×
24.05.2019
219.017.5e56

Результат интеллектуальной деятельности: Способ получения металлизованных окатышей

Вид РИД

Изобретение

Аннотация: Изобретение относится к области черной металлургии, а именно к получению металлизованных окатышей. Способ включает подготовку шихты путем смешивания железорудных материалов с твердым восстановителем, формирование сырых окатышей, загрузку их на колосниковую решетку, обработку газом-теплоносителем с последующим охлаждением. Обработку окатышей осуществляют с использованием последовательно установленных реакторов нагрева, металлизации и охлаждения и проводят газом-теплоносителем в противотоке при перемещении их в реакторе нагрева и охлаждения сверху вниз, а в реакторе металлизации снизу вверх. При этом нагревание окатышей в реакторе нагрева ведут до температуры 800-850°С смесью газа, поступающего из реактора металлизации, и продуктов сгорания природного газа при коэффициенте расхода воздуха α=1,0-1,1. В реакторе металлизации нагрев ведут до температуры 1200-1400°С смесью газа, поступающего из реактора охлаждения и дополнительно подогретого, и продуктов сгорания природного газа при коэффициенте расхода воздуха α=0,4-0,5. А охлаждение ведут газом, поступающим из ректора нагрева и предварительно очищенным от воды и CO с использованием обожженной извести. Изобретение направлено на повышение производительности, предотвращение вторичного окисления металлизованных окатышей и снижение теплоэнергетических затрат. 3 ил.

Изобретение относится к области черной металлургии, а именно к способам получения металлизованных окатышей.

Известны способы металлизации железорудных окатышей в шахтных печах с применением горячего газа-восстановителя (Виберг, Пурофер, Армко, Мидрекс и др.). Недостатками описанных способов является их высокая затратность, связанная с необходимостью предварительного упрочняющего обжига окатышей, получения и нагрева газа-восстановителя, использования сложного оборудования, а также высоким уровнем потребления энергии (Тулин Н.А., Кудрявцев B.C., Пчелкин С.А., Вернер Д., Лезель В., Мюллер Б., Папст Г., Штефан Ф. Развитие бескоксовой металлургии. - М.: Металлургия, 1987, 328 с.).

Аналогичными недостатками обладают способы металлизации (Авторское свидетельство №1468919, опубликовано 30.03.1989. Бюл. №12; авторское свидетельство №1677065, опубликовано 15.09.1991. Бюл. №34), включающие загрузку обожженных окатышей в реторты с неподвижным слоем, их восстановление газом в процессе нагрева, охлаждение и выгрузку.

Таких недостатков лишены способы металлизации рудоугольных окатышей.

Известен способ, включающий изготовление рудоугольных окатышей, их загрузку в смеси с твердым топливом в реактор с колосниковой решеткой и металлизацию. Тепло для осуществления процесса получают за счет сжигания топлива в слое шихты с организацией движения зоны горения топлива навстречу воздушному дутью. Недостатком способа является низкая производительность, необходимость высокой точности при подборе интенсивности подачи воздуха к месту горения и его скорости фильтрации для исключения местных перегревов, спекания шихты и снижения газопроницаемости слоя (Казахстан, инновационный патент №23799, опубликовано 15.03.2011. Бюл. №3).

Известен способ термической металлизации рудоугольных окатышей, включающий их получение и термическую обработку, которая состоит из операций сушки на сушильном агрегате колосникового типа, высокотемпературного обжига в кольцевой печи с вращающимся подом в восстановительной атмосфере и охлаждения в охладителе с кольцевым вращающимся подом (патент РФ №2489493, опубликовано 10.08.2013, Бюл. №22). К основным недостаткам способа можно отнести большую энергоемкость, так как нагрев окатышей осуществляют подачей энергии СВЧ, возможность вторичного окисления окатышей, так как их охлаждение осуществляют фильтрацией через слой окатышей атмосферного воздуха.

Наиболее близким по технической сущности к изобретению является способ получения металлизованных окатышей на конвейерной машине, включающий смешивание рудоугольных материалов, окомкование, послойную укладку на колосниковую решетку конвейерной машины, последующую металлизацию и охлаждение (авторское свидетельство №417473, опубликовано 18.07.1974). Основными недостатками способа является низкая степень металлизации обожженных окатышей из-за высокого кислородного потенциала газа-теплоносителя, сложности регулирования газовой атмосферы и организации безокислительного охлаждения. По прототипу предусмотрена возможность получения окатышей со степенью металлизации 60%.

Металлизация рудоугольных окатышей происходит при температурах близких к температуре начала размягчения шихты. Такие температуры достигаются при условии образования газа-теплоносителя путем сжигания природного газа при коэффициенте расхода воздуха α≈1,0-1,1. Конструкция обжиговой машины не позволяет достигнуть ее полной герметизации, поэтому возможен подсос воздуха. Это также отрицательно влияет на состав атмосферы, как при обжиге, так и при охлаждении. Все это приводит к выгоранию твердого топлива, что требует дополнительного его введения в шихту сверх стехиометрически необходимого для полного восстановления железа, а также вторичному окислению восстановившегося железа.

Техническим результатом предлагаемого решения является предотвращение вторичного окисления металлизованных окатышей и снижение теплоэнергетических затрат.

Указанный технический результат достигается тем, что в известном способе получения металлизованных окатышей, включающем подготовку шихты путем смешивания железорудных материалов с твердым углеродистым восстановителем, формирование сырых окатышей, загрузку их на колосниковую решетку и обработку газом-теплоносителем с последующим охлаждением, согласно изобретению обработку окатышей осуществляют с использованием последовательно установленных реакторов нагрева, металлизации и охлаждения и проводят газом-теплоносителем в противотоке при перемещении их в реакторе нагрева и охлаждения сверху вниз, а в реакторе металлизации снизу вверх, при этом нагревание окатышей в реакторе нагрева ведут до температуры 800-850°С смесью газа, поступающего из реактора металлизации, и продуктов сгорания природного газа при коэффициенте расхода воздуха α=1,0-1,1, а в реакторе металлизации нагрев ведут до температуры 1200-1400°С смесью газа, поступающего из реактора охлаждения дополнительно подогретого, и продуктов сгорания природного газа при коэффициенте расхода воздуха α=0,4-0,5, а охлаждение ведут газом, поступающим из ректора нагрева предварительно очищенным от воды и CO2 с использованием обожженной извести в реакторе очистки.

Наиболее общей характеристикой, отражающей интенсивность протекания массо-теплообменных процессов при обработке, является скорость фильтрации газа через слой окатышей. Увеличение скорости фильтрации ведет к росту скорости нагрева окатышей и сокращению времени обжига. В свою очередь скорость фильтрации является функцией высоты слоя и с увеличением последней происходит увеличение газодинамического сопротивления, что обуславливает снижение скорости фильтрации, увеличение энергозатрат на процесс. Разделение процесса обжига на нагрев и металлизацию и осуществление его в реакторах нагрева и металлизации позволило при постоянной скорости фильтрации и общем времени обжига увеличить высоту слоя окатышей и тем самым, повысить общую производительность установки.

На основании лабораторных экспериментов установлено, что нагрев сырых окатышей до температур 800-850°С при α=1,0-1,1 не приводит к выгоранию углерода, а металлизация при коэффициенте расхода воздуха α=0,4-0,5 проходит без вторичного окисления. Конечная температура металлизации окатышей составляет 1200-1400°С. Для ее достижения газ-теплоноситель, состоящий из смеси газа, поступающего из реактора охлаждения, и продуктов сгорания природного газа при коэффициенте расхода воздуха α=0,4-0,5 должен быть нагрет до более высоких температур. Это достигается путем дополнительного подогрева газа из реактора охлаждения.

На рисунке 1 приведена принципиальная схема установки для осуществления способа получения металлизованных окатышей.

Способ осуществляют на установке, состоящей из последовательно установленных реакторов нагрева (1), металлизации (2) и охлаждения (3), в которых размещены колосниковые решетки (5), а так же реактора очистки газа (4). Реакторы нагрева и металлизации соединены тоннелем для перемещения колосниковых решеток в нижней части, а металлизации и охлаждения - в верхней части. Движение колосниковых решеток с окатышами в реакторах нагрева и охлаждения осуществляется сверху вниз, а в реакторе металлизации - снизу вверх.

Сырые рудоугольные окатыши загружаются на колосниковую решетку (5) и помещаются в верхнюю часть реактора нагрева (1). Колосниковые решетки перемещаются сверху вниз и по мере опускания происходит сушка и нагрев находящихся в них окатышей до температуры 800-850°С. Нагрев осуществляется газом-теплоносителем, полученным путем смешения газа, выходящего из реактора металлизации (2) с продуктами горения природного газа при α=1-1,1. Внизу колосниковая решетка переходит в реактор металлизации и перемещается снизу вверх. В процессе перемещения происходит дальнейший нагрев окатышей до температуры 1200-1400°С и восстановление железа. Нагрев осуществляется смесью газа, выходящего из реактора охлаждения (3), предварительно подогретого в плазмотроне, и продуктов сгорания природного газа при α=0,4-0,5. Колосниковая решетка с восстановленными окатышами перемещается в реактор охлаждения (3), где происходит охлаждение металлизованных окатышей, по мере опускания его сверху вниз, до температуры 60-80°С. Газ-охладитель получают при пропускании газа, выходящего из реактора нагрева, через реактор очистки (4), заполненный кусками обожженной извести. Движение газа в реакторе очистки осуществляется снизу вверх. В процессе взаимодействия газа с известью происходит его очищение от воды и углекислого газа за счет образования карбоната кальция и гашеной извести и охлаждение до температуры 40-50°С. Периодически нижняя часть в виде СаСО3 и Са(ОН)2 удаляется, а сверху загружается обожженная известь (СаО)

Способ осуществлен в лабораторных условиях с использованием метода моделирования процесса.

Для экономии рудного материала исследовались рудоугольные брикеты. Предварительно из руды (62,6% Fe) и угля (81% С) готовили шихту. Количество угля в шихте брали из расчета 0,8; 1,0 и 1,2 количества углерода, стехиометрически необходимого для полного восстановления железа, предполагая, что при восстановлении железа углерод окисляется до монооксида. В результате, количество угля в шихте на 100 г руды составило 18,5; 23,15 и 27,78 г., соответственно.

Из шихты прессовали брикеты: диаметр брикета - 20 мм; давление прессования - 1000 кГ/см2; вес брикета 23,7 г., 24,63 г., 25,56 г. в зависимости от количества введенного углерода.

Восстановление брикетов проводили на проточной термогравиметрической установке. Цель экспериментов - определить эффективность процесса металлизации в атмосфере, соответствующей α≈1,0-1,1 и α≈0,4-0,5. Испытуемые брикеты помещали в закрытый алундовый реактор, оснащенный газоподводящей и газоотводящей трубками. Реактор подвешивали к электронным весам, связанным с компьютером, и опускали в печь. Нагрев и изотермическую выдержку при температуре печи 1100°С осуществляли в токе реакционного газа. В качестве последнего использовали аргон, СО2 и СО. Для измерения и стабилизации температуры печи использовали регулятор ТП703 с платинородий-платиновой термопарой. Запись текущей температуры в файл осуществлялась каждую минуту одновременно со считыванием показаний электронных весов.

Перед началом опыта включали подачу соответствующего газа. Расход газа составлял 0,7 л/мин. После успокоения весов их показания обнуляли, включали нагрев печи и каждую минуту фиксировали изменение веса реактора с образцом. Опыт заканчивали по достижении скорости убыли веса 0,1 г/мин.

Было проведено три серии опытов. В первой серии обжиг осуществлялся в нейтральной атмосфере (Ar). Во второй серии в качестве реакционного газа использовали углекислый газ. В третьей серии нагрев до температуры 800°С осуществляли в атмосфере CO2, а дальнейший обжиг - в атмосфере СО.

На рисунке 2 представлены термограммы прокаливания рудоугольных брикетов с содержанием твердого восстановителя (угля): а) 0,8, б) 1,0, в) 1,2 от стехиометрически необходимого (зависимости убыли веса (ΔР) и температуры в печи от времени обжига) в среде аргона (Ar), CO2 и СО. Убыль веса брикета определяли по формуле:

где, Рнач, Рτ - начальный и текущий вес пробы, соответственно.

На рисунке 2 представлены термограммы прокаливания рудоугольных брикетов с содержанием твердого восстановителя 0,8, 1,0 и 1,2 стехиометрически необходимого для полного восстановления железа до металла в среде аргона (а), CO2 (б) и СО (в).

На рисунке 3 представлена термограмма прокаливания рудоугольных брикетов в среде аргона, CO2 и СО с содержанием угля: а) 0,8, б) 1,0, в) 1,2 от стехиометрически необходимого.

Как показывают экспериментальные данные, нагрев до температур 800-850°С происходит примерно одинаково независимо от атмосферы печи. При дальнейшем нагреве металлизация в атмосфере нейтрального газа или СО, что соответствует α=0,5, проходит на 94-98%, в атмосфере CO2 - она на много ниже, кроме того виден эффект вторичного окисления - уменьшение убыли веса.

Способ получения металлизованных окатышей, включающий подготовку шихты путем смешивания железорудных материалов с твердым восстановителем, формирование сырых окатышей, загрузку их на колосниковую решетку, обработку газом-теплоносителем с последующим охлаждением, отличающийся тем, что обработку окатышей осуществляют с использованием последовательно установленных реакторов нагрева, металлизации и охлаждения и проводят газом-теплоносителем в противотоке при перемещении их в реакторе нагрева и охлаждения сверху вниз, а в реакторе металлизации снизу вверх, при этом нагревание окатышей в реакторе нагрева ведут до температуры 800-850°С смесью газа, поступающего из реактора металлизации, и продуктов сгорания природного газа при коэффициенте расхода воздуха α=1,0-1,1, а в реакторе металлизации нагрев ведут до температуры 1200-1400°С смесью газа, поступающего из реактора охлаждения и дополнительно подогретого, и продуктов сгорания природного газа при коэффициенте расхода воздуха α=0,4-0,5, а охлаждение ведут газом, поступающим из ректора нагрева и предварительно очищенным от воды и CO с использованием обожженной извести.
Способ получения металлизованных окатышей
Способ получения металлизованных окатышей
Способ получения металлизованных окатышей
Способ получения металлизованных окатышей
Источник поступления информации: Роспатент

Показаны записи 1-10 из 67.
20.06.2013
№216.012.4c9c

Способ получения титаноалюминиевого сплава из оксидного титансодержащего материала

Изобретение относится к области металлургии и может быть использовано при переработке оксидного титансодержащего материала на титано-алюминиевый сплав. Заявлен способ получения титано-алюминиевого сплава из оксидного титансодержащего материала, включающий подготовку шихты, содержащей оксидный...
Тип: Изобретение
Номер охранного документа: 0002485194
Дата охранного документа: 20.06.2013
10.11.2013
№216.012.7d52

Способ получения комплексного хлорида скандия и щелочного металла

Изобретение относится к неорганической химии и касается способа получения комплексного хлорида скандия и щелочного металла. Металлический скандий смешивают с дихлоридом свинца и солью щелочного металла. Полученную шихту помещают в тигель с инертной атмосферой и нагревают до температуры реакции...
Тип: Изобретение
Номер охранного документа: 0002497755
Дата охранного документа: 10.11.2013
20.12.2013
№216.012.8c6b

Способ получения слоистого композита системы сталь-алюминий

Изобретение относится к металлургии, в частности к получению слоистых биметаллических композитов. Проводят подготовку стальной полосы, подачу в очаг деформации между валком и полосой сухого алюминиевого порошка, совместную прокатку полосы и упомянутого алюминиевого порошка с обжатием 30-50% с...
Тип: Изобретение
Номер охранного документа: 0002501630
Дата охранного документа: 20.12.2013
20.12.2013
№216.012.8d58

Способ переработки сульфидных медно-никелевых материалов, содержащих металлы платиновой группы

Изобретение относится к области цветной металлургии и может быть использовано при переработке сульфидных медно-никелевых материалов, содержащих металлы платиновой группы, в частности при пирометаллургической переработке никель-пирротиновых концентратов, содержащих металлы платиновой группы....
Тип: Изобретение
Номер охранного документа: 0002501867
Дата охранного документа: 20.12.2013
27.12.2013
№216.012.916d

Способ утилизации хлорорганических отходов

Изобретение относится к области черной металлургии, в частности к переработке промышленных хлорсодержащих отходов на основе полихлорированных бифенилов, и может быть использовано для утилизации этих отходов в печи шахтного типа. Способ утилизации хлорорганических отходов включает их подачу...
Тип: Изобретение
Номер охранного документа: 0002502922
Дата охранного документа: 27.12.2013
20.02.2014
№216.012.a268

Способ получения лигатуры алюминий-скандий

Изобретение относится к области металлургии цветных металлов, в частности к получению сплавов алюминия с редкоземельными металлами. Способ получения лигатуры алюминий-скандий включает расплавление алюминия, алюминотермическое восстановление скандия из исходной шихты, содержащей фторид скандия,...
Тип: Изобретение
Номер охранного документа: 0002507291
Дата охранного документа: 20.02.2014
10.06.2014
№216.012.cc2e

Способ получения лигатуры алюминий-титан-цирконий

Изобретение относится к цветной металлургии, в частности к способам получения лигатур на основе алюминия, и может быть использовано при получении лигатуры алюминий-титан-цирконий, применяемой для модифицирования алюминиевых сплавов. Способ получения лигатуры алюминий-титан-цирконий включает...
Тип: Изобретение
Номер охранного документа: 0002518041
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cc2f

Способ переработки титановых шлаков

Изобретение относится к способу переработки титановых шлаков с получением концентрата диоксида титана, который может быть использован в качестве компонента обмазки сварочных электродов. Способ включает смешивание исходного титансодержащего шлака с кальцинированной содой, спекание шихты и...
Тип: Изобретение
Номер охранного документа: 0002518042
Дата охранного документа: 10.06.2014
20.07.2014
№216.012.e1a4

Композитный электродный материал для электрохимических устройств

Изобретение относится к области катализа, а именно каталитическим активным пористым композитным материалам, которые могут быть использованы в качестве несущих электродов электрохимических устройств для получения водорода и/или кислорода либо высоко- и среднетемпературных твердооксидных...
Тип: Изобретение
Номер охранного документа: 0002523550
Дата охранного документа: 20.07.2014
10.08.2014
№216.012.e8d1

Способ переработки оксидных железосодержащих материалов

Способ переработки оксидных железосодержащих материалов относится к горной, металлургической и строительной промышленности и может быть использован при переработке техногенных отвалов, например, шлаков и шламов черной и цветной металлургии с получением железосодержащего концентрата и...
Тип: Изобретение
Номер охранного документа: 0002525394
Дата охранного документа: 10.08.2014
Показаны записи 1-10 из 40.
20.02.2013
№216.012.272d

Способ извлечения триоксида молибдена из огарков

Изобретение относится к металлургии редких металлов, в частности, к извлечению триоксида молибдена из огарков, полученных путем окислительного обжига молибденитовых концентратов и промпродуктов. Способ включает возгонку паров триоксида молибдена в вакууме при остаточном давлении 1-15 мм рт.ст....
Тип: Изобретение
Номер охранного документа: 0002475549
Дата охранного документа: 20.02.2013
27.05.2013
№216.012.4490

Способ обезвреживания мышьяксодержащих сульфидных кеков

Изобретение может быть использовано в цветной металлургии и в химической промышленности. Способ обезвреживания мышьяксодержащих сульфидных кеков цветной металлургии включает плавку исходного материала с получением стекловидного трисульфида мышьяка. Обезвреживанию подвергают мышьяксодержащий...
Тип: Изобретение
Номер охранного документа: 0002483129
Дата охранного документа: 27.05.2013
10.08.2013
№216.012.5d41

Способ металлизации магнийсодержащих карбонатных железорудных материалов

Изобретение относится к черной металлургии, к процессам прямого получения железа во вращающихся печах. В способе металлизации магнийсодержащих карбонатных железорудных материалов, включающем окислительный обжиг в шахтной печи, восстановление совместно с восстановителем и десульфуратором,...
Тип: Изобретение
Номер охранного документа: 0002489494
Дата охранного документа: 10.08.2013
20.12.2013
№216.012.8d58

Способ переработки сульфидных медно-никелевых материалов, содержащих металлы платиновой группы

Изобретение относится к области цветной металлургии и может быть использовано при переработке сульфидных медно-никелевых материалов, содержащих металлы платиновой группы, в частности при пирометаллургической переработке никель-пирротиновых концентратов, содержащих металлы платиновой группы....
Тип: Изобретение
Номер охранного документа: 0002501867
Дата охранного документа: 20.12.2013
27.12.2013
№216.012.916d

Способ утилизации хлорорганических отходов

Изобретение относится к области черной металлургии, в частности к переработке промышленных хлорсодержащих отходов на основе полихлорированных бифенилов, и может быть использовано для утилизации этих отходов в печи шахтного типа. Способ утилизации хлорорганических отходов включает их подачу...
Тип: Изобретение
Номер охранного документа: 0002502922
Дата охранного документа: 27.12.2013
20.02.2014
№216.012.a25d

Способ переработки цинксодержащих металлургических отходов

Изобретение относится к металлургии цветных металлов и может быть использовано при переработке цинксодержащих металлургических отходов вельцеванием. Способ переработки цинксодержащих металлургических отходов включает смешение отходов с коксовой мелочью, окомкование шихты и последующее...
Тип: Изобретение
Номер охранного документа: 0002507280
Дата охранного документа: 20.02.2014
20.03.2014
№216.012.ac44

Шихта для вельцевания цинксвинецоловосодержащих материалов

Изобретение относится к металлургии цветных металлов и может быть использовано для переработки цинксвинецоловосодержащих материалов, например, промпродуктов медной промышленности - цинксодержащих пылей медного производства. Шихта для вельцевания цинксвинецоловосодержащих материалов содержит...
Тип: Изобретение
Номер охранного документа: 0002509815
Дата охранного документа: 20.03.2014
20.05.2014
№216.012.c500

Способ вельцевания окисленных цинксодержащих материалов

Изобретение относится к металлургии цветных металлов. Окисленные цинксодержащие материалы с коксиком в качестве твердого углеродистого восстановителя подают во вращающуюся трубчатую печь и подвергают вельцеванию с подачей дутья в виде паровоздушной смеси в зону температур 1050-1150°С при...
Тип: Изобретение
Номер охранного документа: 0002516191
Дата охранного документа: 20.05.2014
20.07.2014
№216.012.e1a4

Композитный электродный материал для электрохимических устройств

Изобретение относится к области катализа, а именно каталитическим активным пористым композитным материалам, которые могут быть использованы в качестве несущих электродов электрохимических устройств для получения водорода и/или кислорода либо высоко- и среднетемпературных твердооксидных...
Тип: Изобретение
Номер охранного документа: 0002523550
Дата охранного документа: 20.07.2014
10.08.2014
№216.012.e8d1

Способ переработки оксидных железосодержащих материалов

Способ переработки оксидных железосодержащих материалов относится к горной, металлургической и строительной промышленности и может быть использован при переработке техногенных отвалов, например, шлаков и шламов черной и цветной металлургии с получением железосодержащего концентрата и...
Тип: Изобретение
Номер охранного документа: 0002525394
Дата охранного документа: 10.08.2014
+ добавить свой РИД