляжа. Камуфляжный материал инфракрасного диапазона содержит наружный слой, близкий по спектральной характеристике отражения к фоновой поверхности, и внутренний слой из материала с низкой...
Тип: Изобретение
Номер охранного документа: 0002560007
Дата охранного документа: 20.08.2015
20.10.2015
№216.013.8573

4-(3,4-дибромтиофенкарбонил)-2,6,8,12-тетраацетил-2,4,6,8,10,12-гексаазатетрацикло[5,5,0,0,0]додекан в качестве анальгетического средства и способ его получения

Изобретение относится к новому химическому веществу - 4-(3,4-дибромтиофенкарбонил)-2,6,8,12-тетраацетил-2,4,6,8,10,12-гексаазатетрацикло[5,5,0,0,0]додекану, обладающему анальгетической активностью. А также к способу его получения, который заключается в ацилировании...
Тип: Изобретение
Номер охранного документа: 0002565766
Дата охранного документа: 20.10.2015
10.11.2015
№216.013.8d4c

Способ получения модифицированных алюминиевых сплавов

Изобретение относится к получению упрочненных легких сплавов на основе алюминия. В расплав алюминиевого сплава при температуре 750÷800ºС вводят 6 мас.% порошка криолита NaAlF, через промежуток времени не менее 10 мин в расплав вводят 5÷6 мас.% модификатора при одновременной активации расплава...
Тип: Изобретение
Номер охранного документа: 0002567779
Дата охранного документа: 10.11.2015
27.11.2015
№216.013.9420

Твердотопливный ракетный двигатель

Изобретение относится к области ракетной техники, а именно к конструкциям зарядов твердотопливных ракетных двигателей. Ракетный двигатель включает камеру сгорания, пластинчатый заряд твердого топлива из сплошных и перфорированных дисков, боковая поверхность которого покрыта бронирующим...
Тип: Изобретение
Номер охранного документа: 0002569539
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.9486

Способ определения характеристик зажигания образцов высокоэнергетических материалов лучистым тепловым потоком

Изобретение относится к области исследования характеристик высокоэнергетических материалов (ВЭМ) и может быть использовано для определения времени задержки зажигания ВЭМ лучистым тепловым потоком. Способ заключается в непосредственном измерении времени задержки зажигания ВЭМ, на поверхность...
Тип: Изобретение
Номер охранного документа: 0002569641
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.95c4

Гибридный ракетный двигатель

Изобретение относится к области ракетной техники, в частности к конструкциям гибридных ракетных двигателей космического назначения. Гибридный ракетный двигатель содержит камеру сгорания с размещенным в ней зарядом твердого топлива с внутренним сквозным каналом и сопловой блок. Во входном...
Тип: Изобретение
Номер охранного документа: 0002569960
Дата охранного документа: 10.12.2015
20.03.2016
№216.014.cb8c

Облицовочный материал для антенных измерений в неприспособленном помещении

Использование: для антенных измерений в неприспособленном помещении. Сущность изобретения заключается в том, что облицовочный материал, выполненный в виде конструкции на основе картона, покрытой углеродсодержащим составом, отличающийся тем, что он выполнен на основе рифленых картонных ячеек для...
Тип: Изобретение
Номер охранного документа: 0002577796
Дата охранного документа: 20.03.2016
13.01.2017
№217.015.6881

Вихревой ракетный двигатель малой тяги на газообразном топливе

Изобретение относится к области ракетной техники и может быть использовано при разработке ракетных двигателей, работающих на газообразных компонентах топливной смеси. Вихревой ракетный двигатель малой тяги на газообразном топливе содержит камеру сгорания с соплом и тангенциальные завихрители...
Тип: Изобретение
Номер охранного документа: 0002591391
Дата охранного документа: 20.07.2016
+ добавить свой РИД