×
13.06.2019
219.017.8169

Результат интеллектуальной деятельности: Устройство для приема электромагнитного поля в море

Вид РИД

Изобретение

№ охранного документа
0002691165
Дата охранного документа
11.06.2019
Аннотация: Изобретение относится к радиотехнике и предназначено для приема электромагнитных полей сверхнизких и крайне низких частот (СНЧ и КНЧ) естественного и искусственного происхождения в морской среде. Сущность: устройство содержит электродный датчик электрического поля в виде первого и второго металлического электрода, установленных на жесткой диэлектрической платформе, приемный блок и предварительный усилитель, ко входу которого подключен электродный датчик. Устройство содержит также первый и второй датчик скорости, жестко установленные соответственно на первом и втором электроде датчика электрического поля, блок вычитания, первый и второй регулируемый усилитель и первый и второй коррелометр. Первый вход блока вычитания соединен с выходом первого регулируемого усилителя, чей вход соединен с первым датчиком скорости. Второй вход блока вычитания соединен с выходом второго регулируемого усилителя, чей вход соединен с вторым датчиком скорости. Третий вход блока вычитания соединен с выходом предварительного усилителя. Выход блока вычитания соединен со входом приемного блока и с первыми входами первого и второго коррелометров. Второй вход первого коррелометра соединен с первым датчиком скорости. Второй вход второго коррелометра соединен с вторым датчиком скорости. Выход первого коррелометра соединен с регулирующим входом первого регулируемого усилителя. Выход второго коррелометра соединен с регулирующим входом второго регулируемого усилителя. Технический результат: увеличение чувствительности при приеме электромагнитного поля в море вследствие компенсации составляющих шума электродного датчика, пропорциональных пульсациям скорости жидкости относительно электродов. 2 ил.

Устройство относится к радиотехнике и предназначено для приема электромагнитных полей сверхнизких и крайне низких частот (СНЧ и КНЧ) естественного и искусственного происхождения в морской среде.

Электрическое поле электромагнитной волны в морской воде, являющейся проводящей средой, порождает токи проводимости. Последние между двумя точками среды создают разность потенциалов, которая может быть передана на приемное устройство антенной, в качестве которой часто используют электродный датчик электрического поля. Электродный датчик представляет собой два разнесенных на некоторое расстояние электрода, имеющих электрический контакт с окружающей морской водой. Известно устройство для приема электромагнитного поля в море (Бернстайн С.Л. и др. Дальняя связь на крайне низких частотах (обзор) // ТИИЭР. - 1974.- Т. 62, №3. - С. 5-30), содержащее электродный датчик электрического поля в виде двух металлических электродов, установленных на буксируемом за кораблем гибком кабеле (кабельной антенны), предварительного усилитель и приемный блок, в котором осуществляется выделение полезного сигнала из шумов. Такое устройство используется для радиосвязи с погруженными в море объектами в диапазоне КНЧ и СНЧ. Недостатком известного устройства являются его большие габариты, что создает проблемы при эксплуатации. Для достижения требуемой чувствительности расстояние между электродами составляет 200…300 метров, а общая длина кабельной антенны достигает 500…600 метров.

Известно устройство для приема электромагнитного поля в море, содержащее электродный датчик электрического поля в виде двух металлических электродов, установленных на жесткой диэлектрической платформе, через предварительный усилитель соединенный с приемным блоком (В.Г. Максименко, В.И. Нарышкин. «Шум движения» электродных датчиков электрического поля в море и пути его уменьшения // Радиотехника и электроника. - 2003. - Т.48, №1. - С. 70-76.). Датчик имеет габариты порядка одного метра и вместе с предварительным усилителем буксируется за кораблем. Выходное напряжение с предварительного усилителя по кабелю передается на приемный блок, установленный на корабле. Как наиболее близкое по технической сущности к заявленному это устройство принято за прототип. Недостатком прототипа является невысокая чувствительность, что обусловлено большим уровнем так называемого «шума движения», то есть шума электродного датчика, обусловленного движением его в морской среде. Шум движения исследован автором (В.Г. Максименко. Шум электродного датчика в потоке жидкости. // Измерительная техника, 2017, №9, С. 57-61). Установлено, что значительный вклад в шум движения вносят пульсации электродного напряжения, вызванные пульсациями скорости движения жидкости относительно электродов. При этом пульсации потенциала электродов датчика синфазны и пропорциональны пульсациям скорости жидкости у поверхности электродов. Это дает возможность компенсации составляющей шума движения, обусловленной пульсациями скорости, и увеличения чувствительности при приеме электромагнитных полей в море.

Технической задачей, решаемой в заявленном устройстве, является повышение чувствительности.

Поставленная задача решается тем, что в известное устройство для приема электромагнитного поля в море, содержащее электродный датчик электрического поля в виде первого и второго металлического электрода, установленных на жесткой диэлектрической платформе, приемный блок и предварительный усилитель, ко входу которого подключен электродный датчик, введены первый и второй датчик скорости, жестко установленные соответственно на первом и втором электроде датчика электрического поля, блок вычитания, первый и второй регулируемый усилитель и первый и второй коррелометр, при этом первый вход блока вычитания соединен с выходом первого регулируемого усилителя, чей вход соединен с первым датчиком скорости, второй вход блока вычитания соединен с выходом второго регулируемого усилителя, чей вход соединен с вторым датчиком скорости, третий вход блока вычитания соединен с выходом предварительного усилителя, выход блока вычитания подключен ко входу приемного блока и к первому входу первого и второго коррелометра, второй вход первого коррелометра соединен с первым датчиком скорости, второй вход второго коррелометра соединен с вторым датчиком скорости, выход первого коррелометра соединен с регулирующим входом первого регулируемого усилителя, а выход второго коррелометра соединен с регулирующим входом второго регулируемого усилителя.

Первый и второй коррелометр идентичны и содержат последовательно соединенные соответственно первый и второй перемножитель, и первый и второй интегратор, при этом первый и второй входы перемножителя являются первым и вторым входами коррелометра, а выход интегратора является выходом коррелометра.

Устройство изображено на фиг. 1 и содержит жесткую диэлектрическую платформу 1, на которой установлены первый 2 и второй 3 электроды датчика электрического поля, первый 4 и второй 5 датчики скорости, установленные соответственно на первом 2 и втором 3 электродах, предварительный усилитель 6, блок вычитания 7, приемный блок 8, первый 9 и второй 10 регулируемый усилитель, первый 11 и второй 12 коррелометр. Коррелометры 11 и 12 выполнены идентично, известным образом (Вибрации в технике: Справочник. Под ред. М.Д. Генкина. Т.5. - М.: Машиностроение. 1981), и содержат соответственно первый 13 и второй 14 перемножитель, первый 15 и второй 16 интегратор.

Устройство работает следующим образом. Электромагнитная волна возбуждает в морской воде токи проводимости. Электродный датчик, выполненный в виде установленных на некотором расстоянии (базе) на буксируемой диэлектрической платформе 1 электродов 2 и 3, снимает напряжение, создаваемое током проводимости на базе датчика, и передает его на вход малошумящего предварительного усилителя 6. Усиленное напряжение, представляющее собой смесь полезного сигнала с шумом, поступает на третий вход блока 7 вычитания, а с его выхода - на приемный блок 8, где и происходит выделение полезного сигнала. На первый вход блока вычитания 7 подается компенсирующее напряжение, которое вырабатывается первым датчиком скорости 4, установленном на первом электроде 2, и усиливается регулируемым усилителем 9. При таком расположении датчика скорости 4 его выходное напряжение пропорционально скорости жидкости относительно первого электрода 2. Напряжения с выхода блока вычитания 7 и с выхода датчика скорости 4 поступают соответственно на первый и второй вход коррелометра 11, который формирует медленно меняющееся напряжение, пропорциональное значению функции взаимной корреляции поступающих на него напряжений U(t) - с выхода блока вычитания 7 и S(t) - с выхода датчика скорости 4 при времени задержки τ = 0. Как показал эксперимент, временной сдвиг между напряжением на выходе датчика скорости, возникшим вследствие пульсации скорости жидкости, и напряжением, возникшим на выходе предварительного усилителя вследствие той же пульсации скорости, отсутствует. Длительность реализации Т определяется постоянной времени интегратора.

Коррелометр 11 работает следующим образом. Напряжения U(t) и S(t) перемножаются в перемножителе 13. Пусть оба эти напряжения имеют синусоидальную форму: U(t) = Umsin ωt, S(t) = Smsin ωt. Тогда выходное напряжение перемножителя U(t)S(t)=0,5UmSm(1-cos2ωt) содержит две составляющие: постоянная составляющая 0,5UmSm и переменная составляющая с частотой 2ω. В интеграторе 15, который представляет собой фильтр нижних частот с большой постоянной времени Т, переменная составляющая усредняется. Время усреднения Т должно на порядок и более превышать период принимаемого сигнала. Однако при слишком большом времени усреднения приемное устройство не успевает следить за изменением амплитуды пульсаций скорости. Для частот принимаемого сигнала в несколько десятков герц время усреднения может составлять 0,8…1 с. Постоянная составляющая, пропорциональная амплитуде пульсации скорости, дает на выходе интегратора 15 медленно увеличивающееся напряжение. Составляющая выходного напряжения перемножителя 13, обусловленная некоррелированным с пульсацией скорости напряжением шума и сигнала, имеет вид переменного случайного напряжения с нулевым средним, поэтому она также усредняется в интеграторе. Таким образом, на выходе интегратора 15 имеется медленно меняющееся постоянное напряжение, величина которого определяется величиной составляющей от пульсации скорости в напряжении U(t).

В исходном состоянии коэффициент усиления усилителя 9 минимален. Выходное напряжение интегратора 15 подается на управляющий вход регулируемого усилителя 9 и увеличивает его коэффициент усиления до такого значения, при котором компенсирующее напряжение на выходе усилителя 9 становится равным по величине составляющей выходного напряжения предварительного усилителя 6, обусловленной пульсацией скорости жидкости у поверхности электрода 2. При этом блок вычитания 7 осуществляет полное вычитание этих напряжений, и его выходное напряжение не содержит составляющей, обусловленной пульсациями скорости у поверхности электрода 2, то есть U(t)=0. Напряжение на выходе интегратора 15 перестает изменяться и устанавливается постоянным. Соответственно постоянным устанавливается и коэффициент усиления усилителя 9.

Если пульсации скорости уменьшаются, то на выходе блока вычитания 7 вследствие перекомпенсации появляется напряжение U(t), противофазное напряжению S(t). В этом случае постоянная составляющая выходного напряжения перемножителя меняет знак. Напряжение на выходе интегратора начинает медленно уменьшаться, пока не будет достигнута полная компенсация составляющей шума датчика электромагнитного поля, соответствующей пульсации скорости. Таким образом, приемное устройство само подстраивается под величину пульсаций скорости.

Аналогично происходит и компенсация напряжения, пропорционального пульсации скорости у поверхности второго электрода 3. Для этого используются второй коррелометр 12 и второй регулируемый усилитель 10.

В качестве датчиков скорости 4 и 5 могут быть использованы известные датчики скорости жидкости и ее пульсаций (патенты РФ на изобретение №2497153, №2594989, патент РФ на полезную модель №159105), измеряющие две компоненты вектора скорости, направленные вдоль поверхности. Если электродный датчик электрического поля движется в неподвижной жидкости, то в качестве датчика скорости можно также использовать акселерометр с подключенным к его выходу интегратором.

Наличие двух датчиков скорости и двух каналов корреляционной обработки обеспечивает точность компенсации, поскольку пульсации скорости жидкости у поверхности первого и второго электродов в общем случае вызваны разными причинами.

Технический результат, достигаемый при применении предложенного устройства, состоит в увеличении чувствительности при приеме электромагнитного поля в море вследствие уменьшения собственного шума электродного датчика, которое достигается компенсацией его путем вычитания из смеси полезного сигнала с шумом составляющих, пропорциональных пульсациям скорости жидкости относительно электродов. Компенсирующие напряжения формируются из выходного напряжения датчиков скорости. Выполнен лабораторный эксперимент, в котором один электрод из нержавеющей стали находился в потоке раствора NaCl с концентрацией 4,5 г/л и скоростью 1 м/с, второй электрод большей площади находился вне потока, скорость потока измерялась оптическим датчиком скорости. Реализации длительностью 1 с шумового напряжения с электродов (измерена в полосе частот 4…100 Гц) и напряжения с датчика скорости, коррелированы с коэффициентом корреляции 0,9. На фиг. 2 показаны реализации шумового напряжения с электродов (1) и выходного напряжения датчика скорости жидкости (2), а также результат вычитания кривой (2) из кривой (1). Напряжение с датчика скорости было масштабировано до достижения отсутствия корреляции между U(t) и S(t).

Вычитание напряжения от датчика скорости из напряжения с электродов, позволило уменьшить среднеквадратическое значение электродного шума в 2,3 раза. Для повышения точности компенсации спектр выходного напряжения датчика скорости с помощью низкочастотного RC фильтра был согласован со спектром электродного шума, так как коэффициент масштабирования должен быть одинаков как для низкочастотных, так и для высокочастотных составляющих спектра. Эксперимент доказывает, что заявленное устройство позволяет получить выигрыш в чувствительности по напряжению по сравнению с прототипом более чем в два раза на частотах ниже 100 Гц.

Устройство для приема электромагнитного поля в море, содержащее электродный датчик электрического поля, выполненный в виде первого и второго металлических электродов, установленных на фиксированном расстоянии на диэлектрической платформе, приемный блок и предварительный усилитель, ко входу которого подключен электродный датчик, отличающееся тем, что в него введены первый и второй датчик скорости, жестко установленные соответственно на первом и втором электроде датчика электрического поля, блок вычитания, первый и второй регулируемые усилители и первый и второй коррелометры, при этом первый вход блока вычитания соединен с выходом первого регулируемого усилителя, чей вход соединен с первым датчиком скорости, второй вход блока вычитания соединен с выходом второго регулируемого усилителя, чей вход соединен с вторым датчиком скорости, третий вход блока вычитания соединен с выходом предварительного усилителя, выход блока вычитания соединен со входом приемного блока и с первыми входами первого и второго коррелометров, второй вход первого коррелометра соединен с первым датчиком скорости, второй вход второго коррелометра соединен с вторым датчиком скорости, выход первого коррелометра соединен с регулирующим входом первого регулируемого усилителя, а выход второго коррелометра соединен с регулирующим входом второго регулируемого усилителя.
Устройство для приема электромагнитного поля в море
Устройство для приема электромагнитного поля в море
Источник поступления информации: Роспатент

Показаны записи 61-70 из 91.
19.04.2019
№219.017.1ce7

Способ изготовления воздушных мостиков в качестве межэлектродных соединений интегральных схем

Использование: для изготовления воздушных мостиков. Сущность изобретения заключается в том, что способ изготовления воздушных мостиков в качестве межэлектродных соединений интегральных схем содержит стадии нанесения и формирования фоторезиста для формирования поддерживающего слоя, нанесения и...
Тип: Изобретение
Номер охранного документа: 0002685082
Дата охранного документа: 16.04.2019
19.04.2019
№219.017.2b89

Широкополосный детектор терагерцевого излучения (варианты)

Изобретение относится к области тонкопленочной СВЧ микроэлектроники и антенной техники, в том числе массивам антенн и метаматериалам. Широкополосный детектор терагерцевого излучения состоит из распределенного абсорбера в виде матрицы антенн в конфигурации метаматериала, микроболометров,...
Тип: Изобретение
Номер охранного документа: 0002684897
Дата охранного документа: 16.04.2019
01.05.2019
№219.017.47d3

Способ определения параметров плазменного травления пластин

Способ определения параметров плазменного травления материалов в процессе обработки изделий включает измерение параметров модельного образца в виде структуры, образованной первой и второй акустическими линиями задержки (АЛЗ), содержащими входные и выходные электроакустические преобразователи,...
Тип: Изобретение
Номер охранного документа: 0002686579
Дата охранного документа: 29.04.2019
01.05.2019
№219.017.482a

Управляемый ответвитель свч сигнала на магнитостатических волнах

Изобретение относится к радиотехнике. Ответвитель СВЧ сигнала на магнитостатических волнах содержит подложку из галлий-гадолиниевого граната с размещенными на ней с зазором двумя микроволноводами в форме параллельных удлиненных полосок равной ширины из пленок железо-иттриевого граната (ЖИГ)....
Тип: Изобретение
Номер охранного документа: 0002686584
Дата охранного документа: 29.04.2019
29.05.2019
№219.017.626d

Твердотельный источник электромагнитного излучения

Изобретение предназначено для генерации когерентного и некогерентного электромагнитного излучения, в том числе и в диапазоне терагерцевых частот. Твердотельный источник электромагнитного излучения содержит рабочий слой, выполненный из электрически проводящего материала и расположенный на...
Тип: Изобретение
Номер охранного документа: 0002688096
Дата охранного документа: 20.05.2019
01.06.2019
№219.017.7288

Логическое устройство на основе фазовращателя свч сигнала на магнитостатических волнах

Изобретение относится к радиотехнике СВЧ, в частности к приборам на магнитостатических волнах, и может быть использовано в качестве фазовращателя. Устройство содержит, размещенный на подложке микроволновод из пленки железоиттриевого граната (ЖИГ), имеющий раздвоенную среднюю часть, размещенные...
Тип: Изобретение
Номер охранного документа: 0002690020
Дата охранного документа: 30.05.2019
20.06.2019
№219.017.8dbd

Демультиплексор на магнитостатических волнах

Изобретение относится к радиотехнике, в частности к приборам СВЧ на магнитостатических волнах, и может быть использовано в качестве демультиплексора. Демультиплексор содержит подложку, с размещенными на ней первым и вторым протяженными микроволноводами из железоиттриевого граната, входную...
Тип: Изобретение
Номер охранного документа: 0002691981
Дата охранного документа: 19.06.2019
10.07.2019
№219.017.a9ad

Логический элемент инвертор-повторитель на магнитостатических волнах

Изобретение относится к логическим элементам на магнитостатических волнах. Технический результат - создание логического устройства типа инвертор/повторитель на поверхностных магнитостатических волнах с возможностью управления режимами работы. Для этого предложен логический элемент, который...
Тип: Изобретение
Номер охранного документа: 0002694020
Дата охранного документа: 08.07.2019
03.08.2019
№219.017.bc4a

Способ неразрушающего контроля качества сверхбольших интегральных схем по значению критического напряжения питания

Изобретение относится к микроэлектронике и может быть использовано для обеспечения качества и надежности сверхбольших интегральных схем (СБИС). Сущность: измеряют критическое напряжение питания при нормальной и повышенной температуре. СБИС предварительно программируют тестирующей программой для...
Тип: Изобретение
Номер охранного документа: 0002696360
Дата охранного документа: 01.08.2019
21.08.2019
№219.017.c1be

Функциональный элемент магноники

Изобретение относится к СВЧ технике и может быть использовано при конструировании приборов на магнитостатических волнах в гигагерцовом диапазоне частот. Функциональный элемент магноники содержит немагнитную подложку, размещенную на ней ферромагнитную пленку из железоиттриевого граната (ЖИГ),...
Тип: Изобретение
Номер охранного документа: 0002697724
Дата охранного документа: 19.08.2019
Показаны записи 1-5 из 5.
27.10.2013
№216.012.7b03

Устройство для измерения турбулентных пульсаций скорости потока жидкости

Устройство относится к электроизмерениям и может быть использовано для исследования турбулентности в потоке слабо электропроводящей жидкости, например морской или пресной воды. Устройство содержит диэлектрический корпус обтекаемой формы с установленными на нем измерительными электродами,...
Тип: Изобретение
Номер охранного документа: 0002497153
Дата охранного документа: 27.10.2013
20.08.2016
№216.015.4c59

Устройство для измерения скорости жидкости

Изобретение относится к электроизмерениям и может быть использовано для измерения скорости электропроводной жидкости и ее флуктуаций. Устройство для измерения скорости жидкости содержит измеритель электрического сопротивления и два подключенных к нему электрода, один из которых закреплен...
Тип: Изобретение
Номер охранного документа: 0002594989
Дата охранного документа: 20.08.2016
09.06.2018
№218.016.5bba

Акустический эхолокатор

Изобретение относится к акустическим эхолокационным системам подповерхностного зондирования и может быть использовано для обнаружения локальных неоднородностей в акустически прозрачной среде. Решаемая техническая задача состоит в повышении достоверности и точности определения места расположения...
Тип: Изобретение
Номер охранного документа: 0002655711
Дата охранного документа: 29.05.2018
09.10.2019
№219.017.d3b3

Приемное устройство для радиосвязи с подводным объектом

Устройство относится к радиотехнике и предназначено для приема радиоволн сверхнизких и крайне низких частот (СНЧ и КНЧ) в морской среде при радиосвязи с движущимся подводным объектом. Технический результат состоит в улучшении эксплуатационных характеристик за счет уменьшения длины кабельной...
Тип: Изобретение
Номер охранного документа: 0002702235
Дата охранного документа: 07.10.2019
16.06.2023
№223.018.7be6

Электродный датчик напряженности электрического поля в море

Изобретение относится к радиотехнике и предназначено для приема и измерения электромагнитных полей сверхнизких и крайне низких частот (СНЧ и КНЧ) естественного и искусственного происхождения в морской среде. Сущность: датчик электрического поля в море содержит два электрода, установленных на...
Тип: Изобретение
Номер охранного документа: 0002745588
Дата охранного документа: 29.03.2021
+ добавить свой РИД