×
09.06.2019
219.017.7e28

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ АЛЮМИНИЕВЫХ СПЛАВОВ ЭЛЕКТРОЛИЗОМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к цветной металлургии, в частности для получения сплавов на основе алюминия электрохимическим способом. Способ включает введение в расплавленный алюминий катода легирующих элементов из малорастворимого анода путем растворения его в калиевом криолит-глиноземном расплаве, или смеси калиевого и натриевого криолит-глиноземного расплава, или в натриевом криолит-глиноземном расплаве при температуре 700-960°С и плотности тока на аноде 0,2-1,5 А/см и восстановления легирующих элементов в расплавленном алюминии на катоде. В качестве малорастворимого анода используют металлический сплав или кермет, или керамический материал с содержанием легирующих элементов 2-97 мас.%. В качестве легирующих элементов используют олово, никель, железо, медь, цинк, хром, кобальт и кремний. Повышается технологичность способа за счет снижения температуры и трудоемкости операций, а также уменьшается загрязнение окружающей среды при осуществлении способа. 1 табл.

Изобретение относится к цветной металлургии, в частности для получения сплавов на основе алюминия электрохимическим способом.

Известен способ получения алюминиевых лигатур в электролизных ваннах в процессе получения первичного алюминия электролизом криолит-глиноземного расплава [Нерубащенко В.В., Крымов А.П., Галочка В.Г., Напалков В.И., Тарарышкин В.И. Получение алюминиевых лигатур в электролизных ваннах. - Цветные металлы. 1980, №12, с.47-48]. Способ заключается в том, что легирующий компонент (Ti, Zr) вводят в электролизную ванну в виде компактного металла через окно, пробиваемое в корке электролита, либо легирующий компонент в виде оксида равномерно рассыпают по корке электролита. Недостатками этого способа являются дополнительные трудозатраты на операцию введения компонента, а также его потери вследствие угара.

Известен способ получения лигатуры алюминий-бор в электролизных ваннах в процессе получения первичного алюминия электролизом криолит-глиноземного расплава [Авторское свидетельство СССР №707996, С25В 11/12, С25С 3/36, заявл. 10.12.1976, опубл. 7.01.1980. «Электродная масса для анодов». Илющенко Н.Г., Шуров Н.И., Анфиногенов А.И., Митрофанова Т.Л., Сенин В.Н., Ивченков В.П., Аладжалов Л.А., Напалков В.И., Двинин Ю.И., Койнов П.А., Устич В.П.]. При этом происходит непрерывное питание электролизера легирующим компонентом (бором) путем введения соединения этого компонента (карбида бора) в исходную шихту при изготовлении расходуемого углеродного анода. Недостатками этого способа являются увеличение электросопротивления угольного анода и дополнительный расход электроэнергии.

Наиболее близким по технической сущности является способ получения алюминиевых лигатур в электролизных ваннах в процессе получения первичного алюминия электролизом криолит-глиноземного расплава при температуре 950-960°С [Цыплаков A.M., Сенин В.Н., Тимченко Б.И., Икрин Г.Е., Фролова Э.Б. Алюминиевый электролизер с расходуемыми штырями. - В сб.: Производство алюминия. Труды ВАМИ. №71. М.: Металлургия. 1970, с.75-84]. Способ заключается в том, что для подвода тока к расходуемому углеродному самообжигающемуся аноду с боковым токоподводом используют токоподводящие элементы (штыри) из металла или сплавов металлов, образующие с катодным алюминием соответствующие кондиционные сплавы. В этом случае штыри не извлекают из тела анода по мере его спекания, благодаря чему попутно устраняется одна из основных технологических операций по обслуживанию самообжигающегося анода - перестановка штырей, в ходе которой в атмосферу корпуса выделяется до 75% общего количества смолистых и канцерогенных веществ.

Недостатком известного способа является то, что для осуществления способа используют углеродные самообжигающиеся аноды, выбрасывающие в атмосферу вредные вещества (полиароматические углеводороды), что загрязняет окружающую среду, а также трудоемкость проведения способа. При использовании самообжигающегося анода необходимо проводить многочисленные операции по его обслуживанию: загрузку анодной массы, забивку штырей, перетяжку анодной рамы, устранение технологических отклонений в работе анода, которые производятся в условиях высокой загазованности и требуют больших затрат ручного труда.

Технической задачей настоящего изобретения является улучшение экологических условий способа с одновременным повышением технологичности способа.

Поставленная задача решается за счет того, что заявленный способ включает введение в расплавленный алюминий катода легирующих элементов из малорастворимого анода путем растворения его в калиевом криолит-глиноземном расплаве, или смеси калиевого и натриевого криолит-глиноземного расплава, или в натриевом криолит-глиноземном расплаве при температуре 700-960°С и плотности тока на аноде 0,2-1,5 А/см2 и восстановления легирующих элементов в расплавленном алюминии на катоде, при этом в качестве малорастворимого анода используют металлический сплав, или кермет, или керамический материал с содержанием легирующих элементов 2-97 мас.%, при этом в качестве легирующих элементов используют олово, никель, железо, медь, цинк, хром и кобальт.

Применение калиевого или смешанного электролита позволяет снизить температуру процесса до 700-850°С, что на 260-100°С ниже по сравнению с традиционным процессом получения первичного алюминия электролизом натриевого криолит-глиноземного расплава. Снижение температуры необходимо для предотвращения слишком быстрого разрушения малорасходуемых анодов (так называемое «катастрофическое разрушение»), которое приведет к нежелательному изменению состава алюминиевого сплава и нерациональному расходу анодного материала.

При слишком низкой плотности тока на аноде идет исключительно процесс выделения кислорода. С ростом плотности тока возрастает составляющая тока, связанная с растворением материала анода, и это приводит к образованию сплава на катоде. Таким образом, плотность тока на малорасходуемом аноде зависит от конкретных условий, во-первых, она должна быть выше некоторого минимального значения, во-вторых, она зависит от состава требуемого сплава.

Малорасходуемые аноды представляют собой металлические сплавы, либо керамику из смеси оксидов металлов, либо многофазные материалы, состоящие из оксидной матрицы и мелкодисперсной распределенной по объему анода металлической фазы (кермет). Оксидная матрица кермета выполняет роль жесткого каркаса, а пластичная металлическая связка придает кермету механическую прочность, повышает его устойчивость к термоударам и электропроводность. В качестве компонентов для малорасходуемых анодов используют Sn, Ni, Fe, Cu, Zn, Cr, Co и другие металлы и/или их оксиды.

Примеры. Для проверки предлагаемого технологического процесса были проведены эксперименты по электролизу алюминия в лабораторной ячейке с малорасходуемыми анодами из металлических сплавов и керметов. Эксперименты проводили в легкоплавком (содержащем фторид калия) криолит-глиноземном расплаве разного состава и в натриевом криолит-глиноземном расплаве; всего было испытано четыре состава электролита при температурах 700, 800, 850 и 960°С; расплав содержал 4-7 мас.% Al2O3 (до насыщения); масса соли - 400 г. В качестве анодов брали небольшие образцы сплавов либо керметов толщиной 1-2 см, содержащих легирующий элемент в количестве 2-97 мас.%. Глубина погружения 2 см. Анодная плотность тока 0,2-1,5 А/см2. Катодный алюминий накапливался на дне алундового контейнера (токоподвод к катоду - вольфрамовый стержень). Длительность эксперимента - 72 час. После эксперимента полученный алюминий анализировали на содержание компонентов анода. Составы испытанных анодных материалов и содержание примесей в катодном алюминии приведены в таблице 1.

Полученные результаты показывают, что использование при электролизе алюминия малорасходуемых анодов приводит к получению алюминиевых сплавов различного состава. Состав сплава зависит от состава анода и условий электролиза - температуры, плотности тока. В каждом из перечисленных случаев на аноде стабильно шел процесс выделения пузырьков газообразного кислорода.

Использование отличительных признаков заявляемого изобретения позволяет исключить загрязнение окружающей среды и повысить технологичность способа за счет снижения температуры и трудоемкости операций: обслуживание анодов этого типа будет сводиться к выполнению следующих операций - извлечение огарков, установка новых анодов, перетяжка анодной рамы.

Способ получения алюминиевых сплавов электролизом, включающий введение в расплавленный алюминий катода легирующих элементов из малорастворимого анода путем растворения его в калиевом криолит-глиноземном расплаве или смеси калиевого и натриевого криолит-глиноземного расплава, или в натриевом криолит-глиноземном расплаве при температуре 700-960°С и плотности тока на аноде 0,2-1,5 А/см и восстановления легирующих элементов в расплавленном алюминии на катоде, при этом в качестве малорастворимого анода используют металлический сплав или кермет, или керамический материал с содержанием легирующих элементов 2-97 мас.%, при этом в качестве легирующих элементов используют олово, никель, железо, медь, цинк, хром, кобальт и кремний.
Источник поступления информации: Роспатент

Показаны записи 1-9 из 9.
10.02.2013
№216.012.24d3

Электрохимический генератор на твердооксидных топливных элементах

Изобретение относится к устройствам для прямого преобразования химической энергии топлива в электрическую с использованием твердооксидных топливных элементов (ТОТЭ). Электрохимический генератор на твердооксидных топливных элементах содержит корпус, камеру смешения метана и воздуха, камеру...
Тип: Изобретение
Номер охранного документа: 0002474929
Дата охранного документа: 10.02.2013
27.05.2013
№216.012.4539

Твердоэлектролитный датчик для амперометрического измерения концентрации водорода и кислорода в газовых смесях

Изобретение относится к аналитической технике, в частности к твердо-электролитным датчикам для анализа газовых сред. Твердоэлектролитный датчик для амперометрического измерения концентрации водорода и кислорода в газовых смесях содержит диск из твердого электролита с кислородной проводимостью,...
Тип: Изобретение
Номер охранного документа: 0002483298
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.453a

Твердоэлектролитный датчик для амперометрического измерения концентрации водорода в газовых смесях

Изобретение относится к аналитической технике, в частности к твердоэлектролитным датчикам для анализа газовых сред. Твердоэлектролитный датчик для амперометрического измерения концентрации водорода в газовых смесях содержит два электрода, нанесенные на противоположные поверхности одного из...
Тип: Изобретение
Номер охранного документа: 0002483299
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.453b

Твердоэлектролитный датчик для амперометрического измерения влажности газовых смесей

Изобретение относится к аналитической технике, в частности к датчикам для анализа газовых сред. Твердоэлектролитный датчик для амперометрического измерения влажности газовых смесей содержит диск из твердого электролита с кислородной проводимостью с двумя электродами - наружным и внутренним,...
Тип: Изобретение
Номер охранного документа: 0002483300
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.459d

Твердый электролит с литий-ионной проводимостью

Изобретение относится к области электротехники, а именно к твердым электролитам с проводимостью по катионам лития. Технический результат заключается в снижении температуры и времени обработки литийсодержащего материала при достижении высокой ионной проводимости твердого электролита при...
Тип: Изобретение
Номер охранного документа: 0002483398
Дата охранного документа: 27.05.2013
10.07.2013
№216.012.545c

Способ электролитического получения свинца

Изобретение относится к цветной металлургии, в частности к получению свинца электролитическим способом. Способ включает электролитическое рафинирование свинца в расплаве галогенидов солей с использованием жидкометаллических катода и анода. При этом процесс электролиза ведут с применением одного...
Тип: Изобретение
Номер охранного документа: 0002487199
Дата охранного документа: 10.07.2013
10.04.2019
№219.017.068b

Способ получения высоко- и нанодисперсного порошка металлов или сплавов

Изобретение относится к области электрохимического получения металлических порошков из расплавленных солей, в частности для получения высоко- и нанодисперсных порошков металлов и сплавов. Порошки металлов и их сплавов получают путем электрохимического растворения металлических анодов. Осаждение...
Тип: Изобретение
Номер охранного документа: 0002423557
Дата охранного документа: 10.07.2011
09.06.2019
№219.017.7d54

Способ получения нано- и микроволокон кремния электролизом диоксида кремния из расплавов солей

Изобретение относится к производству электролитического кремния в виде нановолокон или микроволокон с использованием сырья - диоксида кремния. Сущность изобретения: способ получения нано- или микрооволокон кремния характеризуется тем, что процесс электролиза SiO ведут в расплаве LiF (0÷3) - KCl...
Тип: Изобретение
Номер охранного документа: 0002427526
Дата охранного документа: 27.08.2011
09.06.2019
№219.017.7e1f

Инертный анод для электролитического получения металлов

Изобретение относится к области цветной металлургии и электролитическому получению металлов и может быть использовано при получении алюминия электролизом криолит-глиноземного расплава с применением инертных анодов. Инертный анод содержит металлическую фазу и керамическую фазу, включающую оксид...
Тип: Изобретение
Номер охранного документа: 0002401324
Дата охранного документа: 10.10.2010
Показаны записи 51-59 из 59.
24.06.2020
№220.018.29ed

Способ переработки нитридного ядерного топлива

Изобретение относится к ядерной энергетике, в частности, к технологии переработки отработавшего нитридного ядерного топлива и может быть использовано преимущественно в замкнутом ядерном топливном цикле (ЗЯТЦ). Способ включает конверсию компонентов нитридного топлива в хлориды при температуре не...
Тип: Изобретение
Номер охранного документа: 0002724117
Дата охранного документа: 22.06.2020
12.04.2023
№223.018.4532

Элементарная ячейка литий-ионного аккумулятора и аккумулятор на ее основе

Изобретение относится к материалам литий-ионных аккумуляторов с высокой удельной энергией. Элементарная ячейка аккумулятора состоит из токосъемников, анода, катода, электролита и изолятора. В качестве электролитов используют тонкопленочные электролиты, в качестве катодов – катионпроводящие по...
Тип: Изобретение
Номер охранного документа: 0002759843
Дата охранного документа: 18.11.2021
12.05.2023
№223.018.5464

Способ электроосаждения сплошных осадков кремния из расплавленных солей

Изобретение относится к получению сплошных осадков кремния для использования в качестве фоточувствительных материалов, устройств микроэлектроники и накопления энергии. Способ электроосаждения сплошных осадков кремния из расплавленных солей включает электролиз в инертной атмосфере галогенидного...
Тип: Изобретение
Номер охранного документа: 0002795477
Дата охранного документа: 03.05.2023
15.05.2023
№223.018.590c

Способ электролитического получения кремния из расплавленных солей

Изобретение относится к металлургии полупроводниковых материалов, в частности, к электролитическому получению кремния из расплавленных солей. Способ включает электролиз расплавленного галогенидного электролита, в качестве которого используют смесь солей мас.% 10-60 KCl и 40-90 CsCl с добавкой...
Тип: Изобретение
Номер охранного документа: 0002760027
Дата охранного документа: 22.11.2021
15.05.2023
№223.018.590d

Способ электролитического получения кремния из расплавленных солей

Изобретение относится к металлургии полупроводниковых материалов, в частности, к электролитическому получению кремния из расплавленных солей. Способ включает электролиз расплавленного галогенидного электролита, в качестве которого используют смесь солей мас.% 10-60 KCl и 40-90 CsCl с добавкой...
Тип: Изобретение
Номер охранного документа: 0002760027
Дата охранного документа: 22.11.2021
16.05.2023
№223.018.5ee2

Способ и электрохимическая ячейка для синтеза электролита для получения рения

Изобретение относится к синтезу электролитов для получения покрытий и изделий из рения методом высокотемпературной гальванопластики в расплавах солей. Электрохимическая ячейка для проведения синтеза расплава CsCl-KCl-NaCl-CsReCl состоит из анодного и катодного узлов, которые разделены между...
Тип: Изобретение
Номер охранного документа: 0002756775
Дата охранного документа: 05.10.2021
16.05.2023
№223.018.5ee4

Способ и электрохимическая ячейка для синтеза электролита для получения рения

Изобретение относится к синтезу электролитов для получения покрытий и изделий из рения методом высокотемпературной гальванопластики в расплавах солей. Электрохимическая ячейка для проведения синтеза расплава CsCl-KCl-NaCl-CsReCl состоит из анодного и катодного узлов, которые разделены между...
Тип: Изобретение
Номер охранного документа: 0002756775
Дата охранного документа: 05.10.2021
23.05.2023
№223.018.6e10

Способ электролитического синтеза гексахлоррената цезия

Изобретение относится к электролитическому получению гексахлоррената цезия, который может быть использован для приготовления электролитов, пригодных для электроосаждения рения. Синтез гексахлоррената цезия осуществляется путем электрохимической реакции ионизации металлического рения в растворе...
Тип: Изобретение
Номер охранного документа: 0002758363
Дата охранного документа: 28.10.2021
16.06.2023
№223.018.7d6a

Способ определения содержания глинозема в криолит-глиноземном расплаве и электрохимическое устройство для его осуществления

Изобретение относится к способу и электрохимическому устройству для определения содержания глинозема в криолит-глиноземном расплаве при электролитическом производстве алюминия. Способ включает погружение электрохимического устройства в криолит-глиноземный расплав, поляризацию с использованием...
Тип: Изобретение
Номер охранного документа: 0002748146
Дата охранного документа: 19.05.2021
+ добавить свой РИД