×
19.06.2019
219.017.89c9

Результат интеллектуальной деятельности: СПОСОБ ЛИНЕЙНОЙ СВАРКИ ТРЕНИЕМ ДЕТАЛЕЙ ИЗ ТИТАНОВЫХ СПЛАВОВ

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано при соединении трением деталей в виде пера лопатки и диска турбомашины, в частности при производстве или ремонте моноблоков турбомашин из титановых сплавов. На стадии нагрева заготовки прижимают друг к другу по контактным поверхностям с усилием, обеспечивающим давление сварки, при заданной амплитуде и частоте относительного перемещения деталей вдоль их контактных поверхностей. Стадию проковки осуществляют после прекращения возвратно-поступательных перемещений заготовок приложением давления проковки. Проковку детали совмещают с электроимпульсной обработкой при плотности электрического тока от 10 до 200 МА/м. Нагрев трением производят в два этапа с разной амплитудой и частотой. Давление прижатия составляет от 30 до 180 МПа, а давление проковки от 160 до 320 МПа. Коэффициент удельной подводимой мощности при сварке составляет от 2,2 до 3,2 кВт. Совмещение стадии проковки с упрочняющей электроимпульсной обработкой обеспечивает повышение качества сварных соединений и высокие эксплуатационные свойства деталей. 6 з.п. ф-лы, 1 пр.

Изобретение относится к сварке трением и может быть использовано в различных отраслях машиностроения, например при производстве или ремонте моноблоков турбомашин из титановых сплавов.

Нагрев поверхностей соединяемых сваркой трением деталей может осуществляться либо за счет вращения одной из деталей относительно другой, либо за счет линейного колебательного движения [например, европатент №0719614, МПК B23K 20/12], либо за счет углового колебательного движения [европатент №0624420, МПК B23K 20/12 и патент РФ №2043891, МПК B23K 20/12]. При этом наиболее распространенными и разработанными способами сварки трением являются ротационная сварка и перемешивающая сварка трением [Сварка трением: Справочник / В.К.Лебедев, И.А.Черненко, Р.Михальски и др.; Под общ. ред. В.К.Лебедева, И.А.Черненко, В.И.Билля. - Л.: Машиностроение. Ленингр. отд-ние, 1987. - 236 с.].

Известен также способ сварки трением [А.С. СССР №1512740, опубл. 07.10.89, БИ №37], включающий стадию нагрева, на которой детали приводят в относительное вращение при постоянном приложении контактного давления, и стадию проковки, которую осуществляют после прекращения вращения. Сварка по этому способу производится в температурном интервале, обеспечивающем отсутствие условий закалки быстрорежущей стали в зоне термического влияния.

Недостатками известных способов сварки трением являются либо их непригодность [А.С. СССР №1512740], либо низкая стабильность качества сварных соединений [европатент №0624420, МПК В23К 20/12 и патент РФ №2043891, МПК В23К 20/12] применительно для таких деталей, как лопатки турбомашин, вследствие высокой вероятности возникновения непроваров и подрезов, вызываемых выхватыванием поверхностных слоев металла, прилегающего к стыку, гратом. Эти недостатки вызываются неравномерностью нагрева стыка по всему сечению.

Наиболее близким техническим решением, выбранным в качестве прототипа, является способ линейной сварки трением деталей из сплавов, включающий стадию нагрева, на которой заготовки прижимают друг к другу по контактным поверхностям с усилием, обеспечивающим давление процесса сварки стыка при заданной амплитуде и частоте относительного перемещения заготовок вдоль их контактных поверхностей, и стадию проковки, осуществляемую после прекращения возвратно-поступательных перемещений заготовок приложением давления проковки [Патент США №7,125,227, МПК B23K 20/12 Process for manufacturing or repairing a monobloc bladed disc, 2006 г.]. Указанный способ позволяет изготавливать моноблоки лопаточных дисков турбомашин или производить их ремонт.

Процессы линейной сварки трением становятся ключевыми технологиями формирования сварных соединений из трудносвариваемых материалов и могут быть широко использованы в ремонтном производстве. Достоинством линейной сварки трением является минимальная подготовка поверхностей к свариванию. Линейная сварка трением достаточно активно применяется в авиадвигателестроении для соединения лопаток с дисками [Corzo M., Torres Y., Anglada M., Mateo A. Fracture behaviour of linear friction welds in titanium alloys. // Anales de la Mecanica de Fractura. - V.1, 2007. - Pp.75-80].

Однако известный способ линейной сварки трением деталей [Патент США №7,125,227, МПК B23K 20/12. Process for manufacturing or repairing a monobloc bladed disc, 2006 г.]. не позволяет получать качественные сварные соединения, обеспечивающие высокие эксплуатационные свойства деталей.

Задача, решаемая предлагаемым способом, заключается в повышении качества сварных соединений, обеспечивающих высокие эксплуатационные свойства деталей, за счет совмещения стадии проковки с упрочняющей электроимпульсной обработкой.

Решение поставленной задачи достигается тем, что в способе линейной сварки трением деталей из титановых сплавов, включающем стадию нагрева, на которой заготовки прижимают друг к другу по контактным поверхностям с усилием, обеспечивающим давление процесса сварки стыка при заданной амплитуде и частоте относительного перемещения деталей вдоль их контактных поверхностей, и стадию проковки, осуществляемую после прекращения возвратно-поступательных перемещений деталей приложением давления проковки, в отличие от прототипа проковку детали совмещают с электроимпульсной обработкой, причем электроимпульсную обработку проводят при плотности электрического тока от 10 до 200 МА/м2.

Решение поставленной задачи достигается также тем, что в способе линейной сварки трением деталей из титановых сплавов нагрев производят в два этапа: на первом этапе задают амплитуду от 3 до 5 мм и частоту от 15 до 70 Гц, а на втором этапе задают амплитуду от 1 до 2 мм и частоту от 40 до 80 Гц, а величину давления процесса сварки берут равной от 30 до 180 МПа, а величину давления проковки равной от 160 до 320 МПа, причем время первого этапа нагрева берут от 0,3 до 6 с, а время второго этапа нагрева берут равным от 0,2 до 2 с, при этом возможны следующие варианты способа: интервал времени остановки возвратно-поступательных перемещений деталей составляет от 0,05 до 0,3 с; в качестве свариваемых деталей из титановых сплавов используют перо лопатки и диск турбомашины.

Решение поставленной задачи достигается также тем, что в способе линейной сварки трением деталей из титановых сплавов коэффициент удельной подводимой мощности при сварке деталей турбомашин выбирают от 2,2 до 3,2 кВт.

Решение поставленной задачи достигается также тем, что в способе линейной сварки трением деталей из титановых сплавов нагрев осуществляют в температурном интервале сверхпластичности металла одной из заготовок.

В процессе возвратно-поступательного движения деталей подлежащие свариванию поверхности прижимаются для образования плотного контакта. Генерируемая в плоскости сварки теплота способствует пластической деформации приповерхностных объемов свариваемых материалов деталей. В процессе сварки вязкопластичные слои металла перемещаются к границам свариваемой поверхности. При этом происходит удаление окислов и загрязнений, которые могут присутствовать в зоне сварки. Короткая длительность процесса сварки (несколько секунд) обеспечивает малую зону термического влияния. Для обеспечения точности сварки необходимо предусматривать мероприятия для устранения перекосов и погрешностей расположения свариваемых поверхностей. Процесс формирования сварного шва достаточно сложен и определяется трибологическими свойствами контакта, особенностями протекания процессов внутреннего трения и пластической деформации, а также физико-химическими и металлургическими аспектами.

Для осуществления интенсивного нагрева поверхностей стыка соединяемых заготовок, а также для качественного удаления загрязнений и окислов из зоны контакта необходимо производить подвод значительной энергии, которая определяется, при прочих равных условиях, частотой и амплитудой возвратно-поступательного движения заготовок, а также усилием их прижатия. При этом одна и та же величина подводимой энергии может быть получена при различном сочетании указанных параметров процесса сварки и свойства сварного соединения во всех этих случаях будут различаться.

Первые стадии нагрева места стыка деталей требуют интенсивного нагрева и значительных амплитуд для удаления загрязнений через флэш. Так, например, диапазон амплитуд от 1 до 2 мм недостаточен для удаления загрязнений и окислов из зоны контакта деталей. В то же время качественное удаление загрязнений и окислов происходит при амплитудах от 3 до 5 мм.

В то же время для более качественного формирования шва, с меньшими значениями остаточных напряжений и дефектов, более целесообразен плавный переход от стадии нагрева к стадии проковки.

Так, при сварке известным способом титановых сплавов, таких, например как Ti-6Al-4V, в зоне центра сварки микроструктура из первоначальной бимодальной α-β, а в процессе трения полностью переходит в однофазную β-структуру. Измерение температуры в процессе сварки показало, что в зоне сварки она превышает 1100°С, т.е. превышает температуру β-перехода в 995°С. В зоне сварки существенно уменьшается размер зерна: он составляет от 3.8 до 5.3 мкм против 12.5 мкм в исходном материале. Исследование характера и величин остаточных напряжений и деформаций после сварки сплава Ti-6Al-4V показало, что изменение деформаций и напряжений максимально в направлении нормали к поверхности сварного шва.

В связи с этим стадия нагрева в предлагаемом способе разбивается на два этапа. Функцией первого этапа является интенсивный разогрев поверхности и удаление окислов и загрязнений. Функцией второго этапа является повышение качества формирования сварного соединения и более плавный переход к стадии проковки. При первом этапе нагрева происходит интенсивное перемешивание металла в зоне физического контакта и вовлечение в нее еще большего объема материала. После окончания первого этапа, параметры которого подбираются экспериментально в зависимости от конкретного сплава, размеров и геометрии свариваемых заготовок, обеспечивается более мягкий режим трения по всей контактной поверхности, после чего при отключении привода возвратно-поступательного движения заготовок осуществляют проковку для окончательного формирования сварного соединения.

Кроме того, применение упрочняющей электроимпульсной обработки позволяет значительно повысить эксплуатационные свойства сварного соединения. Воздействие мощных импульсов электрического поля (электрический ток плотности порядка от 10 до 200 MA/м2) на дефектную структуру материала лопатки приводит к дополнительному локальному тепловому воздействию, особенно интенсивно проявляющемуся в области его структурных дефектов. Это приводит к значительной интенсификации процессов восстановления структуры материала в областях с повышенной плотностью дефектов, которые протекают без перегрева основной массы металла обрабатываемой детали. Кроме того, дополнительным преимуществом от использования импульсов электрического поля является эффект упрочнения [Зуев Л.Б., Соснин О.В., Подборонников С.Ф. и др. // ЖТФ. 2000. Т.70. Вып.3. С.24-26]. Наличие же значительных структурных дефектов материала лопаток, особенно в области сварного соединения, позволяет указанному эффекту наиболее сильно проявиться именно в дефектной зоне материала соединенных деталей.

Способ осуществляется следующим образом. На собранные встык и зафиксированные соединяемые детали устанавливают одно из известных устройств для линейной сварки трением [например, патент РФ №2280546, МПК B23K 20/12. Инструмент для фиксации лопаток и его применение для сварки лопаток трением. Опубл. 27.07.2006 г. Бюл. №21]. Затем задают требуемое усилие прижатия, выбирая его из диапазона значений от 30 до 180 МПа, устанавливают требуемые значения первого и второго этапов стадии нагрева и усилие проковки. Причем на первом этапе нагрева величину амплитуды задают из диапазона от 3 до 5 мм и частоту из диапазона от 15 до 70 Гц, а на втором этапе задают амплитуду от 1 до 2 мм и частоту от 40 до 80 Гц. Величину давления проковки выбирают из диапазона значений от 160 до 320 МПа, а плотность электрического тока процесса электроимпульсной обработки, совмещенной с проковкой, выбирают из диапазона от 10 до 200 MA/м2. Затем включают сварочное устройство, запрограммированное согласно выбранным параметрам процесса, и производят весь цикл сварки с упрочняющей электроимпульсной обработкой.

Пример. С целью оценки эксплуатационных свойств деталей из титановых сплавов (ВТ6, ВТ14, ВТ3-1, ВТ22), полученных по предлагаемому способу и способу-прототипу, были проведены следующие исследования. Были изготовлены две партии лопаток. Первая партия лопаток изготавливалась по способу-прототипу, а вторая - в соответствии с предлагаемым способом.

Линейную сварку трением деталей по способу-прототипу осуществляли по следующим режимам. Амплитуда: 3 мм (неудовлетворительный результат (Н.Р.); 4 мм (Н.Р.); 5 мм (Н.Р.). Частота 15 Гц (Н.Р.); 30 Гц (Н.Р.); 45 Гц (Н.Р.); 60 Гц (Н.Р.); 70 Гц (Н.Р.). Величина давления процесса сварки 30 МПа (Н.Р.); 60 МПа (Н.Р.); 120 МПа (Н.Р.); 180 МПа (Н.Р.). Величина давления проковки 160 МПа (Н.Р.); 260 МПа (Н.Р.); 320 МПа (Н.Р.).

Линейную сварку трением деталей по предлагаемому способу осуществляли по следующим режимам. Первый этап нагрева: амплитуда: 2 мм (-неудовлетворительный результат (Н.Р.); 3 мм; 4 мм; 5 мм; 5 мм (Н.Р.). Частота 12 Гц (H.P.); 15 Гц; 30 Гц; 45 Гц; 60 Гц; 70 Гц; 75 Гц; (Н.Р.). Величина давления процесса сварки 26 МПа (Н.Р.); 30 МПа; 60 МПа; 120 МПа; 180 МПа; 190 МПа (Н.Р.). Время: 0,2 с (Н.Р.); 0,3 с; 6 с; 7 с (Н.Р.). Второй этап нагрева: Амплитуда: 0,5 мм (Н.Р.); 1 мм; 2 мм; 3 мм (Н.Р.). Частота 30 Гц (Н.Р.); 40 Гц; 60 Гц; 80 Гц; 85 Гц; (Н.Р.). Величина давления процесса сварки 26 МПа (Н.Р.); 30 МПа; 60 МПа; 120 МПа; 180 МПа; 190 МПа (Н.Р.). Время: 0,1 с (Н.Р.); 0,2 с; 1 с; 2 с; 3 с (Н.Р.). Время остановки возвратно-поступательных перемещений заготовок составляло: 0,03 с (Н.Р.); 0,05 с; 0,3 с; 0,4 с (Н.Р.).

Величина давления проковки 150 МПа (Н.Р.); 160 МПа; 260 МПа; 320 МПа; 330 МПа (Н.Р.).

Плотность электрического тока процесса электроимпульсной обработки 8 MA/м2 (H.P.); 10 MA/м2; 30 MA/м2; 60 MA/м2; 100 MA/м2; 140 MA/м2; 200 MA/м2; 210 MA/м2 (H.P.).

Коэффициент удельной подводимой мощности PI брался равным 2,0 кВт (H.P.); 2,2 кВт; 2,6 кВт; 3,2 кВт; 3,4 кВт (Н.Р.). Коэффициент удельной подводимой мощности PI определялся по формуле:

, Вт

где а - амплитуда, f - частота, Р - давление трения, А - площадь поверхности сварки, k1 - коэффициент, учитывающий геометрию сечений контактных поверхностей (для лопаток k1 брался равным: 1,03 (Н.Р.); 1,04; 1,06; 1,08; 1,09 (Н.Р.)), k2 - коэффициент, учитывающий изменение условий теплоотвода от контактных поверхностей (для контакта типа блиск k2 брался равным: 1,01 (Н.Р.); 1,02; 1,03; 1,06; 1,07 (Н.Р.).

Нагрев в предлагаемом способе линейной сварки трением осуществлялся также в температурном интервале сверхпластичности металла одной из заготовок (параметры процессов сварки которых для приведенных выше титановых сплавов являются ноу-хау). (Н.Р.) - означает появление технологических дефектов в сварном соединении или низкие эксплуатационные свойства.

Испытания, проведенные на выносливость и циклическую прочность лопаток из титановых сплавов в условиях эксплуатационных температур (при 300-450°С) на воздухе, показали, что условный предел выносливости (σ-1) лопаток в среднем составляет по способу-прототипу 290-325 МПа (Н.Р.), а по предлагаемому способу 445-460 МПа.

Повышение предела выносливости у лопаток, полученных сваркой по предлагаемому способу, указывает на то, что при применении одного из следующих вариантов проведения линейной сварки трением: стадия нагрева, на которой заготовки прижимают друг к другу по контактным поверхностям с усилием, обеспечивающим давление процесса сварки стыка при заданной амплитуде и частоте относительного перемещения заготовок вдоль их контактных поверхностей, и стадия проковки, осуществляемая после прекращения возвратно-поступательных перемещений заготовок приложением давления проковки; совмещение проковки детали с электроимпульсной обработкой; проведение электроимпульсной обработки проводят при плотности электрического тока от 10 до 200 MA/м2; проведение нагрева в два этапа: на первом этапе задают амплитуду от 3 до 5 мм и частоту от 15 до 70 Гц, а на втором этапе задают амплитуду от 1 до 2 мм и частоту от 40 до 80 Гц, а величину давления процесса сварки берут равной от 30 до 180 МПа, а величину давления проковки равной от 160 до 320 МПа, причем время первого этапа нагрева берут от 0,3 до 6 с, а время второго этапа нагрева берут равным от 0,2 до 2 с; время остановки возвратно-поступательных перемещений заготовок составляет от 0,05 до 0,3 с; в качестве свариваемых заготовок из титановых сплавов используют перо лопатки и диск турбомашины; коэффициент удельной подводимой мощности при сварке деталей турбомашин выбирают от 2,2 до 3,2 кВт; осуществление нагрева в температурном интервале сверхпластичности металла одной из заготовок позволяет решить поставленную в предлагаемом техническом решении задачу - повысить качество сварных соединений и обеспечить высокие эксплуатационные свойства деталей за счет совмещения стадии проковки с упрочняющей электроимпульсной обработкой.

Источник поступления информации: Роспатент

Показаны записи 101-103 из 103.
19.04.2019
№219.017.3211

Способ получения ультрамелкозернистой структуры в заготовках из металлов и сплавов

Изобретение относится к деформационной обработке металлов и сплавов и может быть использовано в машиностроении, авиа-двигателестроении, автомобильной промышленности. Способ включает многократное повторение операций осадка-протяжка с приложением деформирующего усилия поочередно по трем осям...
Тип: Изобретение
Номер охранного документа: 0002456111
Дата охранного документа: 20.07.2012
19.06.2019
№219.017.89cf

Способ линейной сварки трением заготовок из титановых сплавов для моноблоков турбомашин

Изобретение может быть использовано при производстве или ремонте моноблоков турбомашин из титановых сплавов. На стадии нагрева заготовки прижимают друг к другу по контактным поверхностям с усилием, обеспечивающим давление процесса сварки стыка при заданной амплитуде и частоте относительного...
Тип: Изобретение
Номер охранного документа: 0002456143
Дата охранного документа: 20.07.2012
27.06.2019
№219.017.98d9

Установка для очистки поверхностных сточных вод

Изобретение относится к области биотехнологии. Предложена установка для очистки стоков. Установка содержит водосточный коллектор, отстойную камеру с секциями для удаления нефтепродуктов и взвешенных веществ, насос для подачи стоков на коническое биоплато. Секция удаления нефтепродуктов...
Тип: Изобретение
Номер охранного документа: 0002692590
Дата охранного документа: 25.06.2019
Показаны записи 111-120 из 146.
23.07.2019
№219.017.b751

Способ последовательного электролитно-плазменного полирования лопаток блиска турбомашин и рабочая емкость для его реализации

Изобретение относится к электролитно-плазменному полированию изделий из легированных сталей, тугоплавких и титановых сплавов и может быть использовано в турбомашиностроении при обработке лопаток блиска компрессоров газотурбинных двигателей для обеспечения необходимых эксплуатационных свойств...
Тип: Изобретение
Номер охранного документа: 0002694935
Дата охранного документа: 18.07.2019
23.07.2019
№219.017.b78d

Способ электрополирования лопаток блиска и рабочий контейнер для его реализации

Изобретение относится к электрополированию лопаток блисков и может быть использовано в турбомашиностроении при обработке лопаток блиска компрессоров газотурбинных двигателей, для обеспечения необходимых физико-механических и эксплуатационных свойств деталей турбомашин, а также в качестве...
Тип: Изобретение
Номер охранного документа: 0002694941
Дата охранного документа: 18.07.2019
10.08.2019
№219.017.bd86

Материал прирабатываемого уплотнения турбомашины

Изобретение относится к материалам прирабатываемого уплотнения турбомашины. Материал содержит частицы порошкового наполнителя с размерами частиц порошка от 30 мкм до 100 мкм и порошковой добавки, адгезионно соединенные между собой в монолитный материал. В качестве материала наполнителя...
Тип: Изобретение
Номер охранного документа: 0002696985
Дата охранного документа: 08.08.2019
21.08.2019
№219.017.c1bd

Способ электрохимической обработки внутреннего канала металлической детали и электрод-инструмент для его реализации

Изобретение относится к области машиностроения и может быть использовано для обработки каналов путем электрохимического шлифования или полирования. Способ включает перемещение электрода-инструмента по внутренней поверхности канала, вдоль его оси при подключении детали к аноду, а...
Тип: Изобретение
Номер охранного документа: 0002697759
Дата охранного документа: 19.08.2019
21.08.2019
№219.017.c1fb

Способ сухого локального электрополирования лопаток блиска и рабочий контейнер для его реализации

Изобретение относится к технологии электрополирования деталей сложной формы и может быть использовано в турбомашиностроении при обработке лопаток блиска компрессоров газотурбинных двигателей. Способ включает закрепление блиска на держателе, погружение лопаток блиска в электропроводящие пористые...
Тип: Изобретение
Номер охранного документа: 0002697757
Дата охранного документа: 19.08.2019
21.08.2019
№219.017.c1ff

Способ изготовления перфорационных отверстий в полой лопатке турбины из жаропрочного сплава

Изобретение относится к области машиностроения и может быть использовано для обработки отверстий малого диаметра, например перфорационных отверстий в лопатках из жаропрочных сплавов путем удаления дефектного слоя электрохимической обработкой. Способ включает прожиг отверстий на пере лопатки...
Тип: Изобретение
Номер охранного документа: 0002697751
Дата охранного документа: 19.08.2019
24.08.2019
№219.017.c37a

Пальчиковое уплотнение

Изобретение относится к области турбо- и двигателестроения и может быть использовано в конструкциях газотурбинных двигателей и паровых турбин для уплотнения радиальных зазоров. Пальчиковое уплотнение содержит примыкающие друг к другу кольцевые детали, каждая из которых содержит равномерно...
Тип: Изобретение
Номер охранного документа: 0002698170
Дата охранного документа: 22.08.2019
07.09.2019
№219.017.c840

Способ последовательного электрополирования лопаток блиска и рабочий контейнер для его реализации

Изобретение относится к технологии электрополирования деталей сложной формы и может быть использовано в турбомашиностроении при обработке лопаток блиска компрессоров газотурбинных двигателей для обеспечения необходимых физико-механических и эксплуатационных свойств деталей турбомашин. Способ...
Тип: Изобретение
Номер охранного документа: 0002699495
Дата охранного документа: 05.09.2019
02.10.2019
№219.017.cce0

Способ изготовления огнестойкого шланга

Изобретение относится к изготовлению огнестойкого шланга. Осуществляют одевание на дорн оплетки из огнестойкого материала, заливку в цилиндрическую форму, соответствующую внешней поверхности шланга, пасты из кремнийорганического каучука. Осуществляют погружение в упомянутую форму с пастой дорна...
Тип: Изобретение
Номер охранного документа: 0002701235
Дата охранного документа: 25.09.2019
02.10.2019
№219.017.cf37

Способ электрополирования металлической детали

Изобретение относится к области электрополирования металлических деталей, в частности лопаток турбомашин из титановых сплавов, и может быть использовано в турбомашиностроении при полировании лопаток паровых турбин, газоперекачивающих установок и компрессоров газотурбинных двигателей. Способ...
Тип: Изобретение
Номер охранного документа: 0002700226
Дата охранного документа: 13.09.2019
+ добавить свой РИД