×
09.06.2019
219.017.7702

Результат интеллектуальной деятельности: СПОСОБ НИЗКОТЕМПЕРАТУРНОГО РАЗДЕЛЕНИЯ УГЛЕВОДОРОДНОГО ГАЗА

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам разделения компонентов газовых смесей путем низкотемпературной конденсации и ректификации с целью получения гелиевого концентрата, этана и широкой фракции легких углеводородов и может быть использовано на газоперерабатывающих предприятиях. Сущность: проводят предварительное охлаждение углеводородного газа и его частичную конденсацию, сепарацию первой ступени с отделением жидкой фазы от газовой, последующее доохлаждение и конденсацию газовой фазы, сепарацию второй ступени на жидкую и паровую фазы, конденсацию и ректификацию паровой фазы в отпарной колонне, сепарацию третьей ступени части кубового продукта отпарной колонны на жидкую и паровую фазы, деметанизацию и деэтанизацию всей отсепарированной жидкой фазы. При этом углеводородный газ предварительно обогащают пентан-гексановой фракцией, а сепарацию третьей ступени осуществляют в сепараторе, дополнительно оснащенном массообменной насадкой, на которую подают поток жидкой фазы сепаратора первой ступени. Технический результат состоит в обеспечении возможности дополнительного извлечения этана. 1 ил., 2 табл.

Изобретение относится к способам разделения компонентов газовых смесей путем низкотемпературной конденсации и ректификации с целью получения гелиевого концентрата, этана и широкой фракции легких углеводородов и может быть использовано на газоперерабатывающих предприятиях.

Известен способ одновременного получения гелия, этана и более тяжелых углеводородов [А.с. СССР №1645796, 5 МПК F 25 J 3/02, опубл. 30.04.91, БИ №16]. Перерабатываемый газ разделяют на потоки, которые раздельно охлаждают и частично конденсируют за счет холода обратных потоков. Затем потоки смешивают и сепарируют, при этом жидкость дросселируют и направляют на сепарацию, откуда испаренные гелий и легкие углеводороды подают в нижнюю часть гелиевой ректификационной колонны. Пар из сепаратора разделяют на потоки, конденсируют, переохлаждают, смешивают и подают на отпарку растворенного гелия в гелиевую ректификационную колонну. Жидкую фазу колонны делят на два потока, один из которых дросселируют, частично испаряют и разделяют в сепараторе. Выделившуюся жидкость дросселируют, смешивают с жидкостью, выделившейся при охлаждении и сепарации подаваемого на переработку газа, и подают в качестве питания в колонну-деметанизатор. Пар, выделившийся при охлаждении и сепарации первой части жидкой фазы гелиевой колонны, расширяют, объединяют с остальной частью жидкой фазы гелиевой колонны, сепарируют с выделением жидкости и газа. Жидкость направляют в качестве холодного орошения в колонну-деметанизатор, а газ объединяют с газами деметанизации, выходящими из нее. Кубовую жидкость колонны-деметанизатора разделяют на этановую и широкую фракции легких углеводородов в колонне-деэтанизаторе.

Недостатком известной установки является относительно невысокая степень извлечения целевых продуктов из природного газа.

Наиболее близким к заявляемому по совокупности существенных признаков и достигаемому результату является применяемый на гелиевом заводе ООО «Оренбурггазпром» способ низкотемпературного разделения углеводородного газа с целью получения гелиевого концентрата, этана и широкой фракции легких углеводородов [В.В.Николаев и др. Основные процессы физической и физико-химической переработки газа. Москва, «Недра», 1998, с.164-167]. Способ представляет собой сочетание низкотемпературной конденсации с последующей деметанизацией или деэтанизацией образовавшейся жидкой фазы в ректификационных колоннах для удаления растворенных в ней легких компонентов.

Поток углеводородного газа охлаждается, проходя последовательно теплообменник, пропановый холодильник, где происходят его предварительное охлаждение и частичная конденсация за счет холода обратного потока метановой фракции и пропана, затем попадает в сепаратор для отделения жидкой фазы. Отделившиеся в сепараторе жидкие углеводороды подаются на питание в деметанизатор. Газовый поток из сепаратора после охлаждения и частичной конденсации в теплообменниках обратными потоками метановых фракций поступает в первый сепаратор второй ступени, в котором поток газа обогащается гелием, а жидкость этаном. Паровая фаза из этого сепаратора направляется на полную конденсацию в теплообменники, после чего поток переохлажденной жидкости поступает в отпарную колонну для дальнейшего обогащения гелием во второй отпарной колонне с последующей ректификацией в гелиевой колонне с выделением гелиевого концентрата. Обогащенная этаном жидкость из первого сепаратора второй ступени попадает во второй сепаратор второй ступени. Паровая фаза из него подается в отпарную колонну в качестве стриппинг-газа, а жидкость - на орошение деметанизатора.

С куба первой отпарной колонны выводится метановая фракция высокого давления, часть которой через теплообменник поступает на разделение в сепаратор третьей ступени. Газовая фаза из сепаратора объединяется с верхним продуктом деметанизатора, направляется на расширение в турбодетандерный агрегат для получения холода и выводится с установки в виде товарного продукта. Жидкость из сепаратора третьей ступени подается на орошение деметанизатора.

Этановая фракция и ШФЛУ получаются путем низкотемпературной ректификации жидкости, выделенной в сепараторах первой, второй и третьей ступени. Сначала осуществляется ректификация полученной жидкости в деметанизаторе с получением метановой фракции в качестве дистиллята и фракции углеводородов С2 и выше в качестве кубового остатка деметанизатора, которая поступает на разделение в деэтанизатор путем ректификации с получением в качестве дистиллята этановой фракции, а в качестве кубового остатка - ШФЛУ.

Недостатком известного способа являются потери этана, происходящие в процессе деметанизации жидкой фазы, а также на третьей ступени сепарации, в процессе которых вместе с метановой фракцией уносится значительное количество этановой фракции.

Задачей заявляемого изобретения является увеличение выхода товарного этана.

Поставленная задача решается заявляемым способом низкотемпературного разделения углеводородного газа, включающем предварительное его охлаждение и частичную конденсацию, сепарацию первой ступени с отделением жидкой фазы от газовой, последующее доохлаждение и конденсацию газовой фазы, сепарацию второй ступени на жидкую и паровую фазы, конденсацию и ректификацию паровой фазы в отпарной колонне, сепарацию третьей ступени части кубового продукта отпарной колонны на жидкую и паровую фазы, деметанизацию и деэтанизацию всей отсепарированной жидкой фазы, в котором углеводородный газ предварительно обогащают пентан-гексановой фракцией, а сепарацию третьей ступени осуществляют в сепараторе, дополнительно оснащенном массообменной насадкой, на которую подают поток жидкой фазы сепаратора первой ступени.

Получаемый при этом технический результат состоит в обеспечении возможности дополнительного извлечения этана из паров, выделившихся в процессе деметанизации и сепарации третьей ступени.

Предварительное обогащение сырьевого газа пентан-гексановой фракцией способствует увеличению выхода жидкой фазы в процессе сепарации первой ступени. При этом происходит увеличение доли тяжелых углеводородов в жидкой смеси, подаваемой в качестве абсорбента на массообменную насадку в сепаратор третьей ступени. В сепараторе третьей ступени помимо простой сепарации происходит абсорбция из паровой фазы этановой фракции утяжеленной жидкостью.

Благодаря наличию в сепараторе массообменной насадки не только обеспечивается необходимый контакт между жидкостями, стекающими вниз, и парами, поднимающимися вверх, для абсорбции этана и более тяжелых компонентов из паровой фазы, но и улавливается та часть жидкой фазы из пара, которая обычно уносится с выводимым газом в виде тумана или капель, улучшая тем самым процесс сепарации.

Одновременно и в деметанизаторе продолжается процесс снижения содержания этановой фракции в парогазовой смеси в результате создания оптимальных условий для поглощения легкой этановой фракции утяжеленной жидкостью орошения методом абсорбции.

Таким образом, новая совокупность взаимообусловленных признаков, новый технический результат позволяют сделать вывод о соответствии заявляемого технического решения критерию «изобретательский уровень».

На чертеже представлена схема установки низкотемпературного разделения углеводородного газа, иллюстрирующая предлагаемый способ.

Установка содержит трубопровод подвода сырьевого газа 1, трубопровод подачи пентан-гексановой фракции в поток сырьевого газа 2, теплообменник 3, пропановый холодильник 4, сепаратор первой ступени 5, теплообменники доохлаждения и конденсации газа 6-9, последовательно установленные сепараторы второй ступени 10-11, сепаратор третьей ступени 12, в котором установлена массообменная насадка 13, отпарная колонна 14, деметанизатор 15-16, состоящий из двух секций - укрепляющей и отгонной, деэтанизатор 17 и турбодетандерный агрегат 18.

Пример осуществления способа

Способ низкотемпературного разделения углеводородных газов осуществляют следующим образом.

На установку поступает сырьевой газ, предварительно осушенный и очищенный от сернистых соединений и углекислоты на предыдущих установках. На входе в установку в поток сырьевого газа 1 закачивается (впрыскивается) по трубопроводу 2 пентан-гексановая фракция (C56) в количестве до 4 т/час. Поток газа проходит последовательно теплообменник 3, пропановый холодильник 4, в которых происходят его предварительное охлаждение (до температуры минус 30°С) и частичная конденсация за счет холода обратного потока метановой фракции и пропана, затем попадает в сепаратор 5 для отделения жидкой фазы, содержащей преимущественно наиболее тяжелые углеводороды С5 и выше. Газовая фаза из сепаратора 5 поступает на дальнейшее доохлаждение и конденсацию в теплообменник 6, а жидкая фаза, утяжеленная пентан-гексановой фракцией, направляется в сепаратор последней ступени 12 в качестве абсорбента, подаваемого на массообменную насадку 13.

Вторая ступень сепарации охлажденного (до температуры минус 60°С) и частично сконденсированного в теплообменнике 6 газового потока ведется в последовательно работающих сепараторах 10 и 11 с тем, чтобы основной поток обогатился гелием, а жидкость - этаном. Выделившаяся жидкая фаза из сепаратора 11 разделяется на два потока и направляется в деметанизатор 15, при этом основной поток после нагрева в теплообменнике 7 (до температуры минус 32°С) подается на питание колонны, а другой - на орошение. Паровые фазы из сепараторов направляются в отпарную колонну 14, при этом из сепаратора 10 после полной конденсации и охлаждения в теплообменнике 8 поток переохлажденной жидкости дросселируется в верхнюю часть отпарной колонны 14, а из сепаратора 11 подается в среднюю часть той же колонны в качестве стриппинг-газа. Из отпарной колонны 14 отпаренный газ направляется на дальнейшее обогащение гелием с целью получения гелиевого концентрата в соответствующих гелиевых колоннах (на чертеже не показаны).

Основной поток кубовой жидкости отпарной колонны 14 после рекуперации холода и частичного испарения в теплообменнике 9 поступает на разделение в сепаратор третьей ступени 12. Утяжеленная жидкая фаза, выделившаяся на первой ступени сепарации, подается в этот же сепаратор 12, но путем впрыска на массообменную насадку 13, смонтированную таким образом, чтобы обеспечить эффективный массообмен между восходящим потоком пара и нисходящим потоком жидкости. В результате абсорбции из паровой фазы в жидкую переходит значительное количество углеводородов C2 и выше, что приводит к увеличению объема жидкости, подаваемой в качестве жидкости орошения в укрепляющую секцию деметанизатора 15. Таким образом, отсепарированная жидкость дополнительно обогащается углеводородами С2 и выше, абсорбированными из паровой фазы.

В укрепляющей секции деметанизатора 15 осуществляется ректификация выделившейся жидкости с получением метановой фракции в качестве дистиллята и фракции углеводородов C2 и выше в качестве кубового остатка. Поток пара, поднимаясь вверх по колонне, подвергается воздействию утяжеленной жидкости орошения, стекающей в отгонную секцию деметанизатора 16 для конденсации и абсорбции из паров этана и более тяжелых компонентов.

Паровая фаза деметанизатора 15, объединившись с метановой фракцией сепаратора третьей ступени 12, направляется на расширение в детандер турбодетандерного агрегата 18 с целью получения холода и выводится с установки в качестве товарного газа.

Кубовый продукт из отгонной секции деметанизатора 16 направляется на ректификацию в деэтанизатор 17 с получением в качестве дистиллята этановой фракции, а в качестве кубового остатка - широкой фракции легких углеводородов (ШФЛУ).

В таблице 1 представлен сравнительный материальный баланс разделения углеводородного газа на целевые продукты для прототипа и заявляемого способа, а в таблице 2 - материальный баланс по этану.

Из таблицы 1 видно, что выход этановой фракции как товарного продукта по заявляемому способу увеличивается на 2399 кг/ч, т.е. прирост выхода этановой фракции составляет 16,5%.

Данные таблицы 2 показывают, что происходят увеличение содержания этана в жидкой смеси, отводимой с низа сепаратора 12, и одновременно снижение ее в составе метановой фракции, выводимой с верха сепаратора. Это оказывает влияние на распределение компонентов по фазам в деметанизаторе 15, в котором также происходит увеличение доли этановой фракции в жидкой смеси, отводимой с низа деметанизатора, с одновременным снижением его доли в составе метановой фракции по сравнению с прототипом.

Таким образом, использование заявляемого способа позволяет снизить суммарные потери этана с паром из сепаратора третьей ступени и с верхним продуктом деметанизатора за счет создания в них оптимальных условий для процесса низкотемпературной абсорбции.

Таблица 2
№№Наименование потокаПрототипПредлагаемое техническое решение
Расход потока, нм3Мол. доля этана, %Расход этана, нм3Расход потока, нм3Мол. доля этана, %Расход этана, нм3
Входящие потоки
1.Питание деметанизатора 15 из сепаратора 116961912,248185276157912,85557916
2.Жидкость на орошение деметанизатора 15 (часть жидкой фазы из сепаратора 11)1959012,243423981351212,85571737
3.Кубовый остаток отпарной колонны 14 в сепаратор 121672862,689745001761792,80514942
4.В сепаратор 12 третьей ступени на массообменную насадку из сепаратора 5---603112,2338738
5.Кубовый остаток отпарной колонны 14 на орошение деметанизатора 15272332,6897732286802,8051804
1615716137
Промежуточные потоки
6.Жидкость из сепаратора 121359811,151815162424013,42073253
7.Жидкость на орошение деметанизатора 15 (п.п.5+6)408315,50792248529207,66744057
8.Паровая фаза из сепаратора 121536881,941029831579701,53612427
9.Паровая фаза из деметанизатора 151089742,294425001044311,36561426
Выходящие потоки
10.Метановая фракция из деметанизатора 15 и сепаратора 12 (объединенный поток по п.п.8+9)2626612,087654832624011,46833853
11.Кубовый остаток деметанизатора 152106750,669106742357952,09612284
1615716137

Способнизкотемпературногоразделенияуглеводородногогаза,включающийпредварительноеегоохлаждениеичастичнуюконденсацию,сепарациюпервойступенисотделениемжидкойфазыотгазовой,последующеедоохлаждениеиконденсациюгазовойфазы,сепарациювторойступенинажидкуюипаровуюфазы,конденсациюиректификациюпаровойфазывотпарнойколонне,сепарациютретьейступеничастикубовогопродуктаотпарнойколоннынажидкуюипаровуюфазы,деметанизациюидеэтанизациювсейотсепарированнойжидкойфазы,отличающийсятем,чтоуглеводородныйгазпредварительнообогащаютпентан-гексановойфракцией,асепарациютретьейступениосуществляютвсепараторе,оснащенноммассообменнойнасадкой,накоторуюподаютпотокжидкойфазысепараторапервойступени.
Источник поступления информации: Роспатент

Показаны записи 1-3 из 3.
10.04.2019
№219.017.0abf

Устройство для отсечки шлейфа газовой скважины

Изобретение относится к технике автоматического управления и регулирования технологическими процессами, может быть использовано на газоконденсатных и газовых месторождениях для автоматической отсечки шлейфа газовой скважины при аварийном падении давления в нем. Устройство для отсечки шлейфа...
Тип: Изобретение
Номер охранного документа: 02180717
Дата охранного документа: 20.03.2002
09.06.2019
№219.017.7757

Способ регенерации цеолита процесса осушки и очистки природного газа от сернистых соединений

Изобретение относится к области адсорбционной очистки углеводородных газов от меркаптанов и сероводорода и может быть использовано в газовой, нефтяной и нефтехимической промышленности при регенерации цеолитов, используемых для этих целей. Способ включает последовательное нагревание и охлаждение...
Тип: Изобретение
Номер охранного документа: 02240176
Дата охранного документа: 20.11.2004
09.06.2019
№219.017.7888

Способ осушки и очистки этановой фракции

Изобретение относится к технологии адсорбционной осушки и очистки углеводородных газов. Способ осушки и очистки этановой фракции от сернистых соединений и углекислого газа включает адсорбцию цеолитом под давлением с последующими регенерацией и охлаждением цеолита с помощью газа регенерации и...
Тип: Изобретение
Номер охранного документа: 02221626
Дата охранного документа: 20.01.2004
Показаны записи 81-90 из 116.
22.02.2019
№219.016.c5bb

Способ разделения бензиновых фракций в процессе изомеризации

Изобретение относится к изомеризации легких бензиновых фракций с получением методом фракционирования высокооктановых компонентов бензина и может быть использовано в нефтеперерабатывающей и нефтехимической отраслях промышленности. Изобретение касается способа разделения бензиновых фракций в...
Тип: Изобретение
Номер охранного документа: 0002680377
Дата охранного документа: 20.02.2019
01.03.2019
№219.016.cd15

Способ обезвреживания отходов, содержащих менее 50% жидких и/или пастообразных углеводородов

Изобретение относится к нефтегазовой промышленности и может быть использовано в других отраслях промышленности, где имеет место образование, длительное хранение, складирование в шламонакопителях значительного количества нефтесодержащих отходов, содержащих жидкие и/или пастообразные...
Тип: Изобретение
Номер охранного документа: 0002305116
Дата охранного документа: 27.08.2007
01.03.2019
№219.016.d0d5

Способ очистки сульфидно-щелочных стоков

Изобретение может быть использовано в нефтеперерабатывающей и нефтехимической промышленности для очистки сульфидно-щелочных технологических сточных вод в смеси, в которых одновременно содержится углеводороды, взвешенные вещества, сульфид и гидросульфид натрия и гидросульфид аммония. Для...
Тип: Изобретение
Номер охранного документа: 0002460692
Дата охранного документа: 10.09.2012
02.03.2019
№219.016.d1ec

Способ хранения и отгрузки сжиженного природного газа

Изобретение относится к области хранения и отгрузки сжиженного природного газа и может быть использовано для решения проблем транспортировки сжиженного природного газа (СПГ) морским транспортом, в частности, на экспорт. Способ хранения и отгрузки сжиженного природного газа включает закачивание...
Тип: Изобретение
Номер охранного документа: 0002680914
Дата охранного документа: 28.02.2019
21.03.2019
№219.016.ebc9

Многотопливная система подготовки топливного газа для питания газового двигателя внутреннего сгорания

Изобретение может быть использовано в системах топливоподачи газовых двигателей внутреннего сгорания (ДВС). Предложена многотопливная система подготовки топливного газа для питания газового ДВС 600, включающая топливные емкости 100, узел регазификации 200, узел смешения 400, содержащий клапаны...
Тип: Изобретение
Номер охранного документа: 0002682465
Дата охранного документа: 19.03.2019
22.03.2019
№219.016.ec55

Установка подготовки этансодержащего газа к транспорту в северных широтах

Изобретение относится к установке подготовки этансодержащего газа к транспорту в северных широтах и может быть использовано на предприятиях газовой промышленности. Установка подготовки этансодержащего газа к транспорту в северных широтах включает трубопровод подачи деметанизированной фракции,...
Тип: Изобретение
Номер охранного документа: 0002682647
Дата охранного документа: 20.03.2019
29.03.2019
№219.016.f0dd

Способ подготовки кислого газа для закачки в пласт через нагнетательную скважину

Изобретение относится к нефтегазовой промышленности, а именно к способам подготовки кислых газов к закачке в пласт через нагнетательную скважину с целью их утилизации. Обеспечивает исключение использования воды при закачке кислых газов в пласт, снижение риска коррозионных разрушений...
Тип: Изобретение
Номер охранного документа: 0002342525
Дата охранного документа: 27.12.2008
03.04.2019
№219.016.fad1

Кольцевой адсорбер

Изобретение относится к области очистки газов и паров от примесей нежелательных компонентов и может быть использовано в нефтеперерабатывающей, газоперерабатывающей, химической, пищевой и других отраслях промышленности. Кольцевой адсорбер включает цилиндрический корпус, крышку и днище, штуцеры...
Тип: Изобретение
Номер охранного документа: 0002683738
Дата охранного документа: 01.04.2019
19.04.2019
№219.017.1d4d

Производственный кластер

Изобретение относится к области рационального использования природных ресурсов и может быть использовано в газодобывающей, газоперерабатывающией и газохимической отраслях промышленности. Производственный кластер включает по крайней мере два газовых и/или газоконденсатных месторождения,...
Тип: Изобретение
Номер охранного документа: 0002685099
Дата охранного документа: 16.04.2019
20.04.2019
№219.017.3581

Выхлопная система газоперекачивающего агрегата

Изобретение относится к области машиностроения, а именно к газоперекачивающим агрегатам с газотурбинным двигателем, преобразующим энергию продуктов сгорания топлива в механическую и сбрасывающим отработавшие газы в атмосферу, и может быть использовано в газовой промышленности, в частности на...
Тип: Изобретение
Номер охранного документа: 0002685158
Дата охранного документа: 16.04.2019
+ добавить свой РИД