×
09.06.2019
219.017.7a89

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ТЕКУЩЕЙ ГАЗОНАСЫЩЕННОСТИ В ПРИЗАБОЙНОЙ ЗОНЕ СКВАЖИНЫ В ЗАЛЕЖИ ЛЕТУЧЕЙ НЕФТИ

Вид РИД

Изобретение

№ охранного документа
0002385413
Дата охранного документа
27.03.2010
Аннотация: Изобретение относится к разработке залежей летучей нефти и может быть использовано для определения текущей газонасыщенности в призабойной зоне добывающей скважины в пласте-коллекторе. Техническим результатом изобретения является повышение точности определения значения газонасыщенности в призабойной зоне как обсаженной, так и необсаженной скважины. Для чего до начала эксплуатации скважины измеряют параметры пласта-коллектора и пластового флюида традиционными методами каротажа, включая нейтронный, и путем анализа проб керна и флюида. Для эксплуатационной скважины создают численную модель изменения сигналов нейтронного каротажа для измеренных параметров пласта, пластового флюида и предполагаемой газонасыщенности. Предполагаемую газонасыщенность определяют путем гидродинамического моделирования состава газонефтяной смеси для измеренных параметров пласта, пластового флюида и функций фазовой проницаемости. В процессе эксплуатации при снижении продуктивности скважины осуществляют нейтронный каротаж. Сравнивают измеренные сигналы нейтронного каротажа и сигналы созданной численной модели. Определяют текущую газонасыщенность по результатам совпадения измеренных и смоделированных сигналов нейтронного каротажа. 1 з.п. ф-лы.

Изобретение относится к разработке залежей летучей нефти и может быть использовано при исследованиях для определения текущей газонасыщенности в призабойной зоне скважины в пласте-коллекторе летучей нефти.

При разработке залежи летучей нефти возникает необходимость определения текущей газонасыщенности пласта, поскольку производительность скважин часто резко снижается в связи с выделением газа в призабойной зоне скважины и частичной блокировкой притока нефти в скважину. Предлагаемым изобретением решается задача определения текущего значения газонасыщенности в призабойной зоне скважины как обсаженной, так и необсаженной.

До настоящего момента текущая газонасыщенность в призабойной зоне скважины геофизическими методами исследования скважин не определялась.

В соотвестствии с предлагаемым способом определения текущей газонасыщенности в призабойной зоне скважины в пласте летучей нефти измеряют параметры пласта-коллектора и пластового флюида до начала скопления газа в призабойной зоне скважины, создают численную модель изменения сигнала нейтронного каротажа в процессе эксплуатации скважины для измеренных параметров пласта, пластового флюида и предполагаемой газонасыщенности, осуществляют эксплуатацию скважины, при снижении продуктивности скважины осуществляют нейтронный каротаж, а затем сравнивают измеренные сигналы с модельными расчетами и определяют газонасыщенность на основе обеспечения наилучшего совпадения измеренных и смоделированных сигналов нейтронного каротажа. Параметры пласта-коллектора и пластового флюида, измеряемые до начала эксплуатации скважины, включают в себя пористость пласта, минеральный состав породы, водонасыщенность и состав воды, давление, объем и температуру пластовой нефти, включая состав и точку разгазирования. Указанные параметры определяют традиционными методами каротажа, включая нейтронный каротаж, а также путем анализа проб керна и флюида.

Предполагаемую газонасыщенность определяют путем гидродинамического моделирования состава газонефтяной смеси для заданных параметров пласта, пластового флюида и функций фазовой проницаемости, а для обеспечения наилучшего совпадения измеренных и смоделированных сигналов нейтронного каротажа производят коррекцию функций фазовой проницаемости.

Изобретение основывается на новом подходе к интерпретации данных повторного нейтронного каротажа и позволяет определить текущую газонасыщенность в призабойной зоне скважины.

На первом этапе пласт летучей нефти, вскрытый вновь пробуренной скважиной, исследуется с помощью традиционного каротажного оборудования, а также путем проведения испытаний и опробования пласта. Исходная газонасыщенность в пласте равна нулю или пренебрежимо мала. В результате этих стандартных измерений будет получен набор характеристических данных о пласте и пластовом флюиде, которые включают в себя данные о пористости пласта, минеральном составе породы, водонасыщенности и составе воды, параметрах давления, объема и температуры пластовой нефти, включая состав и точку насыщения (начала разгазирования). После этого скважина используется в качестве эксплуатационной скважины. На данном этапе, в случае если давление в пласте падает ниже точки насыщения, происходит процесс выделения газа. Это ведет к образованию газонасыщенной зоны вокруг ствола скважины.

После некоторого периода эксплуатации скважины можно ожидать значительного повышения газонасыщенности вокруг ствола скважины. Косвенно это можно наблюдать как снижение коэффициента продуктивности. На данном этапе можно использовать нейтронный каротаж для оценки текущей газонасыщенности в газонасыщенной зоне. Может применяться любой метод нейтронного каротажа, который чувствителен к водородному индексу. Скважина может быть необсаженной или обсаженной, так как нейтронный поток может проходить сквозь стальные трубы. Наблюдаемый сигнал сам по себе не может отличить газонасыщенность от нефтенасыщенности, так как он зависит от насыщенности, плотности фаз и состава фаз (при условии, что другие факторы, такие как параметры породы и воды, остаются без изменений). Однако неопределенность свойств газонефтяной смеси можно свести лишь к неизвестной насыщенности с помощью традиционных программ гидродинамического моделирования состава. Действительно, зная историю эксплуатации скважины, можно провести ряд численных экспериментов, которые отличаются друг от друга по функциям фазовой проницаемости. В результате численных экспериментов будет получен набор теоретических вариантов параметров газонефтяной смеси, которые существенно отличаются друг от друга по значениям насыщенности. С помощью этого набора вариантов можно смоделировать теоретические сигналы нейтронного каротажа. Сравнивая их с измеренным сигналом, можно определить фактически реализующийся вариант состояния газонефтяной смеси вблизи эксплуатационной скважины. Это позволит зафиксировать текущую газонасыщенность и другие свойства газонефтяной смеси.

Используя программу гидродинамического моделирования летучей нефти, получаем в качестве выходных данных предполагаемую газонасыщенность, состав газа и нефти. Класс программ, позволяющих решить обсуждаемую задачу, базируется на модели трехфазной многокомпонентной изотермической фильтрации (см., например, Методические указания по созданию постоянно действующих геолого-технологических моделей нефтяных и нефтегазовых месторождений. Часть 2. Фильтрационные модели. - М.: АОА ВНИИОЭНГ, 2003). В частности, может быть использована программа Eclipse-300. Входные данные расчетного варианта для моделирующей программы включают в себя данные о локальном геологическом строении (включая распределение фильтрационно-емкостных свойств по стволу скважины), данные о пластовом давлении и температуре, данные о термодинамических и физико-химических свойствах пластовых флюидов, полученные в результате стандартных измерений до начала эксплуатации скважины, данные по истории работы скважины и функции фазовой проницаемости. Функции фазовой проницаемости могут быть приняты как некоторое текущее приближение (из данных кернового анализа или по аналогии с каким-то похожим пластом).

Для оценки текущей газонасыщенности пласта используется численная модель изменения сигнала нейтронного каротажа для эксплуатирующейся добывающей скважины. Входные параметры для модели включают пористость и водонасыщенность пласта, состав воды, минеральный состав породы, пластовое давление, объем и температуру пластовой нефти, включая состав и точку насыщения, а также предполагаемую газонасыщенность, состав газа и нефти, полученные в результате гидродинамического моделирования параметров газонефтяной смеси.

Текущая газонасыщенность определяется по результатам наилучшего совпадения измеренных и смоделированных сигналов нейтронного каротажа в пределах точности воспроизведения водородного индекса, характерной для данного нейтронного метода. При несовпадении результатов производят коррекцию функций фазовой проницаемости таким образом, чтобы получить наилучшее приближение измеренных и смоделированных сигналов нейтронного каротажа. Возможным вариантом коррекции функций фазовых проницаемостей является изменение показателя степени при степенной аппроксимации этих функций. При более сложном многопараметрическом задании функций фазовых проницаемостей следует варьировать набор этих определяющих параметров. Итерационная последовательность останавливается, когда расхождение между реальным каротажным сигналом и смоделированным сигналом является незначительным. В этот момент получают следующий набор данных: газонасыщенность, состав газа и нефти в пласте, функции фазовой проницаемости. В процессе эксплуатации скважины могут быть произведены отдельные или многократные замеры состава добываемой газонефтяной смеси и на этапе гидродинамического моделирования эта информация может быть использована как дополнительный критерий сходимости модельных и фактических данных в пределах точности измерения вышеуказанного состава.

Источник поступления информации: Роспатент

Показаны записи 51-60 из 112.
20.09.2015
№216.013.7bf2

Способ характеристики неоднородности и определения теплопроводности материалов (варианты) и устройство для его осуществления

Изобретение относится к области изучения теплофизических свойств материалов и может быть использовано для определения теплопроводности материалов. Способы характеристики неоднородности и определения теплопроводности материалов предусматривают нагрев поверхности образцов неоднородных материалов...
Тип: Изобретение
Номер охранного документа: 0002563327
Дата охранного документа: 20.09.2015
27.10.2015
№216.013.8a88

Система и способ выполнения операции интенсификации

Группа изобретений относится к вариантам способа выполнения операции интенсификации. Способ содержит получение объединенных данных о месте расположения скважины (например, геомеханические, геологические и/или геофизические свойства подземной формации и/или геометрические свойства механических...
Тип: Изобретение
Номер охранного документа: 0002567067
Дата охранного документа: 27.10.2015
27.11.2015
№216.013.940f

Способ определения давления в скважине

Изобретение относится к области исследования нефтяных и газовых скважин и предназначено для корректировки результатов измерений давления в высокопродуктивных скважинах, проведенных во время испытания скважины. Техническим результатом является повышение точности определения давления в скважине....
Тип: Изобретение
Номер охранного документа: 0002569522
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.9662

Устройство для каротажного электромагнитного зондирования (варианты)

Изобретение относится к области геофизических исследований в скважинах и может быть использовано для измерения электрических характеристик горных пород, находящихся вокруг скважин, бурящихся на нефть и газ. Технический результат: расширение информации о неоднородной проводимости породы,...
Тип: Изобретение
Номер охранного документа: 0002570118
Дата охранного документа: 10.12.2015
20.01.2016
№216.013.a3fa

Способ определения скорости распространения акустических волн в пористой среде

Изобретение относится к области акустического анализа пористых материалов и может быть использовано для исследования образцов керна. Согласно предложенному способу определения скорости распространения акустических волн в пористой среде облучают по меньшей мере два образца пористой среды,...
Тип: Изобретение
Номер охранного документа: 0002573620
Дата охранного документа: 20.01.2016
10.04.2016
№216.015.2f13

Способ определения профиля закачки воды в нагнетательной скважине

Изобретение относится к области геофизических исследований нефтяных и газовых скважин, а именно к определению профиля закачки воды в нагнетательных скважинах. Технический результат - повышение точности определения профиля закачки с использованием нестационарной термометрии скважины. По способу...
Тип: Изобретение
Номер охранного документа: 0002580547
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2f67

Способ определения пористости образца породы

Использование: для определения пористости образца породы. Сущность изобретения заключается в том, что способ определения пористости образца породы предусматривает определение общего минералогического состава образца, определение относительного объемного содержания каждого минерала и определение...
Тип: Изобретение
Номер охранного документа: 0002580174
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2f70

Способ размещения источников сейсмических сигналов для системы наблюдений в сейсморазведке

Изобретение относится к области геофизики и может быть использовано для проведения сейсморазведки. Выбирают стандартную систему наблюдений, содержащую источники сейсмических сигналов, расположенные на поверхности возбуждения, и приемники сейсмических сигналов, расположенные на поверхности...
Тип: Изобретение
Номер охранного документа: 0002580155
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2fad

Способ акустического каротажа

Изобретение относится к области геофизики и может быть использовано в процессе геофизических исследований скважин. Согласно заявленному способу в скважине размещают с возможностью перемещения акустический каротажный прибор, содержащий по меньшей мере один источник направленных акустических...
Тип: Изобретение
Номер охранного документа: 0002580209
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.320c

Способ определения изменений параметров пористой среды под действием загрязнителя

Использование: для неразрушающего анализа образцов пористых материалов. Сущность изобретения заключается в том, что производят начальное насыщение образца пористой среды электропроводящей жидкостью, или совместно электропроводящей жидкостью и неэлектропроводящим флюидом, или только...
Тип: Изобретение
Номер охранного документа: 0002580177
Дата охранного документа: 10.04.2016
Показаны записи 1-7 из 7.
27.08.2013
№216.012.652c

Способ определения свойств пористых материалов

Изобретение относится к области исследования свойств пористых материалов, в частности к методам определения величины смачиваемости и распределения пор по размерам. Способ определения свойств пористых материалов заключает в том, что сперва образец пористого материала помещают в ячейку...
Тип: Изобретение
Номер охранного документа: 0002491537
Дата охранного документа: 27.08.2013
10.02.2014
№216.012.9fa4

Способ определения локального изменения концентрации примеси в потоке жидкости

Использование: для измерения локального изменения концентрации примеси в потоке жидкости на входе в измерительную ячейку. Сущность заключается в том, что сначала определяют изменение концентрации примеси во времени внутри измерительной ячейки для жидкости, содержащей примесь, изменение...
Тип: Изобретение
Номер охранного документа: 0002506576
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a346

Способ определения количественного состава многокомпонентной среды

Изобретение относится к области исследования состава жидкостей и материалов с содержанием не менее двух компонентов, в частности к способам определения количественного состава многокомпонентных сред. В соответствии со способом определения количественного состава многокомпонентной среды,...
Тип: Изобретение
Номер охранного документа: 0002507513
Дата охранного документа: 20.02.2014
13.01.2017
№217.015.80cb

Способ определения характеристик газонефтяной переходной зоны в необсаженной скважине

Изобретение относится к способам геофизических исследований скважин для нефтяных залежей с газовыми шапками с известным минералогическим составом слагающих пород. Для определения характеристик газонефтяной переходной зоны берут по меньшей мере по одной пробе из газовой части и из нефтяной части...
Тип: Изобретение
Номер охранного документа: 0002602249
Дата охранного документа: 10.11.2016
29.12.2017
№217.015.f265

Способ определения механических свойств породы пласта-коллектора

Изобретение относится к области исследования свойств горных пород. При этом осуществляют отбор по меньшей мере одного образца породы пласта-коллектора и на отобранном образце породы определяют плотность, пористость и компонентный состав породы. Но основе полученных значений создают...
Тип: Изобретение
Номер охранного документа: 0002636821
Дата охранного документа: 28.11.2017
26.10.2018
№218.016.969a

Способ определения равновесной смачиваемости поверхности раздела пустотного пространства и твердой фазы образца горной породы

Изобретение относится к области изучения свойств смачивания. Для определения равновесной смачиваемости поверхности раздела пустотного пространства и твердой фазы образца горной породы получают трехмерное изображение внутренней структуры образца. На полученном изображении внутренней структуры...
Тип: Изобретение
Номер охранного документа: 0002670716
Дата охранного документа: 24.10.2018
09.06.2019
№219.017.7a5e

Способ определения текущей конденсатонасыщенности в призабойной зоне скважины в газоконденсатном пласте-коллекторе

Изобретение относится к разработке газоконденсатных месторождений и может быть использовано для определения текущей конденсатонасыщенности в призабойной зоне скважины в пласте-коллекторе. Техническим результатом изобретения является повышение точности определения текущего значения...
Тип: Изобретение
Номер охранного документа: 0002386027
Дата охранного документа: 10.04.2010
+ добавить свой РИД