×
13.06.2019
219.017.812f

Результат интеллектуальной деятельности: Способ подготовки катализаторов гидрогенизационных процессов к окислительной регенерации

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу подготовки катализаторов гидроочистки к окислительной регенерации путем обработки пассивированного сульфидного катализатора, содержащего NiO, VO, FeO, смесью бутилцеллозольва и нефраса, в которой растворен комплексообразователь, выбранный из щавелевой, винной или лимонной кислоты. Также изобретение относится к способу регенерации раствора комплексообразователя, полученного после осуществления способа обработки пассивированного сульфидного катализатора. Технический результат заключается в увеличении каталитической активности. 2 н. и 6 з.п. ф-лы, 3 табл., 9 пр.

Изобретение относится к способу подготовки к окислительной регенерации катализаторов гидрогенизационных процессов, содержащих оксид металла группы VIB и оксид металла группы VIII и может найти применение в нефтеперерабатывающей промышленности.

В нефтеперерабатывающей промышленности используется окислительная регенерация катализаторов как без извлечения катализатора из реактора (insitu), так и вне реактора exsitu. До начала 2000-х годов на заводах практически всегда осуществлялась окислительная регенерация в том же реакторе, в котором проводился процесс гидроочистки. Основные недостатки такого способа регенерации - невозможность поддержания условий (температуры, состава газовой среды) во всем объеме катализатора. Избыточная температура при регенерации в реакторе - наиболее распространенная причина необратимого разрушения катализатора, а иногда и реактора. Заметная потеря катализатором стойкости к раздавливанию происходит при регенерации катализатора при температурах выше 650°С. При температурах выше 815°С происходит частичное образование α-Аl2О3, резко снижается и активность, и прочность на раздавливание. Изменяется пористая структура катализатора: снижается площадь поверхности и объем пор. Выше 700°С может происходить сублимация молибдена в виде МoО3, которая обнаруживается по появлению серебристых игольчатых кристаллов на холодных участках слоя катализатора, на фарфоровых шарах и т.д. Выше 540°С могут образовываться каталитически неактивные шпинели NiAl2O4, а выше 650°С - СоАl2O4.

Современные катализаторы гидроочистки должны обладать высокой каталитической активностью. Для получения моторных топлив, удовлетворяющих требованиям стандартов Евро-4 или Евро-5, необходимо удаление более чем 99.8% всех сернистых соединений. Технологии регенерации катализаторов insitu из-за перечисленных выше недостатков не позволяют восстановить активность катализаторов до уровня выше 80%, что необходимо для достижения указанного качества гидрогенизатов.

В связи с этим в нефтепереработке стали применяться методы регенерации катализаторов exsitu (вне реактора). В этом случае катализатор выгружается из реактора и затаривается в бочки. Для осуществления этой операции от катализатора отпаривают остатки сырья и производят его пассивацию. Пассивация катализатора заключается в окислении в мягких условиях легковоспламеняющихся на воздухе соединений, содержащихся в катализаторе, после чего катализатор практически теряет свои пирофорные свойства. Технически пассивация катализатора осуществляется путем продувки катализатора азотом с низкой объемной долей кислорода в течение 20-24 часов при температуре 180°С. Однако остатки сырья удаляются не полностью. Об этом можно судить по кривым ДТА-ТГА, на которых наблюдается существенное уменьшение массы пассивированного катализатора гидроочисткикак дизельных фракций, так и вакуумных газойлей при нагревании образца в инертной среде при температурах выше 200°С. Далее катализатор транспортируется на специальное предприятие, где происходит его окислительная регенерация.

Подготовка катализаторов гидрогенизационных процессов к окислительной регенерации заключается в 1) обработке растворителем для удаления остатков сырья; 2) извлечении тяжелых металлов (Fe, V, Ni), которые в виде сульфидов остаются на поверхности катализатора после окончания цикла, комплексообразователями. Удаление остатков сырья и извлечение тяжелых металлов можно осуществить в одну стадию путем обработки катализатора смесью растворителя и комплексообразователя.

Описан «Способ активации катализатора гидроочистки» RU 2351634 С2, который включает контактирование катализатора с кислотой и органической добавкой. Данный способ имеет недостатки, т.к. контактирование катализатора проводится уже после термической стадии обработки закоксованного катализатора. Это приводит к тому, что для металлов-загрязнителей при повышенной температуре происходит формирование устойчивых фаз, в том числе типа шпинелей и молибдатов. Как следствие удаление этих примесей после прокаливания не может быть проведено достаточно глубоко, это приводит к их участию в цикле повторного использования катализатора, что меняет его химический состав и может, в конечном счете, приводить к более интенсивному их закоксовыванию и преждевременной дезактивации.

Наиболее близким к предлагаемому является способ удаления загрязняющих тяжелых металлов, описанный в [M. Marafi, A. Stanislaus, Е. Furimsky. Handbook of spent hydroprocessing catalysts. Elsevier, 2010. P. 203-207]. Описанный способ предполагает контактирование катализатора до термической стадии регенерации с водным раствором, содержащим комплексообразователь (щавелевую кислоту) и пероксид водорода. Описанный способ имеет следующие недостатки: при подготовке катализатора к регенерации используется водный раствор комплексообразователя, включающий в свой состав, в том числе, перекись водорода, что формирует поток эмульсии «экстрагированные углеводороды - вода - комплексное соединение металла - перекись водорода». Дальнейшая переработка такого потока связана с необходимостью его разделения и осушки углеводородной фазы. Выделение металлов из раствора осложнено наличием неразложившейся перекиси водорода. Использование самой перекиси удорожает процесс, требует применения более дорого оборудования и систем контроля и безопасности на производстве, специального оборудования для транспорта и хранения перекиси водорода. Отличие предлагаемого решения заключается в двух моментах: экстрагирующие металлы-загрязнители агенты смешаны с углеводородными растворителями для удаления остатков сырья, т.е. отмывка от остатков продуктов и удаление загрязняющих примесей металлов происходят одновременно; при обработке не используется перекись водорода. Регенерация использованного раствора осуществляется путем пропускания раствора через слой крошки катализаторов гидрогенизационных процессов, полученной при рассеве прокаленного катализатора.

Технический результат достигается в способе подготовки катализаторов гидрогенизационных процессов к окислительной регенерации путем обработки пассивированного сульфидного катализатора смесью, в которой растворен комплексообразователь, причем используется смесь бутилцеллозольва и нефраса в массовых соотношениях от 10:90 до 90:10, а в качестве комплексообразователя используется щавелевая, или винная, или лимонная кислоты, при этом концентрация комплексообразователя составляет от 1 до 4% масс., степень извлечения составляет не менее 30% отн., степень извлечения V составляет не менее 40% отн., степень извлечения Fe составляет не менее 25% отн. Способ регенерации раствора комплексообразователя путем его пропускания через слой крошки катализаторов гидрогенизационных процессов, полученной при рассеве катализаторов, прокаленных при 500°С, для регенерации раствора использован Со-Мо/Аl2О3 катализатор гидроочистки дизельного топлива, степень извлечения NiO из регенерируемого раствора составляет не менее 92% отн., степень извлечения V2O5 из регенерируемого раствора составляет не менее 91% отн., степень извлечения Fe3O4 из регенерируемого раствора составляет не менее 89% отн.

Результат достигается при одновременной экстракцииостатков сырья, т.е. отмывки от остатков продуктов и удаления загрязняющих примесей (металлов) с помощью раствора нефраса и бутилцеллозольва (БЦЗ) в соотношениях от 90:10 до 10:90 (по массе) и комплексообразователя, выбранного из щавелевой, винной или лимонной кислот, взятый в количестве от 1 до 4% масс. на раствор. Изобретение включает так же способ регенерации полученного раствора путем контактирования полученного раствора с крошкой Со-Мо/Аl2О3 катализатора гидроочистки дизельного топлива, полученной при рассеве регенерированного катализатора.

Для испытания предложенных технических решений был использован промышленные катализаторы гидроочистки дизельных фракций и вакуумного газойля, пассивированные в реакторах. Характеристика катализаторов приведена в табл. 1.

Состав раствора для обработки катализаторов и содержание загрязнителей после обработки приведены в табл. 2.

В таблице 3 приведены результаты регенерации промывного раствора, которая оценивалась по снижению концентрации загрязняющих металлов. Свежий раствор не содержит V, Niи Fe.

Пример 1.

В обработку взято по 1 кг закоксованных катализаторов гидроочистки дизельных фракций и вакуумного газойля. Обработку каждого из них, выполняли 3 кг раствора, содержащего БЦЗ и нефрас в соотношении 10:90 (по массе) и щавелевую кислоту в концентрации 1% масс. на раствор.

В результате обработки закоксованного катализатора гидроочистки дизельных фракций получили 2,5 кг раствора, содержащего 0,8 мг/(кг раствора) Fе3О4. Сушку подготовленного катализатора выполняли при 200°С, после чего в образце найдено содержание углерода, равное 5,1% масс. и содержание оксида металла соответственно 3 ppmFe3O4. Полученный раствор, массой 2,5 кг, контактировали с 1 кг крошки Со-Мо/Аl2О3 катализатора гидроочистки дизельного топлива. В результате контактирования полученный раствор, массой 2,0 кг содержал 0,1 мг/(кг раствора) Fe3O4. Степень извлечения оксида металла из катализаора составила 40%. Степень извлечения оксида металла из раствора рассчитывали, принимая во внимание возвращение в процесс растворителя после сушки крошки. Степень извлечения оксида металла из раствора составила 90,0% отн.

В результате обработки закоксованного катализатора гидроочистки вакуумного газойля получили 2,4 кг раствора, содержащего 9,6 мг/(кг раствора) V2O5, 8,3 мг/(кг раствора) NiO, 56,3 мг/(кг раствора) Fe3O4. Сушку подготовленного катализатора выполняли при 200°С, после чего в образце найдено содержание углерода, равное 11,3% масс. и содержание оксидов металлов соответственно 25 ppm на V2O5, 40 ppm на NiO, 395 ppm на Fe3O4. Полученный раствор, массой 2,4 кг, контактировали с 1 кг крошки Со-Мо/Аl2О3 катализатора гидроочистки дизельного топлива. В результате контактирования полученный раствор, массой 1,9 кг содержал 0,9 мг/(кг раствора) V2O5, 0,8 мг/(кг раствора) NiO, 5,6 мг/(кг раствора) Fe3O4.

Степени извлечения оксидов металлов из катализатора составили: 66% отн. на V2O5, 33% отн. на NiO, 27% отн. на Fe3O4.

Степени извлечения оксидов металлов из раствора рассчитывали, принимая во внимание возвращение в процесс растворителя после сушки крошки. Степень извлечения оксида металла из раствора составила: 92,6% отн. на V2O5, 92,4% отн. на NiO, 92,1% отн. на Fe3O4.

Примеры 2-9.

Аналогично примеру 1. Сведения о составах свежих растворов и составах подготовленных катализаторов представлены в табл. 2. Сведения о массах и составах полученных при обработке катализатора и пропускании через катализаторную крошку растворов (регенерированных растворах) и степенях извлечения металлов из растворов представлены в таблице 3.

Источник поступления информации: Роспатент

Показаны записи 61-70 из 191.
16.06.2018
№218.016.6309

Способ генерирования диоксида хлора

Изобретение относится к области медицины, конкретно к дезинфекции, и может быть применено для дезинфекции изделий медицинского назначения, помещений, предметов ухода за больными, лабораторной посуды при инфекциях бактериальной, вирусной и грибковой этиологии в учреждениях лечебного профиля, на...
Тип: Изобретение
Номер охранного документа: 0002657432
Дата охранного документа: 13.06.2018
28.06.2018
№218.016.6864

Применение гетероциклических гидразонов в качестве средств, обладающих антигликирующей активностью

Изобретение относится к применению гетероциклических гидразонов указанной ниже общей формулы в качестве средств, обладающих антигликирующей активностью. Данные гидразоны подавляют реакцию гликирования белков и могут найти применение в медицине для лечения и предотвращения развития осложнений...
Тип: Изобретение
Номер охранного документа: 0002658819
Дата охранного документа: 25.06.2018
29.06.2018
№218.016.68bf

Способ ремонта футеровки теплового агрегата

Изобретение относится к технологии ремонта футеровок тепловых агрегатов. Техническим результатом изобретения является повышение адгезионной прочности ремонтного покрытия из мелкозернистого жаростойкого бетона к огнеупорной футеровке, упрощение технологического процесса производства ремонтных...
Тип: Изобретение
Номер охранного документа: 0002659104
Дата охранного документа: 28.06.2018
06.07.2018
№218.016.6ca0

Способ безэталонного дифференциального термического анализа

Изобретение относится к физико-химическому анализу и может быть использовано при фазовом и химическом анализе в разнообразных областях науки и техники: геологии, металлургии, медицине, пищевой промышленности и т.д. Предложено устройство для дифференциального термического анализа, в котором...
Тип: Изобретение
Номер охранного документа: 0002660211
Дата охранного документа: 05.07.2018
06.07.2018
№218.016.6d13

Устройство безэталонного дифференциального термического анализа с управляемым ходом дифференциальной записи при настройке

Изобретение относится к физико-химическому анализу и может быть использовано при фазовом и химическом анализе в разнообразных областях науки и техники: геологии, металлургии, медицине, пищевой промышленности и т.д. Предложено устройство для дифференциального термического анализа, содержащее...
Тип: Изобретение
Номер охранного документа: 0002660217
Дата охранного документа: 05.07.2018
28.07.2018
№218.016.7674

Способ получения 1-(1н-бензохромен-2-ил)-2,2,2-трифторэтанонов

Изобретение относится к способу получения 1H-бензо[ƒ]хроменов из 1-[(диметиламино)метил]-2-нафтолов и 1,1,1-трифтор-4-морфолинобутен-3-она-2 в среде кипящей уксусной кислоты в мольном соотношении (1:1), которые являются перспективными исходными соединениями для синтеза фармакологически...
Тип: Изобретение
Номер охранного документа: 0002662439
Дата охранного документа: 26.07.2018
09.08.2018
№218.016.7891

Двигатель внутреннего сгорания двустороннего действия с регенерацией теплоты

Изобретение относится к машиностроению, в частности к двигателестроению. Техническим результатом изобретения является: значительное повышение его КПД за счет применения регенерации теплоты и реверса газов; значительное снижение массы и габаритов двигателя за счет выполнения рабочего хода в...
Тип: Изобретение
Номер охранного документа: 0002663369
Дата охранного документа: 03.08.2018
19.08.2018
№218.016.7e15

Способ гидроочистки углеводородного сырья

Изобретение относится к области гидроочистки нефтяных фракций. Описан способ гидрообработки, который ведут путем контактирования сырья с системой катализаторов, на первой ступени с катализатором при содержании компонентов, мас.%: оксид кобальта - 3,5-6,0; оксид молибдена 14,0-20,0; оксид...
Тип: Изобретение
Номер охранного документа: 0002664325
Дата охранного документа: 16.08.2018
13.09.2018
№218.016.8716

Способ получения (s)-3-(аминометил)-5-метилгексановой кислоты из хлоргидрата

Изобретение относится к способу получения (S)-3-(аминометил)-5-метилгексановой кислоты формулы I из ее хлоргидрата. Способ осуществляют в соответствии с приведенной ниже схемой путем растворения хлоргидрата II в изопропаноле с последующей обработкой полученного раствора эквивалентным...
Тип: Изобретение
Номер охранного документа: 0002666737
Дата охранного документа: 12.09.2018
13.10.2018
№218.016.915a

Дезинфицирующая композиция

Изобретение относится к области медицины, а именно к дезинфектологии, и предназначено для дезинфекции высокого уровня эндоскопов, а также изделий медицинского назначения и поверхностей при инфекциях бактериальной, вирусной и грибковой этиологии в учреждениях лечебного профиля. Жидкую...
Тип: Изобретение
Номер охранного документа: 0002669343
Дата охранного документа: 10.10.2018
Показаны записи 51-58 из 58.
03.07.2020
№220.018.2e1c

Жидкий органический носитель водорода, способ его получения и водородный цикл на его основе

Изобретение относится к области водородной энергетики, органической химии и катализа, а именно к жидкому органическому носителю водорода (ЖОНВ) и способу его получения, а также к водородному циклу, включающему связывание водорода и его высвобождение в процессе применения ЖОНВ. ЖОНВ представляет...
Тип: Изобретение
Номер охранного документа: 0002725230
Дата охранного документа: 30.06.2020
15.07.2020
№220.018.3263

Мобильный комплекс для поражения подводных целей

Мобильный комплекс для поражения подводных лодок содержит мобильную платформу с пусковой установкой, аппаратуру обработки данных и пуска, гидроакустические буи, средства их доставки и средства поражения целей. Буи доставляются в зону цели посредством реактивных снарядов, передача параметров...
Тип: Изобретение
Номер охранного документа: 0002726377
Дата охранного документа: 13.07.2020
18.07.2020
№220.018.34b3

Способ совместной гидропереработки растительного и нефтяного сырья

Изобретение относится к способу гидрогенизационной переработки растительного и нефтяного сырья. В качестве растительного компонента используют липидную фракцию, извлеченную из микроводорослей, или непищевые растительные масла, а в качестве нефтяного компонента используют прямогонную дизельную...
Тип: Изобретение
Номер охранного документа: 0002726616
Дата охранного документа: 15.07.2020
20.04.2023
№223.018.4ae2

Смеси ароматических углеводородов, содержащие c-c-циклы, как жидкий органический носитель водорода и водородный цикл на его основе

Изобретение относится к жидкому органическому носителю водорода, представляющему собой смесь ароматических углеводородов, содержащих С-С-циклы, способных в присутствии катализаторов присоединять атомы водорода, причем смеси содержат по крайней мере одно соединение, выбранное из ряда:...
Тип: Изобретение
Номер охранного документа: 0002771200
Дата охранного документа: 28.04.2022
20.04.2023
№223.018.4b4c

Смеси азоторганических соединений, содержащих ароматические c-c-циклы, как жидкий органический носитель водорода и водородный цикл на его основе

Изобретение относится к жидкому органическому носителю водорода, представляющему собой смесь азоторганических соединений, содержащих ароматические С-С-циклы, способных в присутствии катализаторов присоединять атомы водорода, имеющую более низкие тепловые эффекты реакций...
Тип: Изобретение
Номер охранного документа: 0002773218
Дата охранного документа: 31.05.2022
16.05.2023
№223.018.6166

Катализатор глубокой гидроочистки нефтяных фракций и способ его приготовления

Изобретение относится к области производства катализаторов гидроочистки. Описан катализатор гидроочистки нефтяных фракций, включающий в свой состав никель, молибден, вольфрам и носитель, отличающийся тем, что NiO, MoO и WO наносят на прокаленный носитель из совместного раствора, содержащего...
Тип: Изобретение
Номер охранного документа: 0002741303
Дата охранного документа: 25.01.2021
21.05.2023
№223.018.6995

Способ пропитки носителя катализатора гидроочистки

Изобретение относится к области производства катализаторов переработки углеводородного сырья. Описан способ пропитки носителя катализатора гидроочистки пропиточным раствором, в состав которого входят оксиды молибдена и кобальта, осуществляющийся в емкостном пропитывателе, при котором избыточный...
Тип: Изобретение
Номер охранного документа: 0002794669
Дата охранного документа: 24.04.2023
23.05.2023
№223.018.6c05

Способ получения реактивных и дизельных топлив из смеси растительного и нефтяного сырья

Изобретение описывает способ получения реактивных и компонентов дизельных топлив путем гидрогенизационной переработки сырья, состоящего из смеси дистиллята растительного происхождения с дистиллятом нефтяного происхождения при соотношении 5,0-40,0:95,0-60,0% масс. соответственно, при этом в...
Тип: Изобретение
Номер охранного документа: 0002737724
Дата охранного документа: 02.12.2020
+ добавить свой РИД