×
13.06.2019
219.017.81e5

Результат интеллектуальной деятельности: СОСТАВ ДЛЯ СОЗДАНИЯ ПРОТИВОФИЛЬТРАЦИОННОГО ЭКРАНА В НИЗКОТЕМПЕРАТУРНЫХ ГРУНТАХ И ПОРОДАХ И СПОСОБ ПОЛУЧЕНИЯ ЭТОГО СОСТАВА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области гидротехнического строительства и может быть использовано для создания противофильтрационного экрана, восстановления водонепроницаемости гидротехнического сооружения (понижения водопроницаемости) из низкотемпературных грунтов и пород, особенно в районах вечной мерзлоты, а также при создании и ремонте противофильтрационных завес (экранов) в грунтовых плотинах, построенных в районах распространения многолетнемерзлых пород. Состав для создания противофильтрационного экрана в гидротехнических сооружениях в районах распространения многолетнемерзлых пород содержит поливиниловый спирт, борную кислоту, воду и дисперсный наполнитель - технический углерод или модифицированный п-хиноном технический углерод при следующем соотношении компонентов, мас.%: поливиниловый спирт - 3.0-10.0; борная кислота - 0.2-1.0; технический углерод или модифицированный п-хиноном технический углерод - 0.5-5.0; вода - остальное. Изобретение позволяет повысить водонепроницаемость противофильтрационного экрана и улучшить структурно-механические свойства водоизолирующего экрана. 2 н. и 1 з.п. ф-лы, 1 табл.

Изобретение относится к области гидротехнического строительства и может быть использовано для создания противофильтрационного экрана, восстановления водонепроницаемости гидротехнического сооружения (понижения водопроницаемости) из низкотемпературных грунтов и пород, особенно в районах вечной мерзлоты, а также при создании и ремонте противофильтрационных завес (экранов) в грунтовых плотинах, построенных в районах распространения многолетнемерзлых пород.

Известен инъекционный раствор для закрепления грунта на основе цемента и хладостойкой добавки (а.с. №649788, БИ №8, 1979 г.). Однако такие составы имеют небольшую проникающую способность, кроме того, при закачке в зоны с большим поглощением, характерным для грунтовых плотин в районах вечной мерзлоты, они быстро размываются и не успевают схватиться.

Известен состав для закрепления оттаявшего грунта в районах распространения вечной мерзлоты, для защиты грунтовых откосов от размывания талыми водами, содержащий 2-8%-ный водный раствор поливинилового спирта (ПВС) смешанного с грунтом и подвергнутого замораживанию в течение 24 часов (А.с. №1705500, БИ №2, 1992 г.). Однако водные растворы ПВС образуют гели только в процессе замораживания-размораживания, при закачке растворов ПВС в инъекционные скважины при положительных температурах они не могут создать противофильтрационный экран, разбавляются и выносятся водой, как и цементные растворы.

Наиболее близким по технической сущности является состав для изготовления водонепроницаемого экрана в низкотемпературных грунтовых материалах элементов гидротехнического сооружения, включающий поливиниловый спирт (ПВС) - структурообразователь, борную кислоту и воду (Пат. №2276703, опубл. 20.05.2006 г). Состав имеет хорошее сцепление с грунтовым карбонатным материалом, способен при температуре 0-10°С образовывать гель, который создает противофильтрационный экран, а затем в процессе замораживания-размораживания из него получается криогель. Однако данный состав дает недостаточную водонепроницаемость и структурную прочность. Способ приготовления состава включает перемешивание компонентов в предварительно нагретой до 90°С воде при постоянном перемешивании.

Задачей настоящего изобретения является разработка состава для создания противофильтрационного экрана в гидротехнических сооружениях в районах распространения многолетнемерзлых пород, подвергающихся процессам периодического сезонного замораживания и оттаивания, с повышенной водонепроницаемостью и улучшенными структурно-механическими свойствами и способа его получения.

Технический результат в предлагаемом изобретении достигается тем, что состав на основе водного раствора поливинилового спирта, содержащий поливиниловый спирт и борную кислоту, дополнительно содержит дисперсный наполнитель. Состав для создания противофильтрационного экрана в гидротехнических сооружениях в районах распространения многолетнемерзлых пород содержит поливиниловый спирт, борную кислоту, воду и дисперсный наполнитель - технический углерод или модифицированный п-хиноном технический углерод при следующем соотношении компонентов, мас.%:

поливиниловый спирт - 3.0-10.0

борная кислота - 0.2-1.0

технический углерод или модифицированный п-хиноном технический углерод - 0.5-5.0

вода - остальное

Технический углерод или модифицированный п-хиноном технический углерод вводят в состав в виде концентрированной суспензии.

Состав для создания противофильтрационного экрана получают путем перемешивания компонентов в подогретой воде, при этом технический углерод предварительно диспергируют в разбавленном водном растворе поливинилового спирта или п-хинона при соотношении компонентов, мас.%:

технический углерод - 5.0-15.0

поливиниловый спирт -0.05-0.15 или п-хинон - 0.5-2.70

вода - остальное.

После закачки через нагнетательные скважины в тело и основание плотины или другого гидротехнического сооружения состав образует гель, затем в процессе замораживания-размораживания из него получается композитный криогель с улучшенными структурно-механическими свойствами - увеличивается упругость. Кроме того, добавление в состав гидрофобного наполнителя позволяет получить поверхность криогеля с повышенной степенью гидрофобности, что повышает водонепроницаемость противофильтрационного экрана.

Композитный криогель, полученный термостатированием состава при минус 30°С, перед измерением размораживают при комнатной температуре. Затем проводят измерения модуля упругости полученных криогелей, а также определяют степень гидрофобности поверхности криогеля.

Определение модуля упругости гелей проводят на основании диаграмм «напряжение - деформация», полученных в квазистатическом режиме сжатия цилиндрических образцов. Используют оригинальную аппаратуру на базе микрометра и электронных весов. Модуль упругости рассчитывают как угол наклона начального линейного участка зависимости напряжения сжатия от величины деформации, для которого соблюдается закон Гука.

Степень гидрофобности поверхности композитного криогеля определяют методом компьютерного видеосканирования. На поверхность полученных криогелей наносят капли нефти и воды, регистрируют через микроскоп видеоклипы поведения капель. С помощью программы компьютерной обработки изображения определяют площадь, которую занимает капля воды или нефти через определенное время. Степень гидрофобности поверхности криогелей рассчитывают относительно площади растекания капель воды и нефти по поверхности известной гидрофобности. Результаты измерений приведены в таблице.

Приведем примеры конкретного выполнения

Пример 1 (по прототипу). В 940,0 г воды с температурой 70-90°С при постоянном перемешивании помещают 10,0 г борной кислоты, затем 50.0 г поливинилового спирта и перемешивают до получения однородного раствора. Получают раствор, содержащий 5.0 мас.% поливинилового спирта и 1,0 мас.% борной кислоты. Результаты измерения модуля упругости и степени гидрофобности поверхности криогеля приведены в таблице.

Пример 2. В 806.7 г воды с температурой 70-90°С при постоянном перемешивании помещают 10,0 г борной кислоты, затем 50,0 г поливинилового спирта и перемешивают до получения однородного раствора. Затем добавляют 133.3 г концентрированной стабилизированной суспензии технического углерода марки П 145 в разбавленном водном растворе ПВС и тщательно перемешивают. Получают водный раствор, содержащий 5.0% мас. поливинилового спирта, 1.0% мас. борной кислоты и 2% мас. технического углерода. Результаты измерения модуля упругости и степени гидрофобности поверхности криогеля приведены в таблице.

Примеры 3-6. Аналогично примеру 2. Результаты измерения модулей упругости и степени гидрофобности поверхностей криогелей, полученных из составов, содержащих 2.0% мас. технического углерода марок П 161, П 702, N 339, П 267-Э, П 514, приведены в таблице.

Пример 7. В 634.7 г воды с температурой 70-90°С при постоянном перемешивании помещают 2,0 г борной кислоты, затем 30.0 г поливинилового спирта и перемешивают до получения однородного раствора. Затем добавляют 333.3 г стабилизированной суспензии технического углерода марки П 145 в разбавленном водном растворе ПВС и тщательно перемешивают. Получают водный раствор, содержащий 3.0% мас. поливинилового спирта, 0.2% мас. борной кислоты и 5% мас. технического углерода. Результаты измерения модуля упругости и степени гидрофобности поверхности криогеля приведены в таблице.

Примеры 8-11. Аналогично примеру 7. Результаты измерения модулей упругости и степени гидрофобности поверхностей криогелей, полученных из составов, содержащих 5.0% мас. технического углерода марок П 161, П 702, N 339 концентрированной и П 267-Э, приведены в таблице.

Пример 12. В 858.4 г воды с температурой 70-90°С при постоянном перемешивании помещают 5.0 г борной кислоты, затем 70.0 г поливинилового спирта и перемешивают до получения однородного раствора. Затем добавляют 66.6 г концентрированной стабилизированной суспензии технического углерода марки П 145 в разбавленном водном растворе ПВС и тщательно перемешивают. Получают водный раствор, содержащий 7.0% мас. поливинилового спирта, 0.5% мас. борной кислоты и 1% мас. технического углерода. Результаты измерения модуля упругости и степени гидрофобности поверхности криогеля приведены в таблице.

Примеры 13-15. Аналогично примеру 12. Результаты измерения модулей упругости и степени гидрофобности поверхностей криогелей, полученных из составов, содержащих 1.0% мас. технический углерода марок П 161, П 702 и N 339, приведены в таблице.

Пример 16. В 856.7 г воды с температурой 70-90°С при постоянном перемешивании помещают 10.0 г борной кислоты, затем 100.0 г поливинилового спирта и перемешивают до получения однородного раствора. Затем добавляют 33.3 г концентрированной стабилизированной суспензии технического углерода марки П 145 в разбавленном водном растворе ПВС и тщательно перемешивают. Получают водный раствор, содержащий 10.0% мас. поливинилового спирта, 1.0% мас. борной кислоты и 0.5% мас. технического углерода. Результаты измерения модуля упругости и степени гидрофобности поверхности криогеля приведены в таблице.

Примеры 17-19. Аналогично примеру 16. Результаты измерения модулей упругости и степени гидрофобности поверхностей криогелей, полученных из составов, содержащих 0.5% мас. технического углерода марок П 161, N 339 и П 267-Э, приведены в таблице.

Пример 20. В 806.7 г воды с температурой 70-90°С при постоянном перемешивании помещают 10,0 г борной кислоты, затем 50,0 г поливинилового спирта и перемешивают до получения однородного раствора. Затем добавляют 133.3 г концентрированной стабилизированной суспензии технического углерода марки П 514 в разбавленном водном растворе ПВС и тщательно перемешивают. Получают водный раствор, содержащий 5.0% мас. поливинилового спирта, 1.0% мас. борной кислоты и 2% мас. технического углерода. Результаты измерения модуля упругости и степени гидрофобности поверхности криогеля приведены в таблице.

Пример 21. 1,0200 г (0,2 мг-экв/г) п-хинона растворяют в 100 см3 горячей воды (60°С), разбавляют 100 см3 дистиллированной воды и сразу же раствор переносят на технический углерод марки П 514 массой 100 г. Полученную пасту технического углерода высушивают при 105°С в слое толщиной около 1 см в течение 10 ч. Степень закрепления п-хинона на поверхности составляет 96%. Затем получают состав при перемешивании воды, борной кислоты, поливинилового спирта и полученного модифицированного технического углерода, результаты приведены в таблице.

Примеры 22-23. Аналогично примеру 21. Результаты измерения модуля упругости и степени гидрофобности поверхности криогеля приведены в таблице.

Таким образом, при использовании предлагаемого состава на основе поливинилового спирта и борной кислоты с добавлением концентрированной стабилизированной суспензии технического углерода или модифицированного п-хиноном технического углерода происходит улучшение структурно-механических свойств водоизолирующего экрана - модуль упругости криогеля по сравнению с прототипом увеличивается более чем в 10 раз, повышение водонепроницаемости противофильтрационного экрана - степень гидрофобности поверхности криогеля увеличилась в 4.2-7.7 раз.

Таблица
№ п/п Вещества Марка дисперсного углерода Концентрация, % мас. Модуль упругости, кПа Степень гидрофобности, %
1 По прототипу
ПВС 5.0 10.85 10.25
Борная кислот 1.0
Вода 94.0
2 ПВС 5.0
Борная кислота П 145 1.0 22.36 71.06
Технический углерод 2.0
Вода 92.0
3 ПВС 5.0
Борная кислота П 161 1.0 29.57 67.09
Технический углерод 2.0
Вода 92.0
4 ПВС 5.0
Борная кислота П 702 1.0 19.65 59.85
Технический углерод 2.0
Вода 92.0
5 ПВС 5.0
Борная кислота N 339 1.0 29.23 66.51
Технический углерод 2.0
Вода 92.0
6 ПВС 5.0
Борная кислота П 267-Э 1.0 54.47 -
Технический углерод 2.0
Вода 92.0
7 ПВС 3.0
Борная кислота П 145 0.2 23.32 77.59
Технический углерод 5.0
Вода 91.8
8 ПВС 3.0
Борная кислота П 161 0.2 30.07 79.20
Технический углерод 5.0
Вода 91.8
9 ПВС 3.0
Борная кислота П 702 0.2 38.52 75.80
Технический углерод 5.0
Вода 91.8
10 ПВС 3.0
Борная кислота N 339 0.2 38.20 74.07
Технический углерод 5.0
Вода 91.8
11 ПВС 3.0
Борная кислота П 267-Э 0.2 62.52 -
Технический углерод 5.0
Вода 91.8
12 ПВС 7.0
Борная кислота П 145 0.5 20.32 52.16
Технический углерод 1.0
Вода 91.5
13 ПВС 7.0
Борная кислота П 161 0.5 28.20 52.77
Технический углерод 1.0
Вода 91.5

14 ПВС 7.0
Борная кислота П 702 0.5 14.62 43.06
Технический углерод 1.0
Вода 91.5
15 ПВС 7.0
Борная кислота N 339 0.5 28.35 48.36
Технический углерод 1.0
Вода 91.5
16 ПВС 10.0
Борная кислота П 145 1.0 17.70 46.08
Технический углерод 0.5
Вода 88.5
17 ПВС 10.0
Борная кислота П 161 1.0 15.02 48.09
Технический углерод 0.5
Вода 88.5
18 ПВС 10.0
Борная кислота N 339 1.0 28.68 45.05
Технический углерод 0.5
Вода 88.5
19 ПВС 10.0
Борная кислота П 267-Э 1.0 47.26 -
Технический углерод 0.5
Вода 88.5
20 ПВС 5.0
Борная кислота П 514 1.0 29.5 -
Технический углерод 2.0
Вода 92.0
21 ПВС 5.0
Борная кислота П 514+0.2 мг-экв/г п-хинона 1.0 77.7 -
Технический углерод модифицированный 2.0
Вода 92.0
22 ПВС 5.0
Борная кислота П 514+0.3 мг-экв/г п-хинона 1.0 131.5 -
Технический углерод модифицированный 2.0
Вода 92.0
23 ПВС 5.0
Борная кислота П 514+0.5 мг-экв/г п-хинона 1.0 513.9 -
Технический углерод модифицированный 2.0
Вода 92.0

Источник поступления информации: Роспатент

Показаны записи 1-5 из 5.
29.03.2019
№219.016.f722

Жаропонижающее средство и способ его получения

Изобретение относится к фармацевтической промышленности, в частности жаропонижающему средству. Описано жаропонижающее средство на основе коры осины, измельченной до определенных размеров, и способ получения средства, обладающего жаропонижающим действием. Средство характеризуется повышенным...
Тип: Изобретение
Номер охранного документа: 0002431495
Дата охранного документа: 20.10.2011
17.04.2019
№219.017.15f9

Способ переработки нефтяных остатков в дистиллятные фракции

Изобретение относится к области нефтепереработки, а именно к переработке тяжелых нефтей в процессе низкотемпературного инициированного крекинга, и может быть использовано для увеличения выхода дистиллятных моторных топлив. Описан способ переработки нефтяных остатков в дистиллятные фракции путем...
Тип: Изобретение
Номер охранного документа: 0002375412
Дата охранного документа: 10.12.2009
17.04.2019
№219.017.15fd

Способ увеличения выхода дистиллятных фракций из тяжелых нефтей

Изобретение относится к области нефтепереработки, а именно к переработке тяжелых нефтей в процессе низкотемпературного инициированного крекинга, и может быть использовано для увеличения выхода дистиллятных моторных топлив. Способ увеличения выхода бензиновых и дистиллятных фракций из тяжелых...
Тип: Изобретение
Номер охранного документа: 0002375410
Дата охранного документа: 10.12.2009
13.06.2019
№219.017.81e6

Состав для повышения нефтеотдачи пластов и способ его получения

Изобретение относится к нефтедобывающей промышленности, в частности к составам для повышения нефтеотдачи нефтяных скважин за счет применения физико-химических методов воздействия на пласт, и может быть использовано для ограничения притока пластовых вод. Способ получения состава включает...
Тип: Изобретение
Номер охранного документа: 0002382191
Дата охранного документа: 20.02.2010
29.06.2019
№219.017.9e57

Способ приготовления микросферического катализатора для крекинга нефтяных фракций

Изобретение относится к нефтеперерабатывающей промышленности, в частности к способу приготовления катализаторов крекинга. Описан способ приготовления микросферического катализатора крекинга, включающий проведение ионных обменов на катионы редкоземельных элементов и аммония на цеолите NaY,...
Тип: Изобретение
Номер охранного документа: 0002300420
Дата охранного документа: 10.06.2007
Показаны записи 11-20 из 56.
20.05.2014
№216.012.c7af

Формованный сорбент внииту-1, способ его изготовления и способ профилактики гнойно-септических осложнений в акушерстве

Группа изобретений относится к области медицины и может быть использована для профилактики гнойно-септических осложнений в акушерстве. Формованный сорбент содержит нанодисперсный мезопористый углеродный материал в виде цилиндров диаметром 8-13 мм, длиной 50-80 мм, толщиной наружной стенки...
Тип: Изобретение
Номер охранного документа: 0002516878
Дата охранного документа: 20.05.2014
27.06.2014
№216.012.d796

Способ получения топливной присадки 1,1-диэтоксиэтана

Настоящее изобретение относится к способу получения оксигенатной топливной присадки 1,1-диэтоксиэтана к дизельным топливам и бензинам, улучшающей их качество. Способ заключается в конверсии этанола при повышенной температуре и давлении в присутствии катализатора. При этом конверсию этанола...
Тип: Изобретение
Номер охранного документа: 0002520968
Дата охранного документа: 27.06.2014
20.07.2014
№216.012.de02

Способ и установка улавливания углеводородов из парогазовой смеси

Изобретение относится к химической технологии и может быть использовано в системах улавливания углеводородов из парогазовых смесей, выбрасываемых в атмосферу при сливе, хранении и подготовке коксохимического сырья в производстве технического углерода. Предлагаемые способ и установка...
Тип: Изобретение
Номер охранного документа: 0002522620
Дата охранного документа: 20.07.2014
27.09.2014
№216.012.f81a

Состав для повышения нефтеотдачи пластов (варианты)

Изобретение относится к нефтедобывающей промышленности и может быть использовано для увеличения нефтеотдачи пластов с карбонатным коллектором. Технический результат - повышение нефтевытесняющих свойств состава, увеличение проницаемости карбонатного коллектора пласта как с высокой пластовой...
Тип: Изобретение
Номер охранного документа: 0002529351
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f95d

Способ определения точки гелеобразования методом вибрационной вискозиметрии

Изобретение относится к области физической и коллоидной химии (физико-химических измерений), а более конкретно - к способам определения точки (момента) потери текучести методом вибрационной вискозиметрии, и позволяет определить точку гелеобразования путем измерения вязкости (механического...
Тип: Изобретение
Номер охранного документа: 0002529674
Дата охранного документа: 27.09.2014
10.12.2014
№216.013.0d3c

Способ модифицирования углеродного гемосорбента

Изобретение относится к технологии получения углеродных сорбентов. Способ модифицирования углеродного гемосорбента включает пропитку гранул водным раствором аминокислоты, фильтрование, сушку, выдержку в инертной среде и высушивание полученного продукта. В качестве аминокислоты используют...
Тип: Изобретение
Номер охранного документа: 0002534805
Дата охранного документа: 10.12.2014
10.02.2015
№216.013.25b2

Углеродный сорбент с антибактериальными и антимикотическими свойствами и способ его получения

Изобретение относится к технологии получения углеродных сорбентов с антибактериальными и антимикотическими свойствами на основе пористых углеродных адсорбентов и предназначено для применения в медицине и ветеринарии. Предлагаемый способ получения углеродного сорбента с антибактериальными и...
Тип: Изобретение
Номер охранного документа: 0002541103
Дата охранного документа: 10.02.2015
27.03.2015
№216.013.3655

Наноразмерный сорбент для сорбции штаммов аэробных микроорганизмов micrococcus albus и pseudomonas putida

Изобретение относится к биотехнологии и медицине, в частности, может быть использовано для сорбции аэробных микроорганизмов при изготовлении стерильных растворов, очистке воды или нефтезагрязненных почв, а также при лечении различных ран. Предложен наноразмерный сорбент для сорбции штаммов...
Тип: Изобретение
Номер охранного документа: 0002545393
Дата охранного документа: 27.03.2015
10.04.2015
№216.013.37af

Формованный сорбент внииту-1пвп, способ его изготовления и способ лечения эндометрита

Изобретение относится к области медицины, а именно к формованному сорбенту с антибактериальными свойствами для лечения эндометрита, представляющему собой нанодисперсный мезопористый углеродный материал с удельной адсорбционной поверхностью не более 50 м/г и прочностью на раздавливание не менее...
Тип: Изобретение
Номер охранного документа: 0002545743
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3b6c

Состав для повышения нефтеотдачи пластов (варианты)

Изобретение относится к нефтедобывающей промышленности и может быть использовано для повышения нефтеотдачи карбонатных коллекторов с различной проницаемостью, насыщенных высоковязкой нефтью. Состав для повышения нефтеотдачи пластов, содержащий неионогенное и анионактивное поверхностно-активные...
Тип: Изобретение
Номер охранного документа: 0002546700
Дата охранного документа: 10.04.2015
+ добавить свой РИД