×
08.06.2019
219.017.7577

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ЭНЕРГИИ СВЕРХШИРОКОПОЛОСНОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области техники измерений характеристик сверхширокополосного (СШП) электромагнитного излучения (ЭМИ) и может быть использовано для оценки эффективности новых типов генераторов данного вида излучения. Технический результат - повышение точности измерения, а также возможность измерения энергии СШП ЭМИ, в том числе в виде одиночных электромагнитных импульсов, от генераторов с произвольной формой диаграммы направленности их излучающих систем. В способе измерения энергии СШП ЭМИ, регистрация напряженности импульсов электрического поля СШП ЭМИ производится в двух взаимно перпендикулярных плоскостях путем поворота излучающей системы генератора СШП ЭМИ с последующей передачей зарегистрированных данных на ЭВМ для получения значений напряженности импульсов электрического поля. В недостающих точках пространства для определения напряженности импульсов электрического поля СШП ЭМИ используется следующая аппроксимация: где Е1(θ, 0, t), E2(θ, π, t), E3(θ, π/2, t), E4(θ, 3π/2, t) - измеренные зависимости напряженности электрического поля от полярного угла θ при значениях азимутального угла ϕ=0, π, π/2, 3π/2 соответственно. Энергия СШП ЭМИ вычисляется, используя выражение где θi - угол между осью излучения и направлением на измерительный преобразователь, Δθ - угловой шаг установки измерительных позиций, Ex,y(θi, ϕ, tk) - напряженность электрического поля на i-й измерительной позиции в момент времени tk, R - расстояние до раскрыва излучающей системы генератора СШП ЭМИ, Z - волновое сопротивление свободного пространства, n - число измерительных позиций, Δt - шаг временной дискретизации осциллографа, N - число измерительных позиций, K - количество временных дискретов, зависящее от выбранного временного окна, равного длительности исследуемого импульса. 1 ил.

Изобретение относится к области техники измерений характеристик сверхширокополосного электромагнитного излучения и может быть использовано для оценки эффективности новых типов генераторов данного вида излучения.

Термином «сверхширокополосное электромагнитное излучение» (СШП ЭМИ) обозначается класс коротких электромагнитных импульсных сигналов длительностью менее 1 не (в англоязычной литературе используется термин «ultra-wide band (UWB) short pulse»).

Известна установка, реализующая способ измерения плотности потока мощности электромагнитного поля (Патент РФ №2 353 942, МПК G01R 29/08, опубликовано: 27.04.2009) по методу сравнения при работе измеряемой и эталонной антенн на передачу, включающая генератор ВЧ-сигналов, второй выход которого соединен с измерителем мощности, а первый - с устройством переключения антенн, к первому выходу которого подключена измеряемая антенна, а ко второму выходу - эталонная антенна, при этом измеряемая и эталонная антенны посредством излучаемого электромагнитного поля соединены с приемной антенной приемного устройства, размещенного в экранированной камере, которое измеряет напряженности полей, создаваемых измеряемой и эталонной антеннами, а затем вычисляет плотность потока мощности электромагнитного поля, создаваемую измеряемой антенной, с последующим отображением на дисплее.

Недостатками данного технического решения являются невозможность измерения плотности потока энергии сверхширокополосного электромагнитного излучения, отсутствие измерения энергии электромагнитного поля, прошедшую через сферическую поверхность, ограниченную заданным телесным углом.

Известно устройство, реализующее способ измерения плотности потока энергии электромагнитного поля (Патент РФ №2441 248, МПК G01R 29/08, опубликовано: 27.01.2012), имеющее две антенны и два измерительных канала - для электрического и магнитного полей. В каждом канале присутствуют усилители, звенья частотной коррекции и амплитудные детекторы. Сигналы с данных каналов поступают на цифроаналоговый преобразователь, результирующий числовые значения величин зарегистрированных сигналов электромагнитного поля, которые анализируются в процессоре, и с помощью множительного логического элемента И рассчитывается плотность потока энергии электромагнитного поля. Результат расчетных значений индуцируется на жидкокристаллический алфавитно-цифровой дисплей.

Недостатками данного технического решения являются невозможность измерения плотности потока энергии сверхширокополосного электромагнитного излучения, а также излучения с высокими значениями амплитуды напряженностей, отсутствие измерения энергии электромагнитного поля, прошедшую через интересующую нас сферическую поверхность, ограниченную заданным телесным углом.

Известна мобильная система удаленной регистрации параметров сверхширокополосного электромагнитного излучения (А.С. Белов, Д.А. Коконин. Мобильная система удаленной регистрации параметров сверхширокополосного электромагнитного излучения // Технологии ЭМС.-2017. - №2(61). - С. 36-43.), взятая за прототип. Данная система реализует способ измерения энергии сверхширокополосного электромагнитного излучения путем регистрации только напряженности электрического поля, т.к. регистрируемые электромагнитные импульсы имеют субнаносекундную длительность и при условии отсутствия переотражений на временном интервале наблюдения, электрическое и магнитное поля СШП ЭМИ связаны соотношением E/H=120⋅π. Ее канал обработки сигнала состоит из приемной антенны, соединенной с расширителем импульсов, который с помощью линии задержки соединен со входом цифрового стробоскопического осциллографа, связанным с портативным персональным компьютером. Синхронизация осциллографа осуществляется от соответствующего выхода расширителя импульсов. Все оборудование кроме приемной антенны помещено в экранированную кабину с целью защиты от воздействия мощных электромагнитных полей и паразитных помеховых сигналов. Приемная антенна представляет собой измерительный преобразователь напряженности импульсного электрического поля, переходная характеристика которого имеет форму близкую к ступенчатой. Поэтому, измерительный преобразователь осуществляет преобразование сигнала напряженности электрического поля в сигнал напряжения U(t) той же формы с минимальными искажениями - , где Kпр - коэффициент преобразования измерительного преобразователя, - радиус-вектор в точку постановки измерительного преобразователя. Размещение измерительного преобразователя вдоль эквипотенциали исследуемого поля производят с помощью лазерного дальномера и электронного теодолита, входящих в состав системы, что позволяет получить зависимость амплитудно-временных параметров излучения от угла относительно оси излучения с последующим пересчетом в энергию излучения, который реализуется по следующей формуле с помощью программного обеспечения, установленного на персональном компьютере:

где Z - волновое сопротивление свободного пространства (Z=377 Ом), θi, -угол между осью излучения и направлением на i-ую измерительную позицию, Δθ - угловой шаг размещения измерительных позиций, E(θi,tk) - напряженность электрического поля на i-ой измерительной позиции в момент времени tk, Я - расстояние до раскрыва излучающей системы генератора СНЯТ ЭМИ, Δt - шаг временной дискретизации осциллографа, N - число измерительных позиций, K - количество временных дискретов, зависящее от выбранного временного окна, равного длительности исследуемого импульса.

Недостатками данного технического решения являются возможность регистрации только периодически повторяющихся импульсов СШП ЭМИ, понижение точности измерения из-за наличия расширителя импульсов с линией задержи, возможность измерения энергии СШП ЭМИ от генераторов только с симметричной диаграммой направленности их излучающих систем.

Техническим результатом предлагаемого технического решения являются повышение точности измерения, а также возможность измерения энергии сверхширокополосного электромагнитного излучения, в том числе в виде одиночных электромагнитных импульсов, от генераторов с произвольной формой диаграммой направленности их излучающих систем.

Технический результат достигается тем, что в способе измерения энергии СШП ЭМИ, включающем регистрацию напряженности импульсов электрического поля сверхширокополосного электромагнитного излучения с использованием измерительного преобразователя и широкополосного цифрового осциллографа, регистрация напряженности импульсов электрического поля СШП ЭМИ производится в двух взаимно перпендикулярных плоскостях путем поворота излучающей системы генератора СШП ЭМИ, с последующей передачей зарегистрированных данных на ЭВМ, для получения значений напряженности импульсов электрического поля. В недостающих точках пространства для определения напряженности импульсов электрического поля СШП ЭМИ используется следующая аппроксимация:

где E1(θ,0,t), Е2(θ,π,t), E3(θ,π/2,t), Е4(θ,3π/2,t) - измеренные зависимости напряженности электрического поля от полярного угла θ при значениях азимутального угла ϕ=0, π, π/2, 3π/2, соответственно (в сферической системе координат). Энергия сверхширокополосного электромагнитного излучения вычисляется, используя выражение

где θi - угол между осью излучения и направлением на измерительный преобразователь, Δθ - угловой шаг установки измерительных позиций, Ex,yi,ϕ,tk) - напряженность электрического поля на i-ой измерительной позиции в момент времени tk, R - расстояние до раскрыва излучающей системы генератора СШП ЭМИ, Δt - шаг временной дискретизации осциллографа, N - число измерительных позиций, K - количество временных дискретов, зависящее от выбранного временного окна, равного длительности исследуемого импульса.

На фигуре представлена схема устройства для измерения энергии СШП ЭМИ, включающая излучающую систему генератора СШП ЭМИ 1, измерительный преобразователь 2, экранированную кабину 5, в которую помещены широкополосный цифровой осциллограф 3 и ЭВМ 4.

Предлагаемый способ измерения энергии СШП ЭМИ реализуется следующим образом.

Измерительный преобразователь 2 осуществляет преобразование напряженности импульсов электрического поля СШП ЭМИ, создаваемого излучающей системой 1, в сигнал напряжения той же формы с минимальными искажениями. Регистрация импульсов напряжения на выходе измерительного преобразователя осуществляется с помощью широкополосного цифрового осциллографа 3. Для защиты от воздействия излучения осциллограф размещается в экранированной кабине 5.

Выражение для энергии излучения представляется в виде:

где Z - волновое сопротивление свободного пространства, - радиус-вектор в точку наблюдения с координатами (R, θ, ϕ) в сферической системе координат.

При проведении измерений в дальней зоне на расстоянии R от выходной апертуры излучающей системы генератора СШП ЭМИ 1 выражение (2) можно модифицировать следующим образом:

Таким образом, общая энергия излучения СШП ЭМИ пропорциональна интегралу от распределения квадрата напряженности поля излучения в пространстве. Измерение распределения напряженности электрического поля во всех точках пространства крайне трудоемко и невозможно без применения специальных средств, поэтому целесообразно проводить измерения только в двух взаимно перпендикулярных плоскостях, а для получения значений в недостающих точках использовать следующую аппроксимацию:

где E1(θ,0,t), E2(θ,π,t), Е3(θ,π/2,t), E4(θ,3π/2,t) - измеренные зависимости напряженности электрического поля от полярного угла θ при значениях азимутального угла ϕ=0, π, π/2, 3π/2, соответственно.

Для ограниченного числа измерительных позиций и с учетом аппрок-симации (4) уравнение (3) имеет вид:

где θi - угол между осью излучения и направлением на измерительный преобразователь, Δθ - угловой шаг установки измерительных позиций, Ex,yi,ϕ,tk) - напряженность электрического поля на i-ой измерительной позиции в момент времени tk, R - расстояние до раскрыва излучающей системы генератора СШП ЭМИ, Δt - шаг временной дискретизации осциллографа, N - число измерительных позиций, K - количество временных дискретов, зависящее от выбранного временного окна, равного длительности исследуемого импульса.

Поворот оси излучения генератора СШП ЭМИ на углы θi позволяет поучить зависимость амплитудно-временных параметров излучения от угла относительно оси излучения, а поворот излучающей системы вдоль ее оси на углы 0, π, π/2, 3π/2 - несколько таких зависимостей во взаимно перпендикулярных плоскостях. Измеренные таким образом данные передаются на ЭВМ, где с помощью соответствующего программного обеспечения по формуле (5) реализуется расчет энергии СШП ЭМИ.


СПОСОБ ИЗМЕРЕНИЯ ЭНЕРГИИ СВЕРХШИРОКОПОЛОСНОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ЭНЕРГИИ СВЕРХШИРОКОПОЛОСНОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ЭНЕРГИИ СВЕРХШИРОКОПОЛОСНОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ЭНЕРГИИ СВЕРХШИРОКОПОЛОСНОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ЭНЕРГИИ СВЕРХШИРОКОПОЛОСНОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ЭНЕРГИИ СВЕРХШИРОКОПОЛОСНОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ЭНЕРГИИ СВЕРХШИРОКОПОЛОСНОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 461-470 из 796.
23.04.2019
№219.017.3694

Контактная система

Изобретение относится к области приборостроения, в частности к устройствам автоматики, которые могут быть использованы для коммутации электрических цепей технических объектов ответственного назначения. Контактная система содержит корпус из немагнитного материала, изолирующий внутренний объем...
Тип: Изобретение
Номер охранного документа: 0002685543
Дата охранного документа: 22.04.2019
25.04.2019
№219.017.3b64

Химический источник тока ампульного типа

Изобретение относится к области электротехники, а именно к химическим резервным источникам тока ампульного типа (АХИТ), содержащим в едином корпусе с крышкой расчетное количество электролитных блоков и соответствующее количество секций электродов, размещенных в электродном блоке, каждая из...
Тип: Изобретение
Номер охранного документа: 0002685704
Дата охранного документа: 23.04.2019
25.04.2019
№219.017.3b91

Способ определения дальности до поверхности земли

Изобретение относится к области радиолокационной техники и может быть использовано при построении радиолокационных систем, предназначенных для определения дальности от движущегося объекта до поверхности земли, использующих принцип отражения радиоволн. Достигаемый технический результат -...
Тип: Изобретение
Номер охранного документа: 0002685702
Дата охранного документа: 23.04.2019
29.04.2019
№219.017.3e3e

Гибкий высоковольтный кабель

Изобретение относится к области высоковольтной техники, в частности к кабелям высокого напряжения, и может быть использовано для передачи импульсов высоких и сверхвысоких напряжений. Кабель содержит токоведущий электрод, выполненный из гибкого гофрированного герметичного рукава сильфонного...
Тип: Изобретение
Номер охранного документа: 0002686458
Дата охранного документа: 26.04.2019
29.04.2019
№219.017.41c3

Способ очистки водородсодержащих газовых смесей от оксида углерода (варианты)

Изобретение может быть использовано для очистки от оксида углерода обогащенных водородом газовых смесей. Процесс проводят в две стадии при температуре не ниже 90°С и давлении не ниже 1 атм. Очистку в первой из стадий проводят путем селективного окисления оксида углерода кислородом и/или...
Тип: Изобретение
Номер охранного документа: 0002359741
Дата охранного документа: 27.06.2009
01.05.2019
№219.017.4795

Способ проведения испытаний на стойкость сложнофункциональных микросхем к статическому дестабилизирующему воздействию

Изобретение относится к испытательной технике и может быть использовано при проведении испытаний на стойкость различных видов сложнофункциональных интегральных микросхем (СИМ) к статическим дестабилизирующим воздействиям (СДВ), в том числе к воздействию ионизирующих излучений. В способе...
Тип: Изобретение
Номер охранного документа: 0002686517
Дата охранного документа: 29.04.2019
01.05.2019
№219.017.47b1

Датчик руки

Изобретение относится к устройствам сигнализации о нарушении охраняемого пространства. Технический результат заключается в срыве генерации LC-генератора при касании пальцев и ладони только реальной руки рабочей поверхности устройства с требуемой площадью соприкосновения. Устройство содержит...
Тип: Изобретение
Номер охранного документа: 0002686619
Дата охранного документа: 29.04.2019
01.05.2019
№219.017.4835

Сильфонный компенсатор

Изобретение относится к компенсационным устройствам для трубопроводов и может быть использовано в пневмо- и гидросистемах любой сферы машиностроения. Сильфонный компенсатор содержит два сильфона, фланцы, переходник и две полые цилиндрические вставки, снабженные с одного конца кольцевыми...
Тип: Изобретение
Номер охранного документа: 0002686537
Дата охранного документа: 29.04.2019
09.05.2019
№219.017.4ff9

Способ отработки боеприпаса

Изобретение относится к области исследования быстропротекающих процессов, а конкретно к испытаниям боеприпасов. Способ включает в себя запуск боеприпаса и контроль параметров его функционирования путем регистрации моментов пролета боеприпасом заданных точек траектории с помощью установленных в...
Тип: Изобретение
Номер охранного документа: 0002448344
Дата охранного документа: 20.04.2012
09.05.2019
№219.017.5024

Бесконтактный электромагнитный датчик измерения производной по времени от величины индукции магнитного поля электромагнитного импульса

Изобретение относится к области физики плазмы, газовых разрядов, сильноточной электронике, радиофизике, астрофизике и может применяться для исследования динамики распространения электромагнитных импульсов в диспергирующих неоднородных средах, радиолокации. Сущность изобретения заключается в...
Тип: Изобретение
Номер охранного документа: 0002444021
Дата охранного документа: 27.02.2012
Показаны записи 1-1 из 1.
10.05.2014
№216.012.c27e

Способ модификации ионосферной плазмы

Изобретение относится к области электричества, касается способа модификации ионосферной плазмы, который может быть использован для исследования околоземного пространства, задач дальней НЧ радиосвязи, а также в целях радиопротиводействия. Способ модификации ионосферной плазмы включает...
Тип: Изобретение
Номер охранного документа: 0002515539
Дата охранного документа: 10.05.2014
+ добавить свой РИД