×
09.06.2019
219.017.7987

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВ ТУГОПЛАВКИХ МЕТАЛЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения порошков тугоплавких металлов. Он включает приготовление гомогенной смеси галогенидов щелочных и щелочноземельных металлов при температуре выше 500°С при перемешивании с последующим введением щелочного или щелочноземельного металла в количестве, достаточном для создания на поверхности расплава электролита тонкого равномерного слоя и составляющем (1-5)×10 см металла на 1 см площади электролита. Затем проводят электрохимическое восстановление в расплаве электролита галогенидов щелочных и щелочноземельных металлов в герметичной инертной атмосфере электролизера. При этом электрохимическое восстановление осуществляют в изотермических условиях при подаче постоянного тока с катодной плотностью от 0,01 до 1,0 А/см. В качестве анода и катода используют металл получаемого порошка, проводят перемешивание электролита путем вращения анода с получением в объеме электролита металлического наноразмерного порошка получаемого металла. Полученный металл после охлаждения извлекают, дробят и промывают. Технический результат заключается в получении нанокристаллических порошков металлов однородного гранулометрического состава, имеющего большую удельную поверхность и высокую чистоту. 8 з.п. ф-лы.

Изобретение относится к области цветной металлургии и может быть использовано для получения высокочистых наноразмерных порошков тугоплавких металлов, выбранных из группы, состоящей из Та, Nb, W, Mo, Zr и других, применяемых в производстве электротехнических и иных изделий и полупроводников.

Известен способ производства ниобиевых или танталовых порошков электрохимическим восстановлением оксидов тантала или ниобия в расплаве хлорида кальция в атмосфере аргона, путем приложения потенциала между графитовым анодом и платиновым катодом, с получением на катоде восстановленного материала - порошка ниобия или тантала (международная заявка №2004007808, МПК B22F 9/20, С25В 34/24, С25С 3/34, опубл. 2004.01.22).

Недостатком способа является невозможность получения высокодисперсных порошков, так как при электролизе процесс восстановления и кристаллизации протекает на поверхности катода, где число центров кристаллизации весьма ограничено и порошки получаются крупными.

Наиболее близким по технической сущности к предлагаемому изобретению является принятый за прототип способ электроосаждения тугоплавких металлов, например титана, из расплава солей галогенидов щелочных и щелочноземельных металлов, заключающийся в постадийном восстановлении титана от высокой валентности к низшей без промежуточного извлечения продуктов из ванны. Процесс ведут в герметизированном электролизере в среде инертного газа при перемешивании и непрерывной подаче реагента с заданной скоростью, что исключает охлаждение поверхности расплава ванны. При этом на вспомогательном катоде происходит частичное восстановление TiCl4 до TiCl3 и TiCl2, а на основном катоде - до металлического титана, осадок с вспомогательного катода периодически счищается и диспергируется в расплаве (патент США №4113582, МПК С25D 3/66. опубл. 1978.09.12).

Недостатками этого способа получения порошков являются:

- невозможность получения порошков тугоплавких металлов однородного гранулометрического состава, так как при электролизе происходит неравномерное испарение солей, входящих в состав электролита. Например, из электролита, состоящего из хлоридов натрия и калия, более интенсивно испаряются соли калия, что приводит к временному изменению состава электролита и, следовательно, к увеличению разброса гранулометрического состава и формы порошков;

- получение порошков, характеристики которых не удовлетворяют требованиям, предъявляемым к высокочистым порошкам, используемым в электронной промышленности, что обусловлено загрязнением порошков примесными элементами. При электролизе вместе с парами солей электролита образуются продукты реакций, содержащие хлористый водород и другие агрессивные соединения, которые взаимодействуют с окислами металлов конструктивных элементов электролизера, образуя их хлориды, последние попадают в электролит и в получаемые при электролизе порошки.

Техническим результатом заявляемого изобретения является получение наноразмерных порошков металлов однородного гранулометрического состава, имеющих большую удельную поверхность и высокую чистоту, за счет снижения содержания примесей в порошке.

Указанный результат достигается в способе получения порошков тугоплавких металлов, включающем электрохимическое восстановление в расплаве электролита галогенидов щелочных и щелочноземельных металлов в герметичной инертной атмосфере электролизера, согласно изобретению перед электрохимическим восстановлением в электролизере при температуре выше 500°С готовят гомогенную смесь галогенидов щелочных и щелочноземельных металлов при перемешивании с последующим введением щелочного или щелочноземельного металла в количестве, достаточном для создания на поверхности расплава электролита тонкого равномерного слоя и составляющем (1-5)×10-2 см3 на 1 см2 площади электролита, электрохимическое восстановление осуществляют в изотермических условиях при подаче постоянного тока с катодной плотностью от 0,01 до 1,0 А/см2 с использованием в качестве анода и катода металла получаемого порошка при перемешивании электролита путем вращения анода и с получением в объеме электролита металлического наноразмерного порошка получаемого металла, который после охлаждения извлекают, дробят и промывают.

При использовании в качестве щелочного металла натрия электрохимическое восстановление осуществляют при температуре 500-860°С, а при использовании в качестве щелочноземельного металла магния электрохимическое восстановление осуществляют при температуре 700-1050°С. В качестве анода используют компактный металл в виде слитка, пластины или прутка, в качестве катода используют стенку электролизера, в качестве инертной атмосферы используют атмосферу аргона.

Предлагаемое осуществление способа позволяет проводить процесс электрохимического восстановления тугоплавкого металла (при подаче постоянного тока с катодной плотностью от 0,01 до 1,0 А/см2) не на поверхности катода или в толщине диффузионного слоя, а во всем объеме электролита с получением нанопорошков однородного гранулометрического состава, регулируемых размеров и различных типов структуры. При использовании в качестве электролита расплава гомогенной смеси галогенидов щелочных и щелочноземельных металлов на катоде происходит восстановление щелочного или щелочноземельного металла, который растворяется в электролите и диффундирует в сторону анода, на котором происходит анодное растворение тугоплавкого металла, из которого выполнен анод, и ионы тугоплавкого металла диффундируют в сторону катода. При встрече двух диффузионных потоков в объеме электролита происходит металлотермическое восстановление тантала, ниобия или другого тугоплавкого металла щелочным или щелочноземельным металлом с получением порошка в объеме электролита. Введение в электролизер после расплавления электролита твердого щелочного или щелочноземельного металла в количестве (1-5)×10-2 см3 на 1 см2 площади электролита создает на поверхности расплава электролита тонкий равномерный слой этого металла, который препятствует испарению солей электролита и, как следствие, изменению его состава, что обеспечивает получение порошков однородного гранулометрического состава. Одновременно расплавленный слой из введенного металла удаляет из электролита растворенный кислород, газообразные кислые продукты реакций и другие агрессивные соединения, являющиеся продуктами распада кристаллизационной воды, содержащейся в солях, тем самым исключается их взаимодействие с окислами металлов конструктивных элементов электролизера и образование хлоридов, попадание последних в электролит и, соответственно, загрязнение получаемых порошков примесными элементами, что позволяет получать высокочистые наноразмерные порошки, обладающие высоким удельным зарядом и развитой удельной поверхностью. Изготовленные из таких порошков, например, танталовые конденсаторы имеют более высокое напряжение пробоя (в 1,5 раза) и более низкий ток утечки (в 50 раз) по сравнению с порошками произведенными по иным технологиям.

Введение щелочного или щелочноземельного металла в количестве менее 1×10-2 см3 на 1 см2 площади электролита не позволяет создать на поверхности расплава электролита сплошного слоя, предотвратить изменение состава электролита и загрязнение получаемых порошков тугоплавких металлов примесями. Увеличение количества щелочного или щелочноземельного металла больше 5×10-2 см3 на 1 см2 площади электролита нецелесообразно, так как это не влияет на свойства получаемых порошков и приводит к неоправданным расходам.

При подаче постоянного тока с катодной плотностью от 0,01 до 1,0 А/см2 не происходит замыкания катода с анодом через слой щелочного или щелочноземельного металла, так как при вращении анода появляется центробежная воронка, ограничивающая соприкосновение расплавленного металла с материалом анода, и силы инерции отбрасывают расплавленный металл от анода.

Выполнение анода и катода из тугоплавкого металла получаемого порошка позволяет получить продукт необходимой химической чистоты.

Выбор температурного интервала электрохимического восстановления с использованием металлического натрия 500-860°С, а с использованием металлического магния - 700-1050°С, обусловлены свойствами электролита и вводимого щелочного или щелочноземельного металла.

Способ осуществляют следующим образом: используется стандартная схема электролизера, в котором ванна, служащая катодом, изготовляется из того же тугоплавкого металла, что и получаемый порошок. Анод изготовляется в виде слитка, пластины или прутка из тугоплавкого металла получаемого порошка. Ванну заполняют смесью солей галогенидов щелочных и щелочноземельных металлов, смесь плавят в атмосфере чистого аргона, после чего вводят в твердом состоянии щелочной или щелочноземельный металл в количестве (1-5)×10-2 см3 на 1 см2 площади электролита, которое достаточно для создания на поверхности расплава электролита тонкого равномерного слоя, препятствующего испарению наиболее летучих компонентов электролита. При введении в качестве щелочного металла натрия температуру процесса поддерживают в пределах 500-860°С, а при введении в качестве щелочноземельного металла магния - 700-1050°С. Вращающийся анод опускают в электролит, и поднимают постоянное напряжение на ванне до тех пор, пока не будет достигнут потенциал разряда щелочного или щелочноземельного металла и не возникнет ток. Процесс ведут с катодной плотностью 0,01 до 1,0 А/см2. Восстановленный на катоде щелочной металл растворяется в электролите и диффундирует к аноду, а на аноде происходит анодное растворение тугоплавкого металла и диффузия к катоду ионов металла. Эти диффузионные потоки взаимодействуют с восстановлением тугоплавкого металла и его последующей кристаллизацией. Процесс кристаллизации является объемным, протекает в гомогенной системе в изотермических условиях и носит сбалансированный характер по реагентам. Скорость растворения щелочного или щелочноземельного металла в электролите определяет максимальную катодную плотность тока 1,0 А/см2, при которой система остается гомогенной. При достижении катодной плотности тока выше 1,0 А/см2 выделяющийся на катоде щелочной или щелочноземельный металл перестает успевать растворяется в электролите, катод начинает покрываться тугоплавким металлом, система перестает быть гомогенной, а процесс сбалансированным. Окончание процесса фиксируется по резкому изменению сопротивления в электролизере, после чего осуществляют дополнительное перемешивание, охлаждение и извлечение электролита с осадком тугоплавкого металла, дробление полученной смеси и промывку. Поддержание катодной плотности тока от 0,01 до 1,0 А/см2 обеспечивает оптимальное растворение выделяющегося щелочного или щелочноземельного металла в электролите и позволяет получать порошки тугоплавкого металла разнообразной формы (правильной геометрической формы, усов, тонких пластинок, и т.д.) и различного размера.

Пример 1. Получение наноразмерных порошков тантала на лабораторном электролизере. Электролизная ванна изготовлена в форме тигля из тантала размером Ǿ210×Ǿ200×350 мм. Тигель заполняли электролитом и помещали в вакуумную обечайку из жаропрочной стали. В эту же обечайку помещали щелочной металл кальций, который служил геттером для удаления кислорода и паров воды. Воздух из системы откачивали и заполняли систему чистым аргоном. Электролит готовили из смеси солей NaCl (50%) + KCl (50%), осуществляли нагрев электролита до рабочей температуры 500-860°С, затем вводили в электролизер натрий в твердом состоянии в количестве 3×10-2 см3 на 1 см2 площади электролита. Анод, изготовленный из прутка тантала ⌀30 мм, приводили во вращение со скоростью 30-120 об/мин и опускали в расплавленный электролит, подавали постоянный ток катодной плотностью 0,01-1,0 А/см2. Процесс проводили до тех пор, пока существенно не падало напряжение, что свидетельствовало о возникновении короткого замыкания анода с катодом через порошок. После этого электролизер останавливали, охлаждали и извлекали электролит с осадком. Извлеченную смесь дробили, и производили отмывку. Крупный порошок в течение определенного времени оседал на дно. Затем воду сливали и производили сушку порошка. Мелкий порошок естественным путем в воде не оседал, приходилось осаждение мелкого порошка производить на центрифуге с ускорением не менее 12g. Содержание порошка в электролите достигало 50% по весу. Полученные при температуре 860°С и катодной плотности тока 0,01÷1,0 А/см2 порошки тантала имели размер 100-300 нм, удельную поверхность 2-4 м2/г, содержание основных примесей: железа 0,003% и кислорода 0,08%, а при температуре 700°С и катодной плотности тока 0,01÷1,0 А/см2 имели размер 80-160 нм, удельную поверхность 4-8 м2/г, содержание железа 0,003% и кислорода 0,1%, тогда как в порошках тантала, полученных без использования щелочного или щелочноземельного металла, содержание железа достигало 0,08%, а кислорода - 0,4%. Порошки с удельной поверхностью 6 и 8 м2/г были испытаны на предмет применения в производстве электролитических танталовых конденсаторов без процесса агломерации. Были достигнуты предельно низкие удельные токи утечки Iут.уд. 0,07×10-3 мкА/мкКл при удельном заряде Qуд. 130 тыс. мкКл/гр.

Пример 2. Получение наноразмерных порошков тантала, аппаратная часть та же, что и в примере 1. Электролит состоял из смеси солей NaCl (10%) + KCl (90%), температура 850°С, в расплав введен натрий в твердом состоянии в количестве 3×10-2 см3 на 1 см2 площади электролита, катодная плотность тока 0,7 А/см2. Полученные порошки тантала имели форму тонких пластин размером (1-10)×(1-10)×0,02 мкм, удельную поверхность 4-6 м2/г, содержание примесей: железа 0,003% и кислорода 0,1%.

Пример 3. Получение наноразмерных порошков тантала, аппаратная часть та же, что и в примере 1. Электролит состоял из смеси солей NaCl (50%) + NaF (50%), температура 950°С, в расплав введен магний в твердом состоянии в количестве 3×10-2 см3 на 1 см2 площади электролита, катодная плотность тока 0,1 А/см2. Полученные порошки тантала имели правильную геометрическую форму размером 100-500 нм, удельную поверхность 1-2 м2/г, содержание примесей железа 0,003% и кислорода - 0,07%.

Пример 4. Получение наноразмерных порошков ниобия, аппаратная часть, электролит, температура, режимы электролиза и, вводимый щелочной металл те же, что и в примере 1. В качестве анода использовали пруток из ниобия Ǿ30 мм. Электролизная ванна изготовлена в форме тигля из ниобия размером Ǿ210×Ǿ200×350 мм. Полученный при 700°С и катодной плотности тока 0,05 А/см2 порошок ниобия имел форму кубиков размером 20-50 нм, с удельной поверхностью 18 м2/г, содержание железа 0,005% и кислорода 0,2%.

Пример 5. Получение наноразмерных порошков тантала, аппаратная часть та же, что и в примере 1. Электролит состоял из смеси солей CsCl (46%) + NaCl (30%) + KCl (24%), температура 600°С, в расплав введен натрий в твердом состоянии в количестве 3×10-2 см3 на 1 см2 площади электролита, катодная плотность тока 0,1 А/см2. Полученные порошки тантала имели размер 10-30 нм, удельную поверхность 28 м2/г, содержание примесей: железа 0,008% и кислорода 0,3%.

Пример 6. Получение наноразмерных порошков вольфрама, аппаратная часть та же, что и в примере 1. Электролит состоял из смеси солей CaCl2 (50%) + KCl (50%), температура 800°С, в расплав введен натрий в твердом состоянии в количестве 5×10-2 см3 на 1 см2 площади электролита. В качестве анода использовали монокристаллический пруток вольфрама Ǿ22 мм. Электролизная ванна изготовлена в форме тигля из никеля размером Ǿ210×Ǿ200×350 мм, на внутреннюю поверхность тигля высокотемпературным электрохимическим способом высажен слой вольфрама толщиной ~30 мкм. Полученный при 800°С и катодной плотности тока 0,5 А/см2 порошок вольфрама имел гранулометрический состав 40-90 нм, с удельной поверхностью 4,8 м2/г, содержание кислорода 0,1%.

Пример 7. Получение наноразмерных порошков молибдена, аппаратная часть та же, что и в примере 1. Электролит состоял из смеси солей NaCl (50%) + CaCl2 (50%), температура 800°С, в расплав введен натрий в твердом состоянии в количестве 1×10-2 см3 на 1 см2 площади электролита. В качестве анода использовали монокристаллический пруток молибдена Ǿ22 мм. Электролизная ванна изготовлена в форме тигля из никеля размером Ǿ210×Ǿ200×350 мм, на внутреннюю поверхность тигля высокотемпературным электрохимическим способом высажен слой молибдена толщиной ~30 мкм. Полученный при 800°С и катодной плотности тока 0,5 А/см2 порошок молибдена имел гранулометрический состав 50-120 нм, с удельной поверхностью 3,6 м2/г, содержание кислорода 0,1%.

Пример 8. Получение наноразмерных порошков циркония, аппаратная часть, электролит, температура, режимы электролиза те же, что и в примере 1, в расплав введен магний в твердом состоянии в количестве 5×10-2 см3 на 1 см2 площади электролита. В качестве анода использовали пруток циркония Ǿ25 мм. Электролизная ванна изготовлена в форме тигля из никеля размером Ǿ210×Ǿ200×350 мм, внутренняя поверхность которого покрыта цирконием. Полученный при 800°С и катодной плотности тока 0,5 А/см2 порошок циркония имел гранулометрический состав 80-180 нм, с удельной поверхностью 2,8 м2/г, содержание кислорода 0,2%.

Основными преимуществами предлагаемой электрохимической технологии перед другими являются возможность получения порошков тугоплавких металлов высокой чистоты, различного гранулометрического состава и микроструктуры, при этом обеспечиваются высокие потребительские свойства порошков, низкая себестоимость и безотходное производство.

Источник поступления информации: Роспатент

Показаны записи 1-3 из 3.
20.02.2013
№216.012.272d

Способ извлечения триоксида молибдена из огарков

Изобретение относится к металлургии редких металлов, в частности, к извлечению триоксида молибдена из огарков, полученных путем окислительного обжига молибденитовых концентратов и промпродуктов. Способ включает возгонку паров триоксида молибдена в вакууме при остаточном давлении 1-15 мм рт.ст....
Тип: Изобретение
Номер охранного документа: 0002475549
Дата охранного документа: 20.02.2013
20.06.2013
№216.012.4c93

Способ контроля окисленности шлака и металла при выплавке сплавов на основе железа в электродуговых печах переменного тока

Изобретение относится к области черной металлургии, в частности к способам контроля окисленности шлака и металла при выплавке сплавов на основе железа в электродуговых печах переменного тока. Технический результат - возможность контроля окисленности в режиме реального времени. Сущность...
Тип: Изобретение
Номер охранного документа: 0002485185
Дата охранного документа: 20.06.2013
10.08.2013
№216.012.5d41

Способ металлизации магнийсодержащих карбонатных железорудных материалов

Изобретение относится к черной металлургии, к процессам прямого получения железа во вращающихся печах. В способе металлизации магнийсодержащих карбонатных железорудных материалов, включающем окислительный обжиг в шахтной печи, восстановление совместно с восстановителем и десульфуратором,...
Тип: Изобретение
Номер охранного документа: 0002489494
Дата охранного документа: 10.08.2013
Показаны записи 11-20 из 26.
29.12.2017
№217.015.f83e

Способ пирометаллургической переработки окисленной никелевой руды

Изобретение относится к металлургии, в частности к процессу пирометаллургической переработки окисленных никелевых руд с получением ферроникеля и чугуна. Способ включает загрузку окисленной никелевой руды совместно с флюсующими добавками и углеродсодержащим материалом, взятым в количестве...
Тип: Изобретение
Номер охранного документа: 0002639396
Дата охранного документа: 21.12.2017
29.12.2017
№217.015.f8d3

Способ получения порошка карбида

Изобретение может быть использовано в химической, металлургической и инструментальной отраслях промышленности при изготовлении износостойких сплавов, катализаторов. Порошок карбида получают в изотермических условиях в атмосфере инертного газа в ионном расплаве на основе галогенидов щелочных...
Тип: Изобретение
Номер охранного документа: 0002639797
Дата охранного документа: 22.12.2017
13.07.2018
№218.016.70c9

Способ электрохимического получения порошков боридов металлов (варианты)

Изобретение относится к способу получения нано- или микроразмерных порошков боридов металлов путем высокотемпературного электрохимического синтеза в ионном расплаве без электролиза. Получают ионный расплав путем загрузки в тигель герметичного электролизера электролита, содержащего соль металла...
Тип: Изобретение
Номер охранного документа: 0002661164
Дата охранного документа: 12.07.2018
17.03.2019
№219.016.e2d0

Способ пирометаллургической переработки окисленной никелевой руды

Изобретение относится к металлургии, в частности к процессу пирометаллургической переработки окисленной никелевой руды, содержащей цветные металлы и железо, с получением ферроникеля и чугуна. Способ включает предварительный подогрев исходной шихты совместно с флюсующими добавками без...
Тип: Изобретение
Номер охранного документа: 0002682197
Дата охранного документа: 15.03.2019
10.04.2019
№219.017.07d5

Способ получения порошка тугоплавкого металла

Изобретение относится к порошковой металлургии, в частности получению высокочистых наноразмерных порошков тугоплавких металлов различного гранулометрического состава и микроструктуры, применяемых в производстве танталовых и ниобиевых конденсаторов и иных изделий и полупроводников. В способе...
Тип: Изобретение
Номер охранного документа: 0002401888
Дата охранного документа: 20.10.2010
10.04.2019
№219.017.0813

Стальная литая дробь

Изобретение относится к области черной металлургии и может быть использовано для получения стальной литой дроби, используемой для дробеструйной обработки деталей машин различного назначения. Дробь выполнена из стали, содержащей углерод, кремний, марганец, медь, молибден, серу, фосфор и железо...
Тип: Изобретение
Номер охранного документа: 0002406777
Дата охранного документа: 20.12.2010
20.05.2019
№219.017.5d1f

Способ пирометаллургической переработки окисленной никелевой руды с получением ферроникеля в плавильном агрегате

Изобретение относится к металлургии, в частности к процессу пирометаллургической переработки окисленной никелевой руды, содержащей цветные металлы и железо, с получением ферроникеля, содержащего не менее 70% никеля, в плавильном агрегате. В способе осуществляют предварительный нагрев...
Тип: Изобретение
Номер охранного документа: 0002688000
Дата охранного документа: 17.05.2019
24.05.2019
№219.017.5e56

Способ получения металлизованных окатышей

Изобретение относится к области черной металлургии, а именно к получению металлизованных окатышей. Способ включает подготовку шихты путем смешивания железорудных материалов с твердым восстановителем, формирование сырых окатышей, загрузку их на колосниковую решетку, обработку...
Тип: Изобретение
Номер охранного документа: 0002688765
Дата охранного документа: 22.05.2019
19.06.2019
№219.017.89c2

Способ легирования чугуна марганцем

Изобретение относится к черной металлургии и может быть использовано для легирования чугуна марганцем. Легирование осуществляют отвальным шлаком силикотермической плавки рафинированных марганцевых сплавов, содержащим, мас.%: 18-22 MnO, 0,003-0,005 P, 26-29 SiO, 43-46 CaO, 2-4 AlO, 2-4 MgO,...
Тип: Изобретение
Номер охранного документа: 0002458994
Дата охранного документа: 20.08.2012
19.06.2019
№219.017.89ca

Шихта для выплавки высокоуглеродистого ферромарганца

Изобретение относится к черной металлургии и может быть использовано при выплавке высокоуглеродистого ферромарганца. Шихта содержит, мас.%: отвальный шлак силикотермической плавки металлического марганца 1-88, кокс 5-25, известняк 0-20, железосодержащие добавки 0-10, марганецсодержащее сырье -...
Тип: Изобретение
Номер охранного документа: 0002456363
Дата охранного документа: 20.07.2012
+ добавить свой РИД