×
19.06.2019
219.017.894f

СПОСОБ ОБНАРУЖЕНИЯ И ИДЕНТИФИКАЦИИ СКРЫТЫХ ОПАСНЫХ ПРЕДМЕТОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Использование: для обнаружения и идентификации скрытых опасных предметов. Сущность заключается в том, что образуют и модулируют поток нуклидов водорода, ускоряют их к мишени, генерируют нейтроны на мишени, облучают нейтронами объект контроля, регистрируют гамма-кванты радиационного захвата или неупругого рассеяния и фиксируют времена прихода гамма-импульсов к детектору с заданным энергетическим распределением, соответствующим ядрам элементов, составляющих опасное вещество, при этом изменяют направление потока ускоренных нуклидов водорода относительно первоначального сначала по вертикали, а затем по горизонтали, регистрацию гамма-квантов и фиксацию их времени прихода к детектору осуществляют после каждого изменения направления оси симметрии нейтронного потока, далее определяют пространственные координаты искомого предмета в декартовой системе координат с помощью соответствующей системы уравнений. Технический результат: повышение экспрессности и удобства измерений.
Реферат Свернуть Развернуть

Предлагаемое изобретение относится к ядерным методам интроскопии, конкретно, к технике обнаружения и идентификации скрытых опасных предметов в крупногабаритных средствах транспортировки (большегрузные контейнеры, автомобили и т.д.) с помощью нейтронных полей, генерируемых в ускорителях нуклидов водорода.

Известны средства обнаружения и идентификации взрывчатых и наркотических веществ, использующие взаимодействие нейтронов с ядрами элементов, составляющих эти вещества [1]. К таким взаимодействиям относятся ядерные реакции неупругого рассеяния, радиационного захвата и активации, в результате протекания которых образуются гамма-кванты. По их спектру можно осуществлять указанную идентификацию.

Наиболее близким к предлагаемому техническому решению является способ обнаружения и идентификации скрытых опасных предметов контроля в большегрузных контейнерах и автомобилях, описанный в работе [2], который может быть взят за прототип.

Согласно способу-прототипу образуют, модулируют и ускоряют к мишени поток нуклидов водорода, генерируют нейтроны на мишени и облучают нейтронами объект контроля с трех пространственно разнесенных точек, для чего изменяют положение мишени ускорителя относительно объекта контроля путем поступательного перемещения ускорителя или объекта контроля перпендикулярно направлению ускорения нуклидов водорода и определяют пространственные координаты искомого предмета в декартовой системе координат, жестко связанной с объектом контроля, с помощью специальной системы из трех алгебраических уравнений.

Недостатком указанного способа является необходимость пространственного поступательного перемещения ускорителя или объекта контроля, что не позволяет обеспечить достаточную экспрессность и удобство измерений.

Техническим результатом предлагаемого способа является повышение экспрессности и удобства измерений.

Этот результат достигается тем, что в известном способе [2], включающем образование, модуляцию и ускорение к мишени нуклидов водорода, генерацию нейтронов, облучение нейтронами объекта контроля, регистрацию гамма-квантов радиационного захвата или неупругого рассеяния для заданной энергетической области их спектра, соответствующей спектру идентифицируемого опасного вещества, заложенному в компьютерной программе обработки информации и фиксацию времени прихода гамма-квантов к детектору относительно нейтронной вспышки, согласно предлагаемому способу, изменяют направление потока ускоренных нуклидов водорода относительно первоначального, сначала по вертикали, а затем по горизонтали, регистрацию гамма-квантов и фиксацию времени их прихода к детектору осуществляют после каждого изменения направления потока ускоренных нуклидов водорода, а затем определяют пространственные координаты (x, y, z) искомого предмета в системе, связанной с объектом контроля, при выборе за начало отсчета точки расположения мишени, с помощью системы уравнений:

где i=1, 2, 3 - номер измерения, τi - времена прихода гамма-квантов к детектору,

,

i, j, k - орты прямоугольной системы координат, с - скорость света, rD - радиус-вектор детектора гамма-квантов,

,

Т - кинетическая энергия ускоренного нуклида водорода, Q - энергетический выход ядерной реакции образования нейтрона в мишени ускорителя, А - атомный номер ядра-реагента в мишени ускорителя, М - масса нейтрона, k - атомная масса нуклида водорода,

,

,

α, β - вертикальный и горизонтальный углы ориентации оси симметрии излучаемого нейтронного потока.

Система расчетных уравнений (1-2) получается при рассмотрении процесса образования нейтрона в мишени в результате (p, n) или (d, n) ядерной реакции. В соответствии с законом сохранения энергии имеет место следующее соотношение:

где Тя - кинетическая энергия образовавшегося нового ядра, V - скорость нейтрона.

Закон сохранения импульса удобно записать с учетом оговоренных выше условий ориентации мишени ускорителя относительно объекта контроля в следующем виде:

где n - единичный вектор, определяющий направление потока ускоренных нуклидов водорода, nя - единичный вектор, определяющий направление движения нового ядра.

Из уравнений (3), (4) следует формула для скорости нейтрона:

.

Каждому из трех проводимых измерений соответствует свое направление оси симметрии нейтронного потока, определяемое направлением потока ускоренных нуклидов водорода, задаваемым единичными векторами:

n1={0,0,1}; n2={sinα,0,cosα}; n3={0, sinβ, cosβ}.

Таким образом, время подлета нейтрона к искомому предмету при i-м измерении будет определяться следующим выражением:

.

Добавляя в это выражение время движения гамма-кванта от искомого предмета до детектора, приходим к выражению (1):

Для реализации предлагаемого способа может быть использован резонансный ускоритель протонов или дейтронов с энергией от 2 до 10МэВ.

В процессе контроля осуществляется ускорение протонов или дейтронов к мишени, содержащей необходимый нуклид-реагент (например, тритий или дейтерий). В объеме мишени в результате (p, n) или (d, n) ядерной реакции образуется поток быстрых нейтронов.

Изменение направления потока ускоренных нуклидов водорода можно осуществлять как механическим поворотом ускорителя, так и путем отклонения пучка нуклидов водорода в вертикальном и горизонтальном направлении с помощью управляемых электрических или магнитных дефлекторов, установленных в рабочем объеме ускорителя на трассе пучка, перед мишенью.

Когда фронт нейтронного потока достигает скрытого объекта, генерируется поток гамма-квантов, часть из которых достигает детектора, расположенного рядом с мишенью ускорителя.

Определяя время прихода импульса гамма-излучения с заданным энергетическим распределением, соответствующим ядрам элементов, составляющих опасное вещество, к детектору для трех различных направлений оси симметрии излучаемого нейтронного потока, подставляя эти значения в систему уравнений (1) и решая эту систему, находим координаты искомого скрытого опасного предмета. В частности, если предметом обнаружения является взрывчатое вещество (гексоген, октоген и т.д.), то идентификация должна проводиться по энергетическим гамма-спектрам азота, углерода, кислорода и водорода.

Для снятия спектрограмм может быть использован гамма-спектрометр, подключенный к системе детектирования, состоящей из сцинтилляционного кристалла, преобразователя светового сигнала в электрический и многоканального амплитудного анализатора. В качестве таких кристаллов могут быть использованы соединения NaI(T1), CsJ(T1), LiI(Eu), ViGe3O12, CdWO4 и т.д., в которых под действием гамма-квантов возбуждаются короткие вспышки света (сцинтилляции). Причем энергия такой вспышки пропорциональна энергии регистрируемого фотона.

Сцинтиллирующий объем оптически связан с электронным фотоумножителем или светодиодом, которые преобразовывают световые вспышки в электрические импульсы. Их амплитуды, после процесса формирования и калибровки, также оказываются пропорциональными энергиям гамма-квантов. Далее поток этих импульсов поступает в многоканальный амплитудный анализатор, который выдает информацию об энергетическом спектре гамма-квантов. После его компьютерной обработки по известным алгоритмам, используемым, например, при гамма-спектрометрическом элементном анализе горных пород [3], вырабатывается окончательный сигнал на фиксацию времени τi. Этот сигнал компьютер выдает после совпадения измеренного спектра гамма-излучения с эталонным, заданным в компьютере.

Описанная процедура измерений осуществляется три раза, чтобы число уравнений в системе (1) было равно числу неизвестных. В принципе, для повышения точности измерений контроль можно проводить и для большего числа положений оси симметрии нейтронного потока. При этом система уравнений (1) становится переопределенной, и для ее решения следует привлекать аппарат метода наименьших квадратов.

Рассмотрим в качестве примера реализации предлагаемого способа контроль контейнера с характерным линейным размером ~10 м. В этом случае, при точности локализации опасного предмета ~10%, расстояние между передним и задним фронтом нейтронного пакета не должно превышать величины Δr~1 м.

Пусть в качестве генератора нейтронов используется резонансный ускоритель дейтронов с метало-тритиевой мишенью на энергию 2 МэВ. Энергия нейтронов в этом случае оценивается примерно в 15 МэВ. Это соответствует скорости нейтрона V≈5.107 м/с. Тогда для обеспечения необходимой степени локализации длительность импульса дейтронного тока на мишень не должна превышать величину

,

что вполне достижимо для ионного резонансного ускорителя.

Порядок расстояния мишень- объект- (L~10 м) оценивается в соответствии с неравенством, приведенным в прототипе [2]:

0.5L<h<L<H<2.5L,

где h, H соответственно минимальное и максимальное удаление мишени ускорителя от объекта контроля.

В качестве системы регистрации могут быть использованы стандартные средства спектрометрии гамма-полей, применяемые, например, в ядерной геофизике [3].

Предлагаемый способ позволит существенно увеличить эффективность обнаружения, локализации и идентификации скрытых опасных предметов в крупногабаритных средствах транспортировки за счет повышения чувствительности и достоверности контроля, а также экспрессности измерений.

Источники информации

1. Maglich B.C. et al. 4th International Symposium on Technology and the Mine Problems, March 13-16, Naval Postgraduate Schol, Monterey, California, p.89.

2. Богданович Б.Ю., Нестерович А.В., Шиканов А.Е. Способ обнаружения и идентификации скрытых опасных предметов. Патент РФ на изобретение № 2356036 с приоритетом от 27.07.2007.

3. Разведочная ядерная геофизика. Справочник геофизика. М.: Недра, 1986, 432 с.

Способ обнаружения и идентификации скрытых опасных предметов, при котором образуют и модулируют поток нуклидов водорода, ускоряют их к мишени, генерируют нейтроны на мишени, облучают нейтронами объект контроля, регистрируют гамма-кванты радиационного захвата или неупругого рассеяния и фиксируют времена прихода гамма-импульсов к детектору с заданным энергетическим распределением, соответствующим ядрам элементов, составляющих опасное вещество, отличающийся тем, что изменяют направление потока ускоренных нуклидов водорода относительно первоначального, сначала по вертикали, а затем по горизонтали, регистрацию гамма-квантов и фиксацию их времени прихода к детектору осуществляют после каждого изменения направления оси симметрии нейтронного потока, далее определяют пространственные координаты искомого предмета в декартовой системе координат с помощью системы уравнений: где i=1,2,3,r=ix+jy+kz, i, j, k - орты прямоугольной системы координат,х, у, z - координаты искомого предмета,τ - время прихода гамма-квантов с энергией в заданной энергетической области,с - скорость света,r - радиус вектор детектора гамма-квантов,Т - кинетическая энергия ускоренного нуклида водорода,Q - энергетический выход ядерной реакции образования нейтрона в мишени ускорителя,А - атомный номер ядра-реагента в мишени ускорителя,М - масса нейтрона,k - атомная масса нуклида водорода,α, β - вертикальный и горизонтальный углы ориентации оси симметрии излучаемого нейтронного потока.
Источник поступления информации: Роспатент

Показаны записи 1-6 из 6.
20.02.2019
№219.016.c1f8

Способ получения тонких пленок на основе eus

Изобретение относится к области полупроводниковой нанотехнологии, в частности к области получения тонкопленочных слоев магнитных полупроводников, и может быть использовано при получении интегральных схем. Способ включает формирование на подложке тонкопленочного слоя EuS путем осаждения в...
Тип: Изобретение
Номер охранного документа: 0002428505
Дата охранного документа: 10.09.2011
20.02.2019
№219.016.c312

Способ и устройство для получения мюонографий

Изобретение относится к ядерной физике, а точнее, к способам получения изображений различных объектов с использованием мюонов космических лучей и предназначено для мониторинга состояния и процессов в окружающей среде. Мюоны космических лучей регистрируют одновременно со всех направлений...
Тип: Изобретение
Номер охранного документа: 0002406919
Дата охранного документа: 20.12.2010
19.04.2019
№219.017.30ec

Устройство для преобразования двоичного кода в код системы остаточных классов (сок)

Изобретение относится к области вычислительной техники и может быть использовано в вычислительных системах для преобразования двоичных кодов в коды системы остаточных классов (СОК). Техническим результатом является увеличение разрядности преобразуемых в СОК двоичных кодов. Устройство содержит...
Тип: Изобретение
Номер охранного документа: 0002413279
Дата охранного документа: 27.02.2011
13.06.2019
№219.017.8299

Способ получения и анализа ионов аналита

Изобретение относится к области аналитического приборостроения, к спектрометрии обнаружения паров органических веществ в составе воздуха, а также к области газового анализа для определения микроследов опасных веществ - взрывчатых веществ, наркотиков, токсичных веществ и т.п. Способ получения и...
Тип: Изобретение
Номер охранного документа: 0002434225
Дата охранного документа: 20.11.2011
13.06.2019
№219.017.829c

Устройство для получения и анализа ионов аналита

Изобретение относится к области аналитического приборостроения, в частности к определению микроследов опасных веществ - взрывчатых веществ, наркотиков, токсичных веществ и т.п. - при прохождении контрольных пунктов в аэропортах, железнодорожных вокзалах, выставках, при поиске скрытых закладок...
Тип: Изобретение
Номер охранного документа: 0002434226
Дата охранного документа: 20.11.2011
13.06.2019
№219.017.82af

Способ определения компонентного состава природного газа в реальном масштабе времени

Изобретение относится к области абсорбционной спектроскопии и может быть использовано для компонентного анализа природного газа и газовых смесей на его основе в реальном масштабе времени. Способ заключается в цикличном во времени или одновременном измерении поглощения излучения анализируемым...
Тип: Изобретение
Номер охранного документа: 0002441219
Дата охранного документа: 27.01.2012
Показаны записи 1-10 из 11.
27.05.2014
№216.012.cb5a

Способ определения состояния продуктивного пласта импульсным нейтронным методом

Использование: для определения состояния продуктивного пласта импульсным нейтронным методом. Сущность изобретения заключается в том, что перемещают каротажный прибор по стволу скважины, генерируют импульсно-периодический поток быстрых нейтронов в скважине, осуществляют временной анализ...
Тип: Изобретение
Номер охранного документа: 0002517824
Дата охранного документа: 27.05.2014
27.06.2014
№216.012.d7e8

Ускорительная нейтронная трубка

Заявленное изобретение относится к приборам для ускорения ионов в электростатических полях, конкретно к технике генерации нейтронов при ядерном взаимодействии дейтронов с тритиевыми мишенями. Заявленное устройство содержит герметичный корпус, внутри которого соосно расположены цилиндрический...
Тип: Изобретение
Номер охранного документа: 0002521050
Дата охранного документа: 27.06.2014
20.07.2014
№216.012.df98

Импульсный генератор нейтронов

Заявленное изобретение относится к приборам для генерации нейтронов при ядерном взаимодействии ускоренных дейтронов с мишенями, содержащими тяжелые изотопы водорода. Заявленное устройство содержит вакуумную ускорительную трубку с анодом и катодом с мишенью, расположенной на его внутренней...
Тип: Изобретение
Номер охранного документа: 0002523026
Дата охранного документа: 20.07.2014
10.07.2015
№216.013.5fb1

Импульсный генератор нейтронов

Изобретение относится к области прикладной ядерной физики, конкретно, к устройствам для генерации импульсных нейтронных потоков, предназначенных для использования в прикладных задачах науки и техники, например, для геофизических применений. Импульсный генератор нейтронов состоит из...
Тип: Изобретение
Номер охранного документа: 0002556038
Дата охранного документа: 10.07.2015
25.08.2017
№217.015.c817

Способ ускорения ионов импульсным электронным потоком

Изобретение относится к технике ускорения заряженных частиц в сильных электрических полях, конкретно к методам коллективного ускорения ионов импульсными электронными потоками. Технический результат - увеличение тока ускоренных дейтронов при сохранении или уменьшении размеров дрейфового...
Тип: Изобретение
Номер охранного документа: 0002619081
Дата охранного документа: 11.05.2017
19.01.2018
№218.016.0775

Способ повышения нефтеотдачи пласта с высоковязкой нефтью

Изобретение относится к области промысловой геофизики и может быть использовано для интенсификации добычи тяжелой высоковязкой нефти. Заявлен способ повышения нефтеотдачи пласта с высоковязкой нефтью, при котором погружают в скважину снаряд, содержащий спиральную линию, с помощью которой...
Тип: Изобретение
Номер охранного документа: 0002631451
Дата охранного документа: 22.09.2017
13.10.2018
№218.016.9183

Способ генерации электрических квазигармонических колебаний в индуктивно-резистивной нагрузке

Изобретение относится к области электротехники и может быть использовано для питания током ультразвуковой частоты индукционных нагревателей, акустических излучателей или иных индуктивно-резистивных нагрузок, расположенных внутри нефтяных скважин. Заявлен способ генерации сигнала на базе...
Тип: Изобретение
Номер охранного документа: 0002669382
Дата охранного документа: 11.10.2018
05.04.2019
№219.016.fd78

Импульсный генератор термоядерных нейтронов

Изобретение относится к устройству для генерации импульсных нейтронных потоков. В устройстве предусмотрен импульсный источник напряжения, подключенный к двум идентичным диодам для ускорения протонов, размещенным внутри рабочего вакуумного объема напротив друг друга, электроды которых...
Тип: Изобретение
Номер охранного документа: 0002683963
Дата охранного документа: 03.04.2019
09.05.2019
№219.017.4d71

Способ упрочнения рабочей поверхности стальных деталей

Изобретение относится к области металлургии и может быть использовано, предпочтительно, для упрочнения наружной поверхности деталей железнодорожного подвижного состава. Для повышения качества обработки и ресурса работы деталей на поверхностный слой детали, установленной с возможностью вращения,...
Тип: Изобретение
Номер охранного документа: 0002374332
Дата охранного документа: 27.11.2009
29.05.2019
№219.017.6a25

Ионный диод для генерации нейтронов

Заявленное изобретение относится к приборам для ускорения ионов в электростатических полях, конкретно к технике генерации нейтронов при ядерном взаимодействии нуклидов тяжелого водорода. Сущность изобретения заключается в том, что в известном ионном диоде для генерации нейтронов, содержащем...
Тип: Изобретение
Номер охранного документа: 0002461151
Дата охранного документа: 10.09.2012
+ добавить свой РИД