×
13.06.2019
219.017.80a0

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ВНУТРЕННЕГО ДИАМЕТРА МЕТАЛЛИЧЕСКОЙ ТРУБЫ

Вид РИД

Изобретение

№ охранного документа
0002691288
Дата охранного документа
11.06.2019
Аннотация: Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения внутреннего диаметра металлических труб как готовых изделий, так и при их производстве. Сущность заявленного решения заключается в том, что в предлагаемом способе измерения внутреннего диаметра металлической трубы, при котором на одном из торцов трубы возбуждают в ней электромагнитные волны, принимают их после распространения вдоль трубы на другом ее торце, возбуждение электромагнитных волн осуществляют на фиксированной частоте в трубе как в полом волноводе, частоту возбуждаемых электромагнитных волн выбирают меньшей, чем критическая частота возбуждения электромагнитных волн одного из типов волн в трубе, и измеряют амплитуду принимаемых электромагнитных волн этого типа волн, по которой судят о внутреннем диаметре металлической трубы. Частота возбуждаемых электромагнитных волн может быть выбрана меньшей, чем критическая частота возбуждения электромагнитных волн типа H в трубе. Техническим результатом, наблюдаемым при реализации заявленного решения, является расширение функциональных возможностей способа измерения. 1 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения внутреннего диаметра металлических труб как готовых изделий, так и при их производстве, на металлургических, машиностроительных предприятиях.

Известны рефлектометрический способ измерения внутреннего диаметра металлической трубы и реализующее его устройство (монография: Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 1978. 280 с. С. 248-249). Данные технические решения обеспечивают достаточно высокую точность измерения внутреннего диаметра металлической трубы в пределах его измерения 0÷4 мм. При более высоких значениях изменения диаметра трубы погрешность его определения значительно увеличивается. Недостатком этих способа и устройства является ограниченная область применения, обусловленная небольшим диапазоном измерения.

Известны также способ измерения и реализующее его устройство (GB 1264264, 16.02.1972). Способ заключается в зондировании внутренней поверхности трубы электромагнитными колебаниями, возбуждаемыми в измерительном СВЧ резонаторе и определении их собственной (резонансной) частоты, являющейся функцией диаметра трубы. Возможность получения информации о внутреннем диаметре металлической трубы обусловлена в данном способе измерения наличием функциональной связи между резонансной частотой электромагнитных колебаний указанного резонатора, выполненного частично-расщепленным вдоль его длины, и величиной взаимного пространственного расположения внутри трубы измерительных щупов, введенных в нее и контактирующих с ее внутренней поверхностью. Реализующее данный способ устройство содержит датчик в виде находящегося вне трубы волноводного резонатора, с одного торца расщепленного вдоль трубы на две части, к каждой из которых снаружи прикреплен металлический щуп, а также вторичный блок для возбуждения в резонаторе электромагнитных колебаний, их съема и измерения его резонансной частоты. Металлические щупы связаны между собой через пружину, работающую на растяжение, и касаются внутренней поверхности трубы в диаметрально-противоположных точках. Изменение диаметра трубы приводит к соответствующим изменениям степени расщепления полости резонатора и резонансной частоты его электромагнитных колебаний. Недостатком этих способа и устройства является, во-первых, контактность измерений, сужающая область применения, так как, например, на их основе невозможно проведение измерений внутреннего диаметра металлических труб при их изготовлении по методу центробежного литья, где допустимы только бесконтактные измерения. Во-вторых, диапазон измерения недостаточно большой, лимитируемый ограниченной величиной максимального расщепления полости резонатора.

Известен также способа измерения (SU 1298538, 23.11.1987), согласно которому внутри трубы размещают коаксиально с ней металлический стержень, на измерительном участке трубы возбуждают стоячие электромагнитные волны в образуемом коаксиальном волноводе и измеряют их резонансную частоту. При этом содержит размещаемый внутри трубы коаксиально с ней металлический стержень выполнен из трех участков. Два из этих участков имеют одинаковый диаметр, а третий участок, расположенный между ними и соответствующий измерительному участку трубы, имеет увеличенный по сравнению с ними диаметр. Возбуждение стоячих волн осуществляют на третьем участке на частоте, величина которой меньше критической частоты возбуждения электромагнитных волн на участках с одинаковым диаметром, которая, в свою очередь, зависит от диаметра стержня на всех трех участках и от типа возбуждаемых электромагнитных колебаний H111 в открытом объемном резонаторе, которым является объем между средним участком стержня и внутренней поверхностью трубы. Такой тип колебаний существует только при превышении значения диаметра стержня на указанном измерительном участке трубы, соответствующего такому открытому объемному резонатору, значений диаметра двух участков металлического стержня с обеих сторон от этого измерительного участка. Недостатком данного способа является его ограниченные функциональные возможности: его нельзя применить при измерении диаметра трубы малого диаметра, чему препятствует увеличенный диаметр измерительного участка стержня. При этом затруднена реализация и электронного блока, предназначенного для возбуждения колебаний в объемном резонаторе и измерения информативного параметра - резонансной частоты электромагнитных колебаний указанного объемного резонатора, ввиду ее весьма больших значений при сближении поверхностей третьего участка стержня и внутренней поверхности трубы на ее измерительном участке.

Известно также техническое решение (монография: Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат.1989. 208 с.), которое содержит описание способа измерения внутреннего диаметра металлических труб, по технической сущности наиболее близкого к предлагаемому способу, и принятое в качестве прототипа. Согласно этому способу-прототипу, контролируемую трубу возбуждают как полый объемный резонатор, который образуют при расположении у торцов металлической трубы закорачивающих элементов - металлических пластин. Одна из резонансных частот такого резонатора может служить информативным параметром. Недостатком этого способа является его ограниченные функциональные возможности: этот способ является контактным и на практике в большинстве случаев неприемлем. Так, он не может быть использован при производстве металлических труб, когда возникает необходимость в бесконтактном определении внутреннего диаметра и толщины стенок изготавливаемой трубы в нескольких поперечных сечениях вдоль ее длины.

Техническим результатом изобретения является расширение функциональных возможностей способа измерения.

Технический результат достигается тем, что в предлагаемом способе измерения внутреннего диаметра металлической трубы, при котором при котором на одном из торцов трубы возбуждают в ней электромагнитные волны, принимают их после распространения вдоль трубы на другом ее торце, при этом возбуждение электромагнитных волн осуществляют на фиксированной частоте в трубе как в полом волноводе, частоту возбуждаемых электромагнитных волн выбирают меньшей, чем критическая частота возбуждения электромагнитных волн одного из типов волн в трубе, и измеряют амплитуду принимаемых электромагнитных волн этого типа волн, по которой судят о внутреннем диаметре металлической трубы. Частота возбуждаемых электромагнитных волн может быть выбрана меньшей, чем критическая частота возбуждения электромагнитных волн типа H01 в трубе.

Предлагаемый способ поясняется чертежами на фиг. 1 и фиг. 2.

На фиг. 1 схематично показана схема устройства для реализации способа измерения внутреннего диаметра металлической трубы.

На фиг. 2 приведен график зависимости ln(E0/E) (Е0 и Е - амплитуда напряженности электрического поля в сечении с координатой, соответственно, z = 0 и трубы - волновода) от внутреннего диаметра D металлической трубы.

Здесь введены обозначения: труба 1, элементы связи 2 и 3, генератор электромагнитных колебаний 4, детектор 5, функциональный преобразователь 6, регистратор 7.

Сущность предлагаемого способа состоит в следующем.

Согласно данному способу, на измерительном участке трубы возбуждают электромагнитные волны в образуемом в ней как в полом металлическом волноводе, возбуждение электромагнитных волн производят на фиксированной частоте на одном из торцов измерительного участка волновода, а прием распространившихся вдоль него электромагнитных волн - на другом его торце. При этом частоту возбуждаемых электромагнитных волн выбирают меньшей, чем критическая частота возбуждения электромагнитных волн одного из типов в образуемом полом волноводе, и измеряют амплитуду принимаемых электромагнитных волн этого типа, по которой судят о внутреннем диаметре металлической трубы.

Контролируемую трубу 1 рассматривают как полый металлический волновод, в котором на одном ее торце с помощью элемента связи 2 (металлического штыря, петли связи или штыря связи), возбуждают электромагнитные волны на одном из его торцов (фиг. 1). На другом торце трубы с помощью элемента связи 3 (также металлическим штырем, петлей связи или штырем связи) принимают электромагнитные волны после их распространения вдоль контролируемой трубы 1. На фиг. 1 расположение элементов связи 2 и 3 показано условно; их конкретные тип и расположение у торцов трубы-волновода зависят от возбуждаемого в трубе типа волн, специфики условий измерений на практике.

При возбуждении электромагнитных волн в контролируемой трубе 1 как в полом металлическом волноводе на фиксированной частоте ƒ, которая ниже критической частоты ƒкр для волны одного из типов волн, вдоль волновода существует только ослабевающее реактивное поле, убывающее при удалении от возбуждающего элемента у одного из торцов контролируемой трубы 1 - полого металлического волновода.

Условием распространения электромагнитных волн по любому волноводу является выполнение неравенства: ƒ > ƒкр, которому должны удовлетворять рабочая частота ƒ и критическая частота ƒкр для электромагнитной волны возбуждаемого ("рабочего") типа волн. При ƒ < ƒкр имеет место запредельный режим, при котором распространения электромагнитных волн по волноводу не происходит, а существует только ослабевающее реактивное поле, убывающее при удалении от возбуждающего элемента связи 3. В запредельном волноводе, которым в данном случае является полый металлический волновод - контролируемая труба 1, электромагнитное поле изменяется вдоль координаты z (оси волновода) по закону:

а постоянная ослабления α есть

В этих формулах E0 - амплитуда напряженности электрического поля в сечении с координатой z = 0; ω = 2πƒ, с - скорость света.

Выбирая соотношение между ƒ и ƒкр, можно управлять величиной ослабления α.

Следовательно, как следует из (1) и (2), относительное значение E/E0 амплитуды напряженности электромагнитного поля в каком-либо сечении данного волновода, в сечении с координатой есть

В полом круглом металлическом волноводе основной волной, имеющей минимальное значение критической частоты ƒкр, является волна типа H11, для которой критическая частота есть (монография: Милованов О.С., Собенин Н.П. Техника сверхвысоких частот. М.: Атомиздат. 464 с. С. 38-44):

где с = 3⋅108 м/с - скорость света, = 1,8412 - 1-ый корень производной функции Бесселя 1-ого порядка, ε и μ - относительные значения диэлектрической проницаемости и магнитной проницаемости, соответственно, среды в волноводе. В полом волноводе ε = 1 и μ = 1.

Из формулы (3) после преобразований с учетом формулы (4) следует

Измеряя значение амплитуды Е напряженности электромагнитного поля в сечении с координатой данного волновода, можно, согласно (5), (6) определить значение внутреннего диаметра D металлической трубы.

На фиг. 2 при см, ƒ = 1 ГГц, ε = 1 и μ = 1 приведен график зависимости ln(E0/Е) от D, построенный согласно (5).

При возможном наличии диэлектрических осаждений (пленок и т.п.) на внутренней поверхности контролируемого металлического волновода целесообразно, для повышения точности измерения внутреннего диаметра обеспечить проведение измерений при возбуждении в волноводе волны типа H01. Для волн этого типа электрические силовые линии имеют форму замкнутых окружностей и не заканчиваются на стенках волновода. Токи в стенках волновода также протекают по окружностям и не имеют продольных составляющих. Это обеспечивает особенность волн этого типа - малые потери в стенках, практическую нечувствительность характеристик распространения волн от наличия слоя диэлектрического вещества на внутренней поверхности трубы.

В полом круглом металлическом волноводе для волн типа H01 значение критической частоты есть

где с = 3⋅108 м/с - скорость света, = 3,832 - 1-ый корень производной функции Бесселя нулевого порядка, ε и μ - относительные значения диэлектрической проницаемости и магнитной проницаемости, соответственно, среды в волноводе. В полом волноводе ε = 1 и μ = 1.

Для волн типа H01 формулы, соответствующие зависимости ln(E0/E) от D и зависимости D от ln(E0/Е), аналогичны, соответственно, формуле (5) и формуле (6), где вместо следует записать .

Согласно предлагаемому способу, в трубе 1, являющейся полым волноводом, возбуждают электромагнитные волны фиксированной частоты ƒ с помощью элемента связи 2 (металлического штыря, петли связи или штыря связи) на одном из его торцов (фиг. 1). Такое возбуждение может быть осуществлено бесконтактным способом, если в этом есть необходимость (монография: Милованов О.С., Собенин Н.П. Техника сверхвысоких частот. М.: Атомиздат. 464 с. С. 54-56). На другом торце контролируемой трубы 1 с помощью элемента связи 3 (также металлического штыря, петли связи или штыря связи), который также может быть бесконтактным, принимают электромагнитные волны после их распространения вдоль трубы 1. Для возбуждения электромагнитных волн служит генератор электромагнитных колебаний 4 фиксированной частоты ƒ, значение которой удовлетворяет условию ƒ < ƒкр, где ƒкр - критическая частота для "рабочего" (т.е. возбуждаемого в данном волноводе) типа электромагнитных волн. У другого торца полого волновода (фиг. 1) принимаемый сигнал поступает через элемент связи 3 на детектор 5, выходной сигнал которого имеет амплитуду E(D), служащую информативным параметром. Затем этот сигнал поступает на вход функционального преобразователя 6, на другой вход которого поступает сигнал из генератора электромагнитных колебаний 1, несущий информацию об амплитуде E0 на входе трубы 1 при возбуждении в ней электромагнитных волн как в полом волноводе с помощью элемента связи 2, и в котором производят совместное функциональное преобразование E и E0 согласно формуле (5) для определения зависимости ln(E0/Е) от D и нахождения значения D измеряемого внутреннего диаметра трубы. К выходу функционального преобразователя 6 подсоединен регистратор 7. Напряженность электрического поля Е при удалении от элемента связи 2 спадает в соответствии с соотношением (1). При этом значение Е зависит от внутреннего диаметра D контролируемой металлической трубы 1.

Синтез устройства для реализации данного способа, состоит в следующей последовательности действий: выбирают, исходя из технологических особенностей конкретной задачи, а также, исходя, в частности, из необходимой степени локальности измерений, длину измерительного участка; затем рассчитывают на основе формулы (5) значение напряженности электрического поля E(D) и определяют внутренний диаметр D контролируемой трубы. Затем реализуют измерительное устройство на основе данных расчетов.

Для металлических труб конкретных размеров выбором частоты ƒ генератора можно оптимизировать чувствительность такого датчика внутреннего диаметра металлической трубы в рабочем диапазоне его изменения. При этом имеет место монотонность зависимости амплитуды результирующего значения напряженности электромагнитного поля от этого диаметра. Применение данного способа измерения обеспечивает информацию о диаметре трубы, усредненную по ее длине.

Таким образом, данный способ измерения достаточно просто реализуем. Он может найти применение на практике там, где требуется производить бесконтактные измерения внутреннего диаметра металлической трубы, а также и толщину ее стенки при известности наружного диаметра этой трубы.


СПОСОБ ИЗМЕРЕНИЯ ВНУТРЕННЕГО ДИАМЕТРА МЕТАЛЛИЧЕСКОЙ ТРУБЫ
СПОСОБ ИЗМЕРЕНИЯ ВНУТРЕННЕГО ДИАМЕТРА МЕТАЛЛИЧЕСКОЙ ТРУБЫ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 276.
27.12.2014
№216.013.1521

Способ измерения резонансной частоты

Изобретение относится к измерительной технике и предназначено для высокоточного определения резонансной частоты с использованием цифровых методов обработки сигналов, а также определения величин, которые функционально связаны с резонансной частотой резонаторов, входящих в состав радиочастотных...
Тип: Изобретение
Номер охранного документа: 0002536833
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.1618

Система определения гидродинамических коэффициентов математической модели движения судна

Изобретение относится к области судовождения - автоматическому управлению движением судна. Система определения гидродинамических коэффициентов математической модели движения судна содержит задатчик идентификационных маневров управления движением судна, объект управления, а также блок...
Тип: Изобретение
Номер охранного документа: 0002537080
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1a5f

Устройство фильтрации гармоник сетевого напряжения

Использование: в области электроэнергетики. Технический результат - уменьшение потерь энергии, обусловленных постоянным подключением к сети резонансных фильтров-подавителей, гармоники которых в данный момент отсутствуют. Устройство фильтрации гармоник сетевого напряжения содержит включенный в...
Тип: Изобретение
Номер охранного документа: 0002538179
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1ae4

Кольцевой генератор на кмдп транзисторах

Изобретение относится к области вычислительной техники и может быть использовано в системах тактовой синхронизации микропроцессорных устройств. Достигаемый технический результат - расширение функциональных возможностей путем генерирования сигналов типа меандра-трапеции, кроме сигналов типа...
Тип: Изобретение
Номер охранного документа: 0002538312
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.2488

Устройство анализа результатов тестирования для поиска неисправных блоков

Изобретение относится к области тестирования дискретных объектов большой размерности. Техническим результатом является повышение глубины локализации неисправностей. Устройство содержит m n-разрядных многовходовых сигнатурных анализаторов (СА строк), входы которых соединены со всеми mn выходами...
Тип: Изобретение
Номер охранного документа: 0002540805
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.25c2

Способ измерения резонансной частоты

Изобретение относится к измерительной технике. В частности, оно может быть использовано в радиочастотных резонансных датчиках. Способ измерения заключается в том, что периодически на вход резонатора подают колебания с частотой, изменяющейся дискретно с заданным шагом в прямом и обратном...
Тип: Изобретение
Номер охранного документа: 0002541119
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.28a2

Устройство для оценки экономической эффективности процесса управления сложными системами

Изобретение относится к вычислительной технике и может быть использовано для оценки экономической эффективности процесса управления сложными системами. Техническим результатом является повышение надежности процесса управления, а также расширение арсенала технических вычислительных средств....
Тип: Изобретение
Номер охранного документа: 0002541859
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2bc3

Парафазный логический элемент

Изобретение относится к парафазному логическому элементу. Технический результат заключается в уменьшении потребляемой мощности в расчете на один такт. Логический элемент содержит два транзистора р-типа, первый тактовый транзистор n-типа и логический блок, включающий прямые и инверсные ключевые...
Тип: Изобретение
Номер охранного документа: 0002542660
Дата охранного документа: 20.02.2015
27.02.2015
№216.013.2e42

Радиоволновое устройство для обнаружения живых людей под завалами и за стенами зданий

Изобретение относится к поисково-спасательной службе и может быть использовано для активного зондирования с целью объективного определения наличия в них человека с признаками жизни и оценки его состояния по частотам дыхания и пульса. Технический результат - повышение точности обнаружения живого...
Тип: Изобретение
Номер охранного документа: 0002543310
Дата охранного документа: 27.02.2015
20.03.2015
№216.013.346a

Способ определения диаметра диэлектрического полого цилиндрического изделия

Изобретение относится к измерительной технике и представляет собой способ определения диаметра диэлектрического полого цилиндрического изделия. При реализации способа контролируемое изделие предварительно помещают в электрическое поле, облучают изделие электромагнитной волной, принимают...
Тип: Изобретение
Номер охранного документа: 0002544893
Дата охранного документа: 20.03.2015
Показаны записи 51-60 из 86.
20.01.2018
№218.016.118c

Устройство для измерения физических свойств вещества в потоке

Использование: для контроля потоков неоднородных диэлектрических веществ. Сущность изобретения заключатся в том, что устройство для измерения физических свойств вещества в потоке содержит на измерительном участке волноводный резонатор, через сквозные отверстия в противоположных торцах которого...
Тип: Изобретение
Номер охранного документа: 0002634090
Дата охранного документа: 23.10.2017
04.04.2018
№218.016.3282

Способ измерения количества вещества в металлической емкости

Изобретение может быть использовано для высокоточного определения количества (объема, массы, уровня) веществ в различных емкостях. Также оно может быть также использовано в демонстрационных физических экспериментах для описания возможного, в том числе отличного от общепринятого, характера...
Тип: Изобретение
Номер охранного документа: 0002645435
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.3426

Способ определения количества диэлектрической жидкости в металлической емкости

Изобретение может быть использовано для измерения количества (объема, массы) диэлектрической жидкости в металлической емкости произвольной конфигурации независимо от ее диэлектрической проницаемости. Техническим результатом является расширение функциональных возможностей способа измерения. В...
Тип: Изобретение
Номер охранного документа: 0002645813
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3578

Способ определения уровня жидкости в емкости

Изобретение может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, независимо от электрофизических параметров жидкости. Техническим результатом является повышение точности измерений. В способе определения уровня жидкости в емкости, при котором,...
Тип: Изобретение
Номер охранного документа: 0002645836
Дата охранного документа: 28.02.2018
10.05.2018
№218.016.3995

Способ измерения положения границы раздела двух сред в емкости

Изобретение может быть использовано для высокоточного определения положения границы раздела двух сред, находящихся в емкости, в частности двух несмешивающихся жидкостей с разной плотностью. Техническим результатом является повышение точности измерений. В емкости со средами размещают вертикально...
Тип: Изобретение
Номер охранного документа: 0002647182
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.39f9

Способ измерения положения границ раздела между компонентами трехкомпонентной среды в емкости

Изобретение может быть использовано для определения границ раздела в трехкомпонентной среде, в частности воздуха и двух жидкостей с разной плотностью. Техническим результатом является расширение функциональных возможностей способа. В способе измерения, при котором в емкости со средой размещают...
Тип: Изобретение
Номер охранного документа: 0002647186
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.470b

Способ измерения внутреннего диаметра металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения внутреннего диаметра металлических труб как готовых изделий, так и при их производстве, в том числе при их производстве, например, по методу центробежного литья на металлургических,...
Тип: Изобретение
Номер охранного документа: 0002650605
Дата охранного документа: 16.04.2018
29.05.2018
№218.016.55cb

Устройство для измерения уровня вещества в открытой металлической емкости

Изобретение предназначено для измерения уровня жидких и сыпучих веществ в открытых металлических емкостях. В частности, оно может быть применено для определения уровня жидкого металла в открытых технологических емкостях металлургического производства. Техническим результатом является расширение...
Тип: Изобретение
Номер охранного документа: 0002654362
Дата охранного документа: 17.05.2018
09.06.2018
№218.016.5c88

Способ измерения длины металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях. Сущность заявленного технического решения заключается в том, что в...
Тип: Изобретение
Номер охранного документа: 0002656007
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5cac

Устройство для измерения длины протяженного металлического изделия

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины протяженных металлических изделий, в частности металлических труб как готовых изделий, так и при их производстве. Техническим результатом изобретения является расширение функциональных...
Тип: Изобретение
Номер охранного документа: 0002656021
Дата охранного документа: 30.05.2018
+ добавить свой РИД