×
19.06.2019
219.017.8a2c

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ПОЛИДИЦИКЛОПЕНТАДИЕНА И МАТЕРИАЛОВ НА ЕГО ОСНОВЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения полидициклопентадиена (ПДЦПД) и способу получения полимерных материалов на его основе. Описан способ получения ПДЦПД путем смешивания дициклопентадиена (ДЦПД) с катализатором при мольных соотношениях катализатора и ДЦПД от 1:70000 до 1:1000000 и проведения полимеризации путем нагрева реакционной смеси от 30 до 200°С. Описан также способ получения полимерных материалов на основе ПДЦПД, включающий дополнительное введение модифицирующих добавок, выбранных из циклоолефиновых сомономеров, олигомеров циклопентадиена в виде смеси тримеров и тетрамеров, эфиров дикарбоновых кислот, алкилфенолов или их комбинаций. В качестве катализатора для получения ПДЦПД и полимерных материалов на его основе используют соединение общей формулы: где L - заместитель, выбранный из группы: Технический результат - снижение расхода катализатора, возможность управления временем начала полимеризации, улучшение физико-механических свойств получаемого продукта. 6 н.п. ф-лы.

Изобретение относится к химии высокомолекулярных соединений, в частности к технологии получения полидициклопентадиена и полимерных материалов на его основе.

Известны способы получения полидициклопентадиена по реакции метатезисной полимеризации с раскрытием цикла в присутствии металлокомплексных катализаторов или каталитических систем на основе соединений вольфрама, молибдена и рутения (К.J.Ivin, J.С.Mol "Olefin Metathesis and Metathesis Polymerization", Second Edition Academic Press, 1997; "Metathesis Polymerization", Advances in Polymer Science, Springer, 2005; Grubbs, Robert H. "Handbook of Metathesis" Wiley-VCH, Weinheim, 2003). Катализаторы на основе соединений вольфрама и молибдена близки по свойствам и имеют сильный неприятный запах, темный цвет и поэтому используются только для производства технических деталей.

В настоящее время широкое распространение получили катализаторы на основе карбеновых комплексов рутения для полимеризации цикло- и бициклоолефинов с раскрытием кольца с помощью метатезиса. Известны способы получения полидициклопентадиена под действием рутениевых катализаторов - карбеновых комплексов с фосфиновыми лигандами (катализаторы Граббса первого поколения), которые отличаются хорошей устойчивостью и эффективностью, в 5 раз превосходящей комплексы вольфрама, что позволяет использовать мольное соотношение мономер : катализатор до 15000:1 (WO 9960030 и WO 9720865). Общая схема получения полидициклопентадиена по реакции метатезисной полимеризации с раскрытием цикла под действием рутениевых катализаторов схематически выглядит следующим образом:

Основным недостатком рутениевых катализаторов первого поколения является низкая каталитическая активность, что обусловливает необходимость использования большого количества катализатора от 1:8000 до 1:15000.

Активность рутениевых катализаторов второго поколения в 5 и более раз превосходит таковую для катализаторов первого поколения, однако плохая растворимость и высокая скорость полимеризации дициклопентадиена затрудняют их использование. Катализатор, не успевая раствориться в мономере, покрывается слоем полимера - капсулируется и теряет активность. Это приводит к необходимости существенного увеличения расхода катализатора. Кроме того, при изготовлении изделий из полидициклопентадиена (ПДЦПД) методом литьевого формования возникают технологические проблемы, поскольку отсутствует возможность управления временем начала полимеризации и образующийся слишком рано полимер может забивать узлы подачи смеси мономера и катализатора.

Наиболее близким техническим решением к технологии получения ПДЦПД по изобретению является способ получения полидициклопентадиена с использованием рутениевого катализатора метатезисной полимеризации ДЦПД (Международная публикация WO 2009/142535).

Основным недостатком данного способа является необходимость использования значительного количества катализатора - мольное соотношение мономер : катализатор, при котором получают полидициклопентадиен с удовлетворительными механическими характеристиками, составляет только до 200000:1, кроме того, известный способ также не позволяет управлять временем начала полимеризации, что приводит к нарушениям технологического цикла и неоднородности получаемого продукта.

В процессе получения ПДЦПД в дициклопентадиен вводят различные модифицирующие добавки, целенаправленно изменяющие свойства конечного продукта.

Известен способ получения полимерных материалов на основе ПДЦПД, включающий введение в реакционную смесь дициклопентадиена, катализатора и модифицирующих добавок (WO 9960030).

К недостаткам способа следует отнести незначительность изменения свойств конечного продукта и ухудшение условий реакции вследствие снижения концентрации катализатора, что, в свою очередь, вызывает необходимость увеличения его количества.

Наиболее близким техническим решением к технологии получения полимерных материалов на основе полидициклопентадиена служит способ, включающий растворение катализатора в дициклопентадиене, введение в раствор модифицирующих добавок и полимеризацию реакционной массы (Патент РФ №2168518).

Недостатками способа являются высокий расход катализатора, обусловленный тем, что модифицирующие добавки образуют механический раствор в дициклопентадиене, снижая каталитическую активность применяемого катализатора, а также незначительное влияние добавок на изменение свойств, связанное с обычным растворением добавок в готовом продукте без образования химических связей.

Основным недостатком известных способов получения полидициклопентадиена и материалов на его основе является использование устаревших катализаторов, имеющих низкую каталитическую активность и не обеспечивающих возможность управлять временем начала полимеризации, а также вовлекать в реакцию модифицирующие добавки.

Задача, решаемая заявленным изобретением, заключается в создании эффективного способа получения полидициклопентадиена и материалов на его основе по реакции метатезисной полимеризации с раскрытием цикла мономера - дициклопентадиена (ДЦПД), за счет использования серии рутениевых катализаторов, позволяющих термически управлять началом процесса полимеризации при одновременном использовании малых количеств катализатора и влиять на процесс полимеризации с участием модифицирующих добавок, таких как сомономеры, алкилфенолы и эфиры двухосновных карбоновых кислот.

Технический результат состоит в обеспечении возможности управлять временем начала полимеризации, снижении расхода катализатора, целенаправленном улучшении физико-механических характеристик готового продукта и возможности осуществлять полимеризацию на воздухе, а не в среде инертного газа.

Поставленная задача и технический результат достигаются тем, что при использовании известного катализатора общей формулы:

где L - заместитель, выбранный из группы:

, , , , , ,

дициклопентадиен сначала смешивают с катализатором при мольных соотношениях катализатора и дициклопентадиена от 1:70000 до 1:1000000, а полимеризацию осуществляют путем нагрева реакционной смеси от 30°С до 200°С, а также тем, что для получения полимерных материалов на основе полидициклопентадиена перед полимеризацией в раствор вводят модифицирующие добавки, в качестве которых используют один или комбинацию нескольких циклоолефиновых сомономеров, выбранных из группы: циклопентен, циклооктен, циклооктадиен, норборнен, норборнадиен, и взятых в количестве 5-50 мас.% каждого по отношению к дициклопентадиену. В качестве модифицирующих добавок также используют 5-65 мас.% от дициклопентадиена олигомеров циклопентадиена в виде смеси тримеров и тетрамеров, кроме того, в качестве модифицирующих добавок используют эфиры дикарбоновых кислот, преимущественно дибутилфталат и диоктилфталат, взятых в количестве 5-25 мас.% по отношению к дициклопентадиену, помимо этого в качестве модифицирующих добавок используют алкилфенолы, выбранные из группы: пентаэритритол тетракис (3,5-ди-трет-бутил-4-гидроксициннамат), 4,4-метиленбис(2,6-дитретбутилфенол), октадецил 3-(3,5-дитретбутил-4-гидроксифенил)пропионат, взятые в количестве 1-5 мас.% по отношению к дициклопентадиену. Также используется одновременное введение в качестве модифицирующих добавок комбинаций, выбранных из группы: циклоолефин и/или циклоолефины вместе с алкилфенолом; циклоолефин с эфиром дикарбоновой кислоты и алкилфенолом; эфир дикарбоновой кислоты вместе с алкилфенолом, причем циклоолефин выбран из группы: циклопентен, циклооктен, циклооктадиен, норборнен, норборнадиен, и взят в количестве 5-50 мас.% по отношению к дициклопентадиену; алкилфенол выбран из группы: пентаэритритол тетракис(3,5-ди-трет-бутил-4-гидроксициннамат), 4,4-метиленбис(2,6-дитретбутилфенол), октадецил 3-(3,5-дитретбутил-4-гидроксифенил)пропионат, и взят в количестве 1-5 мас.% по отношению к дициклопентадиену, а эфир дикарбоновой кислоты выбран из группы: дибутилфталат и диоктилфталат, и взят в количестве 5-25 мас.% по отношению к дициклопентадиену.

Технический результат обеспечивается уменьшением требуемого количества катализатора, что повышает физико-механические показатели полимера при соблюдении условия температурных ограничений полимеризации. Применение при полимеризации оптимального диапазона температуры от 30 до 200°С позволяет получать продукт наилучшего качества при минимальном расходе катализатора - до 1000000:1 при мольном соотношении мономер : катализатор. Выход за пределы указанного диапазона требует для полимеризации существенного увеличения расхода катализатора или теряется свойство управляемой полимеризации, что, как следствие, ухудшает качество продукта.

При этом совместное введение определенной комбинации двух и более дополнительных циклоолефиновых сомономеров в соответствующих соотношениях позволяет достигнуть целенаправленно задаваемой уникальной совокупности основных характеристик полимерного материала в широком диапазоне условий его практического применения; а именно позволяет управлять сочетанием упругого и вязкостного характера материала, его прочности и твердости, температуры стеклования. Причем достигаются уникальные сочетания ударной вязкости, жесткости, температуры стеклования и относительного удлинения при разрыве. Добавки позволяют не только улучшать стабильность полимера к окислению и УФ-излучению, но и заметно повышать механическую прочность материала при растяжении. Кроме того, они улучшают оптические свойства материалов (снижение желтизны и увеличение светопропускания и устойчивости к УФ-излучению).

Заявленный способ полимеризации дициклопентадиена позволяет получать класс новых полимерных материалов с высокими механическими свойствами, термической и химической стабильностью при снижении расхода катализатора и термическом управлении началом процесса полимеризации.

Указанные эффекты обеспечиваются особыми свойствами катализатора, который, при заданных температуре и количестве, активирует полимеризацию дициклопентадиена и физико-химическое взаимодействие с ним перечисленных модифицирующих добавок с образованием полидициклопентадиена с включенными в структуру полимера соответствующими модификаторами. При этом малое количество катализатора снижает негативное влияние собственного присутствия в получаемых полимерах на физико-механические показатели.

Способ получения полидициклопентадиена и материалов на его основе осуществляют при нагревании в литьевой форме дициклопентадиена с катализатором N, при температуре от 30 до 200°С. Мольное соотношение мономер : катализатор от 1:70000 до 1:1000000. Используют термически инициируемые рутениевые катализаторы общей формулы:

где L - заместитель, выбранный из группы:

, , , , ,

Процесс полимеризации дициклопентадиена осуществляют растворением катализатора N в дициклопентадиене при температуре до 30°С. Для повышения физико-механических свойств полимеров используют модифицирующие добавки, которые активируются катализатором и участвуют в процессе полимеризации. Реакцию полимеризации инициируют нагреванием от 30 до 200°С в форме. Происходит постепенное загустение смеси, завершающееся экзотермической реакцией, приводящей к затвердению состава и получению готового продукта.

Изобретение по пункту формулы 1 поясняется следующими примерами

Пример 1.1

Раствор 1.79 мг катализатора N1 в 26.44 г дициклопентадиена (ДЦПД) чистоты 98% (мольное соотношение ДЦПД : катализатор = 70000:1) помещают в литьевую форму, нагретую до 30°С, и поднимают температуру до 80°С. Получают твердый прозрачный образец полидициклопентадиена (ПДЦПД) без запаха. Температура стеклования Tg 174°C, модуль упругости на изгиб 1.83 ГПа, коэффициент линейного термического расширения при 60°С 69.2 мкм/м°С, предел текучести при растяжении 53.6 МПа, относительное удлинение при разрыве 11%.

Пример 1.2

Реакцию проводят по примеру 1.1, но используют мольное соотношение ДЦПД : катализатор = 250000:1. Получают твердый прозрачный образец ПДЦПД с легким запахом. Температура стеклования Tg 124°С, модуль упругости на изгиб 1.88 ГПа, предел текучести при растяжении 58.2 МПа.

Пример 1.3

Реакцию проводят по примеру 1.1, но используют мольное соотношение ДЦПД : катализатор = 1000000:1 с нагревом реакционной смеси до 200°С. Получают эластичный прозрачный образец ПДЦПД. Твердость по Шору А25.

Пример 1.4

Реакцию проводят по примеру 1.1, но используют катализатор N2. Получают твердый прозрачный образец ПДЦПД без запаха. Температура стеклования Tg 168°С, модуль упругости на изгиб 1.58 ГПа, предел текучести при растяжении 55.2 МПа.

Пример 1.5

Реакцию проводят по примеру 1.1, но используют катализатор N3. Получают твердый прозрачный образец ПДЦПД без запаха. Температура стеклования Tg 173°С, модуль упругости на изгиб 1.68 ГПа, коэффициент линейного термического расширения при 60°С 66.0 мкм/м°С.

Пример 1.6

Реакцию проводят по примеру 1.1, но используют катализатор N4. Получают твердый прозрачный образец ПДЦПД без запаха. Температура стеклования Tg 171°С, модуль упругости на изгиб 1.80 ГПа, прочность при растяжении: предел текучести 56.4 МПа, разрушающее напряжение 43.2 МПа.

Пример 1.7

Реакцию проводят по примеру 1.6, но используют мольное соотношение ДЦПД : катализатор = 200000:1 с нагреванием реакционной смеси до 150°С. Получают твердый прозрачный образец ПДЦПД без запаха. Температура стеклования Tg 144°С, прочность при растяжении: предел текучести 59.3 МПа, разрушающее напряжение 48.1 МПа.

Пример 1.8

Реакцию проводят по примеру 1.1, но используют катализатор N5. Получают твердый прозрачный образец ПДЦПД без запаха. Температура стеклования Tg 168°С, модуль упругости на изгиб 1.80 ГПа, коэффициент линейного термического расширения при 60°С 56.0 мкм/м°С, предел текучести при растяжении 58.5 МПа.

Пример 1.9

Реакцию проводят по примеру 1.8, но используют мольное соотношение ДЦПД : катализатор = 200000:1. Получают твердый прозрачный образец ПДЦПД без запаха. Температура стеклования Tg 138°С, модуль упругости на изгиб 1.81 ГПа.

Пример 1.10

Реакцию проводят по примеру 1.1, но используют катализатор N6 и оставляют при 30°С без дополнительного нагрева. Получают твердый прозрачный образец ПДЦПД без запаха. Температура стеклования Tg 172°С.

Изобретение по пункту формулы 2 поясняется следующими примерами.

Пример 2.1

Реакцию проводят по примеру 1.1, но используют добавку циклооктена (5 мас.% от ДЦПД). Получают твердый прозрачный образец ПДЦПД без запаха. Температура стеклования Tg 121°C, модуль упругости на изгиб 2.13 ГПа, предел прочности при растяжении 53.2 МПа.

Пример 2.2

Реакцию проводят по примеру 1.1, но используют добавку норборнена (25 мас.% от ДЦПД). Получают твердый прозрачный образец ПДЦПД без запаха. Температура стеклования Tg 133°С, модуль упругости на изгиб 1.71 ГПа, предел прочности при растяжении 55.0 МПа, относительное удлинение при разрыве 133%.

Пример 2.3

Реакцию проводят по примеру 1.1, но используют добавку циклооктадиена (20 мас.% от ДЦПД). Получают прозрачный бесцветный образец ПДЦПД. Модуль упругости на сдвиг 1.13 ГПа, относительное удлинение в момент разрушения 205%. Твердость по Шору А61.

Пример 2.4

Реакцию проводят по примеру 1.1, но используют добавку норборнадиена (20 мас.% от ДЦПД). Получают твердый прозрачный образец ПДЦПД без запаха. Температура стеклования Tg 135°С, предел прочности при растяжении 51.6 МПа.

Пример 2.5

Реакцию проводят по примеру 1.1, но используют добавки циклооктадиена и циклооктена (по 20 мас.% от ДЦПД). Получают прозрачный образец ПДЦПД. Ударная вязкость по Изоду с надрезом 7.1 кДж/м2, твердость по Шору D70. Растяжение без разрыва до относительных удлинений 250%.

Пример 2.6

Реакцию проводят по примеру 1.1, но используют добавки норборнадиена и циклооктена (по 10 мас.% от ДЦПД). Получают прозрачный образец ПДЦПД. Температура стеклования Tg 111°С, модуль упругости на изгиб 1.58 ГПа, предел текучести при растяжении 50.9 МПа, относительное удлинение в момент разрушения 150%. Твердость по Шору D79.

Пример 2.7

Реакцию проводят по примеру 2.4, но используют катализатор N2. Получают твердый прозрачный образец ПДЦПД без запаха. Температура стеклования Tg 134°С, предел прочности при растяжении 51.5 МПа.

Пример 2.8

Реакцию проводят по примеру 2.3, но используют катализатор N3. Получают прозрачный бесцветный образец ПДЦПД. Модуль упругости на сдвиг 1.12 ГПа, относительное удлинение в момент разрушения 206%. Твердость по Шору А61.

Пример 2.9

Реакцию проводят по примеру 2.4, но используют катализатор N4. Получают твердый прозрачный образец ПДЦПД без запаха. Температура стеклования Tg 133°С, предел прочности при растяжении 51.2 МПа.

Пример 2.10

Реакцию проводят по примеру 2.3, но используют катализатор N5. Получают прозрачный бесцветный образец ПДЦПД. Модуль упругости на сдвиг 1.14 ГПа, относительное удлинение в момент разрушения 202%. Твердость по Шору А60.

Пример 2.11

Реакцию проводят по примеру 2.6, но используют катализатор N6. Получают прозрачный образец ПДЦПД. Температура стеклования Tg 110°С, модуль упругости на изгиб 1.59 ГПа, предел текучести при растяжении 50.8 МПа, относительное удлинение в момент разрушения 155%. Твердость по Шору D79.

Изобретение по пункту формулы 3 поясняется следующими примерами.

Пример 3.1

Реакцию проводят по примеру 1.1, но используют добавку к дициклопентадиену (14 мас.%) олигомеров циклопентадиена в виде смеси тримеров и тетрамеров. Получают твердый прозрачный образец ПДЦПД без запаха. Температура стеклования Tg 169°С, модуль упругости на изгиб 2.12 ГПа, коэффициент линейного термического расширения при 60°С 89.2 мкм/м°C, предел текучести при растяжении 55 МПа, ударная вязкость по Изоду с надрезом 5.7 кДж/м2.

Пример 3.2

Реакцию проводят по примеру 1.1, но используют ДЦПД чистоты 93% с добавкой (65 мас.%) олигомеров циклопентадиена в виде смеси тримеров и тетрамеров. Получают твердый прозрачный образец ПДЦПД без запаха. Температура стеклования Tg 133°С, модуль упругости на изгиб 2.04 ГПа.

Пример 3.3

Реакцию проводят по примеру 3.1, но используют катализатор N2. Получают твердый прозрачный образец ПДЦПД без запаха. Температура стеклования Tg 134°С, модуль упругости на изгиб 2.06 ГПа.

Пример 3.4

Реакцию проводят по примеру 3.1, но используют катализатор N3. Получают твердый прозрачный образец ПДЦПД без запаха. Температура стеклования Tg 133°С, модуль упругости на изгиб 2.11 ГПа.

Пример 3.5

Реакцию проводят по примеру 3.1, но используют катализатор N4. Получают твердый прозрачный образец ПДЦПД без запаха. Температура стеклования Tg 130°C, модуль упругости на изгиб 2.03 ГПа.

Пример 3.6

Реакцию проводят по примеру 3.1, но используют катализатор N5. Получают твердый прозрачный образец ПДЦПД без запаха. Температура стеклования Tg 133°С, модуль упругости на изгиб 2.07 ГПа.

Пример 3.7

Реакцию проводят по примеру 3.1, но используют катализатор N6. Получают твердый прозрачный образец ПДЦПД без запаха. Температура стеклования Tg 138°С, модуль упругости на изгиб 2.09 ГПа.

Изобретение по пункту формулы 4 поясняется следующими примерами.

Пример 4.1

Реакцию проводят по примеру 1.1, но используют добавку диоктилфталата (15 мас.% от ДЦПД). Получают твердый бесцветный прозрачный образец ПДЦПД без запаха. Оптические характеристики: светопропускание 93.6%, индекс желтизны 10.3%.

Пример 4.2

Реакцию проводят по примеру 4.1, но используют добавку диоктилфталата (7 мас.% от ДЦПД). Получают твердый бесцветный прозрачный образец ПДЦПД без запаха. Оптические характеристики: светопропускание 93.1%, индекс желтизны 12.0%.

Пример 4.3

Реакцию проводят по примеру 4.1, но используют дибутилфталат (25 мас.% от ДЦПД). Получают твердый бесцветный прозрачный образец ПДЦПД без запаха. Оптические характеристики: светопропускание 92.3%, индекс желтизны 8.5%.

Пример 4.4

Реакцию проводят по примеру 4.1, но используют катализатор N2. Получают твердый бесцветный прозрачный образец ПДЦПД без запаха. Оптические характеристики: светопропускание 93.7%, индекс желтизны 10.1%.

Пример 4.5

Реакцию проводят по примеру 4.1, но используют катализатор N3. Получают твердый бесцветный прозрачный образец ПДЦПД без запаха. Оптические характеристики: светопропускание 93.3%, индекс желтизны 10.4%.

Пример 4.6

Реакцию проводят по примеру 4.1, но используют катализатор N4. Получают твердый бесцветный прозрачный образец ПДЦПД без запаха. Оптические характеристики: светопропускание 92.7%, индекс желтизны 11.2%.

Пример 4.7

Реакцию проводят по примеру 4.1, но используют катализатор N5. Получают твердый бесцветный прозрачный образец ПДЦПД без запаха. Оптические характеристики: светопропускание 92.9%, индекс желтизны 9.0%.

Пример 4.8

Реакцию проводят по примеру 4.1, но используют катализатор N6. Получают твердый бесцветный прозрачный образец ПДЦПД без запаха. Оптические характеристики: светопропускание 93.1%, индекс желтизны 10.2%.

Изобретение по пункту формулы 5 поясняется следующими примерами.

Пример 5.1

Раствор 1.25 мг катализатора N1 и 0.66 г (2.5 мас.%) пентаэритритол тетракис(3,5-ди-трет-бутил-4-гидроксициннамата) в 26.44 г ДЦПД (мольное соотношение ДЦПД : катализатор = 100000:1) помещают в литьевую форму, нагретую до 30°С, и поднимают температуру до 100°С. Получают твердый прозрачный образец ПДЦПД без запаха. Температура стеклования Tg 162°С, модуль упругости на изгиб 1.72 ГПа, прочность при растяжении: предел текучести 58.3 МПа, разрушающее напряжение 50.5 МПа, относительное удлинение при разрыве 105%. Ударная вязкость по Изоду с надрезом 4.7 кДж/м2, твердость по Шору D84.

Пример 5.2

Реакцию проводят по примеру 5.1, но используют 4,4'-метиленбис(2,6-дитретбутилфенола) (5 мас.% от ДЦПД). Получают твердый прозрачный образец ПДЦПД без запаха. Температура стеклования Tg 152°С, относительное удлинение при разрыве 90%.

Пример 5.3

Реакцию проводят по примеру 5.1, но используют октадецил 3-(3,5-дитретбутил-4-гидроксифенил)пропионата (1 мас.% от ДЦПД). Получают твердый прозрачный образец ПДЦПД без запаха. Температура стеклования Tg 158°C, относительное удлинение при разрыве 60%.

Пример 5.4

Реакцию проводят по примеру 5.1, но используют катализатор N2. Получают твердый прозрачный образец ПДЦПД без запаха. Температура стеклования Tg 151°С, относительное удлинение при разрыве 87%.

Пример 5.5

Реакцию проводят по примеру 5.1, но используют катализатор N3. Получают твердый прозрачный образец ПДЦПД без запаха. Температура стеклования Tg 155°С, относительное удлинение при разрыве 91%.

Пример 5.6

Реакцию проводят по примеру 5.1, но используют катализатор N4. Получают твердый прозрачный образец ПДЦПД без запаха. Температура стеклования Tg 152°С, относительное удлинение при разрыве 95%.

Пример 5.7

Реакцию проводят по примеру 5.1, но используют катализатор N5. Получают твердый прозрачный образец ПДЦПД без запаха. Температура стеклования Tg 154°С, относительное удлинение при разрыве 88%.

Пример 5.8

Реакцию проводят по примеру 5.1, но используют катализатор N6. Получают твердый прозрачный образец ПДЦПД без запаха. Температура стеклования Tg 158°С, относительное удлинение при разрыве 80%.

Изобретение по пункту формулы 6 поясняется следующими примерами.

Пример 6.1

Реакцию проводят по примеру 5.1, но используют добавки циклооктадиена и циклооктена (по 50 мас.% от ДЦПД). Получают прозрачный образец ПДЦПД. Твердость по Шору А29.

Пример 6.2

Реакцию проводят по примеру 5.1, но используют добавки норборнена и диоктилфталата (20 и 10 мас.% от ДЦПД, соответственно). Получают бесцветный прозрачный образец ПДЦПД. Температура стеклования Tg 86°С, модуль упругости на изгиб 1.75 ГПа, предел текучести при растяжении 48.8 МПа, относительное удлинение 150%. Твердость по Шору D81.5.

Пример 6.3

Реакцию проводят по примеру 6.1, но используют катализатор N2. Получают прозрачный образец ПДЦПД. Твердость по Шору А30.

Пример 6.4

Реакцию проводят по примеру 6.1, но используют катализатор N3. Получают прозрачный образец ПДЦПД. Твердость по Шору А30.

Пример 6.5

Реакцию проводят по примеру 6.1, но используют катализатор N4. Получают прозрачный образец ПДЦПД. Твердость по Шору А30.

Пример 6.6

Реакцию проводят по примеру 6.1, но используют катализатор N5. Получают прозрачный образец ПДЦПД. Твердость по Шору А28.

Пример 6.7

Реакцию проводят по примеру 6.1, но используют катализатор N6. Получают прозрачный образец ПДЦПД. Твердость по Шору А29.

Как видно из примеров, получаемый по предложенному способу полидициклопентадиен и варианты полимерных материалов на его основе обладают высокими физико-механическими свойствами, значительно превосходящими характеристики аналогичных материалов, вырабатываемых по известным технологиям.

Данные характеристики новых материалов на основе ПДЦПД, получаемых новым способом, выгодно отличаются уникальной комбинацией механических свойств - высокой твердостью и одновременно высокой ударной вязкостью, что делает эти материалы ударопрочными. Отсутствие запаха, высокая оптическая чистота и улучшенные механические свойства существенно расширяют диапазон применения данных материалов. Привлекает возможность изготавливать из него изделия больших и очень больших размеров заданной сложной формы. Немаловажно и то, что при горении не выделяется диоксинов и др. ядовитых веществ (диоксид углерода и вода - продукты горения), что наряду с хорошими органолептическими свойствами делает эти материалы экологически безопасными.

Источник поступления информации: Роспатент

Показаны записи 11-20 из 24.
29.05.2019
№219.017.66fa

Состав для ингибирования солеотложений при добыче нефти (варианты)

Изобретение относится к области нефтедобычи, в частности к составам, предназначенным для предотвращения осаждения неорганических солей в скважинах и на скважинном оборудовании, системе сбора и транспорта нефти, а также в нефтяных пластах, разрабатываемых с использованием систем заводнения....
Тип: Изобретение
Номер охранного документа: 0002307798
Дата охранного документа: 10.10.2007
19.06.2019
№219.017.8619

Катализатор метатезисной полимеризации дициклопентадиена, способы его получения и способ его полимеризации

Изобретение относится к области катализа и касается производства катализаторов метатезисной полимеризации дициклопентадиена (ДЦПД). Катализатор метатезисной полимеризации имеет формулу: где L - заместитель, выбранный из группы: Разработано несколько способов получения катализатора. Способ...
Тип: Изобретение
Номер охранного документа: 0002393171
Дата охранного документа: 27.06.2010
19.06.2019
№219.017.86c0

Способ получения базовой основы трансформаторного масла

Изобретение относится к области нефтепереработки, а именно к способу получения базовой основы трансформаторного (электроизоляционного) масла. Нефтяную прямогонную фракцию, выкипающую выше 310°С, подвергают каталитическому гидрокрекингу, а затем каталитической изодепарафинизации, совмещенной с...
Тип: Изобретение
Номер охранного документа: 0002382068
Дата охранного документа: 20.02.2010
19.06.2019
№219.017.8705

Способ получения альдегидов c-c

Изобретение относится к способу получения альдегидов С-С, заключающийся в том, что олефины подвергают гидроформилированию в присутствии каталитической системы, содержащей родий, полифосфитный лиганд, имеющий общую формулу: где k+m≥2, причем, возможно, k=0 или m=0; X - углеводородный радикал,...
Тип: Изобретение
Номер охранного документа: 0002354642
Дата охранного документа: 10.05.2009
19.06.2019
№219.017.872b

Катализатор гидроформилирования олефинов c-c, способ его получения (варианты) и способ получения альдегидов c-c

Изобретение относится основному органическому, тонкому органическому и нефтехимическому синтезу и может быть использовано для гидроформилирования α-олефинов в соответствующие альдегиды. Катализатор получения альдегидов С-С гидроформилированием соответствующих олефинов, представляет собой...
Тип: Изобретение
Номер охранного документа: 0002352552
Дата охранного документа: 20.04.2009
19.06.2019
№219.017.8742

Способ получения трициклогексилфосфина

Настоящее изобретение относится к способу получения трициклогексилфосфина, используемого в синтезе металлокомплексных катализаторов для реакций метатезиса, карбонилирования, кросссочетания, полимеризации и др. Предложенный способ заключается в том, что красный фосфор подвергают взаимодействию с...
Тип: Изобретение
Номер охранного документа: 0002375372
Дата охранного документа: 10.12.2009
19.06.2019
№219.017.876a

Способ получения катализатора метатезисной полимеризации дициклопентадиена

Изобретение относится к металлоорганической химии, в частности к способу получения катализатора метатезисной полимеризации дициклопентадиена -[1,3-бис-(2,4,6-триметилфенил)-2-имидазолидинилиден]дихлоро(о-N,N-диметиламинометилфенил метилен)рутения. Способ получения состоит в том, что...
Тип: Изобретение
Номер охранного документа: 0002377257
Дата охранного документа: 27.12.2009
19.06.2019
№219.017.87e2

Катализатор гидрирования аренов и способ его приготовления

Изобретение относится к каталитической химии, в частности к катализаторам деароматизации дизельных фракций. Описан катализатор гидрирования аренов, содержащий платину на носителе, включающем оксид алюминия, содержащий не более 500 ppm примесей в смеси с кристаллическим мезопористым...
Тип: Изобретение
Номер охранного документа: 0002309796
Дата охранного документа: 10.11.2007
19.06.2019
№219.017.8801

Способ и аппарат для газохроматографического анализа водородсодержащих газовых смесей

Способ газохроматографического анализа водородсодержащих газовых смесей включает подачу газовой смеси параллельно в два канала - канал анализа Н и канал анализа остальных газов. При этом в канале анализа Ндополнительно осуществляют разделение и детектирование остальных газов и проводят...
Тип: Изобретение
Номер охранного документа: 0002306555
Дата охранного документа: 20.09.2007
19.06.2019
№219.017.886e

Катализатор изодепарафинизации нефтяных фракций и способ его приготовления

Изобретение относится к каталитической химии, более конкретно - к катализаторам изодепарафинизации нефтяных. Описан катализатор изодепарафинизации нефтяных фракций, содержащий платину и модификаторы на носителе, включающем высокодисперсный, порошкообразный оксид алюминия высокой степени чистоты...
Тип: Изобретение
Номер охранного документа: 0002320407
Дата охранного документа: 27.03.2008
Показаны записи 11-20 из 57.
27.03.2015
№216.013.357c

Катализатор метатезисной полимеризации дициклопентадиена и способ его получения

Изобретение относится к области катализа и касается производства катализаторов полимеризации дициклопентадиена. Катализатор полимеризации имеет общую формулу (I), где новый заместитель выбран из группы аминостиролов. Это обеспечивает принципиально новые свойства катализатора. Получают...
Тип: Изобретение
Номер охранного документа: 0002545176
Дата охранного документа: 27.03.2015
27.03.2015
№216.013.357f

Катализатор метатезисной полимеризации дициклопентадиена в форме рутениевого комплекса и способ его получения

Изобретение относится к области гомогенного катализа и касается производства катализаторов метатезисной полимеризации дициклопентадиена. Катализатор полимеризации дициклопентадиена в форме рутениевого комплекса представляет собой...
Тип: Изобретение
Номер охранного документа: 0002545179
Дата охранного документа: 27.03.2015
27.04.2015
№216.013.4799

Каталитический комплекс селективной тримеризации этилена в 1-гексен

Изобретение относится к технологии тримеризации олефинов, а именно к процессу селективного получения 1-гексена тримеризацией этилена. Каталитический комплекс селективной тримеризации этилена в 1-гексен включает: соединение хрома (III) с дифосфиновым лигандом общей формулы...
Тип: Изобретение
Номер охранного документа: 0002549833
Дата охранного документа: 27.04.2015
10.05.2015
№216.013.47d6

Каталитическая система тримеризации этилена в 1-гексен

Изобретение относится к технологии селективного получения 1-гексена тримеризацией этилена. Каталитическая система тримеризации этилена в 1-гексен включает комплекс хрома (III) с дифосфиновым лигандом общей формулы [CrCl[(PhP(1,2-CH)P(Ph)(1,2-CH)(R)](THF)], где R - углеводородный радикал или...
Тип: Изобретение
Номер охранного документа: 0002549897
Дата охранного документа: 10.05.2015
10.06.2015
№216.013.52ed

Способ получения микросфер полимерного проппанта из полимерной матрицы на основе метатезис-радикально сшитой смеси олигоциклопентадиенов

Изобретение относится к технологии нефте-, газодобычи, в частности к получению полимерного проппанта в виде расклинивающих микросфер, применяемых при добыче нефти и газа методом гидравлического разрыва пласта. В способе используют полимерную матрицу на основе метатезис-радикально сшитой смеси...
Тип: Изобретение
Номер охранного документа: 0002552750
Дата охранного документа: 10.06.2015
10.07.2015
№216.013.6206

Каталитическая система тримеризации этилена в альфа-олефины с использованием комплекса хрома

Изобретение относится к технологии получения 1-гексена тримеризацией этилена. Изобретение направлено на достижение селективности катализатора по 1-гексену до 84,5% при сохранении высокой производительности каталитической системы и одновременном понижении количества побочно образующихся...
Тип: Изобретение
Номер охранного документа: 0002556636
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.620a

Каталитическая система процесса тримеризации этилена в 1-гексен с использованием катализаторов с разветвленным углеводородным скелетом

Предложена каталитическая система для высокоселективной тримеризации этилена в 1-гексен, состоящая из комплекса хрома (III) с разветвленными строением, имеющим один или несколько заместителей в углеводородном SNS-каркасе, и активатора, представляющего собой смесь триметилалюминия и...
Тип: Изобретение
Номер охранного документа: 0002556640
Дата охранного документа: 10.07.2015
10.08.2015
№216.013.6b67

Способ синтеза n,n-диарилзамещенных 2-трихлорометилимидазолидинов

Изобретение относится к органической химии, в частности к способу синтеза N,N-диарилзамещенных 2-трихлорометилимидазолидинов, включающий последовательное взаимодействие 2,4,6-триметиланилина или 2,6-диизопропиланилина или 2,6-диметиланилина с триэтилортоформиатом в присутствии уксусной кислоты...
Тип: Изобретение
Номер охранного документа: 0002559053
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.6fa5

Рутениевый катализатор метатезисной полимеризации дициклопентадиена в форме катионного комплекса и способ его получения

Изобретение относится к области гомогенного катализа и касается производства катализатора метатезисной полимеризации дициклопентадиена. Рутениевый катализатор полимеризации дициклопентадиена представляет собой...
Тип: Изобретение
Номер охранного документа: 0002560151
Дата охранного документа: 20.08.2015
10.09.2015
№216.013.79d2

Способ получения 2-аминометилстиролов, содержащих гетероциклический фрагмент

Изобретение относится к области органической химии, в частности к новому способу получения 2-аминометилстиролов. Для получения 2-(N,N-диалкиламинометил)стиролов, содержащих гетероциклический фрагмент общей формулы где R=CHOCH, R=o-CH, R=(CH) или R=(CH), изохинолин восстанавливают до...
Тип: Изобретение
Номер охранного документа: 0002562775
Дата охранного документа: 10.09.2015
+ добавить свой РИД