×
04.06.2019
219.017.7361

Результат интеллектуальной деятельности: ВНУТРИТРУБНЫЙ УПРУГИЙ МИКРОРОБОТ С УПРАВЛЯЕМОЙ ПЬЕЗОАКТЮАТОРОМ ФОРМОЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к робототехнике, а именно к мобильным миниатюрным роботам, предназначенным для осуществления работ в трубчатых каналах различных типов. Внутритрубный упругий микроробот выполнен в виде гибкого многоопорного неразрезного стержня, опорами которого служат шарнирно закрепленные ползуны, расположенные симметрично по всей его длине и на концах, содержащего блок управления и питания и встроенный пьезоактюатор, выполненный с возможностью формирования изгибающих моментов, управляющих формой стержня в зависимости от изменения кривизны трубного канала. Изобретение направлено на уменьшение массогабаритных показателей и расширение функциональных возможностей. 4 з.п. ф-лы, 3 ил.

Изобретение относится к робототехнике, а именно к мобильным миниатюрным роботам, предназначенным для осуществления работ в трубчатых каналах различных типов.

Известен миниатюрный мобильный вибрационный робот с пьезоактюатором для движения в тонкой трубке. Мобильный робот содержит пьезоэлектрическую структуру биморфного типа, созданный путем присоединения двух пьезоэлектрических элементов, и четыре упругих гребня. Биморфная структура вибрацией создает изгиб в соответствии с прикладываемым напряжением переменного тока, и концы упругих гребней вибрируют вдоль внутренних стенок трубки. Динамическое трение при перемещении робота в горизонтальной трубке в левом направлении меньше трения в противоположном направлении. (Shin-ichi Aoshima, Takeshi Tsujimura, Tetsuro Yabuto A miniature mobile robot using piezo vibration for mobility in a thin tube // Journal of dynamic systems measurement and control // Vol. 115. P. 270-278). Недостатками такого устройства являются малая точность, невозможность реверсивного движения и высокое трение о внутренние поверхности трубки.

Наиболее близким по своей технической сущности к заявленному является ползающий робот с вибрационным актюатором (патент США №8294333 В2, МПК H01L 41/08, опубл. 23.10.2008), перемещающийся внутри трубки или вдоль поверхности, использующий множество гибких волокон, закрепленных на корпусе устройства. Наружная поверхность волокон имеет коэффициент анизотропного трения с поверхностью, вдоль которой устройство должно перемещаться, а волокна тянутся от корпуса устройства таким образом, что по меньшей мере некоторая часть длины волокон находится в контакте со стенками. Актюатор используется для вибрации устройства, таким образом, что оно движется вниз вдоль канала. Актюатором может быть устройство внутреннее или внешнее. Недостатками такого устройства является значительные массогабаритные характеристики и высокое анизотропное трение.

Техническая задача предлагаемого в качестве изобретения технического решения состоит в уменьшении массогабаритных показателей и расширении функциональных возможностей.

Технический эффект, возникающий при решении поставленной технической задачи, заключающийся в осуществлении диагностики трубчатых каналов различного поперечного сечения, обеспечении реверсивного движения в них и быстрой адресной доставке различных средств специального назначения в автономном режиме, достигается тем, что в известном внутритрубном упругом микророботе для создания движущих его сил реализовано управление формой изгиба микроробота в трубном канале переменной кривизны. Впервые такой возможный принцип создания силы тяги за счет внутренних сил живых организмов (ужей, рыб) для движения в твердом канале и жидкости был сформулирован М.А. Лаврентьевым и М.М. Лаврентьевым (Об одном принципе создания тяговой силы для движения // Прикл. мех. и техн. физика. 1962. №4 с. 3-9//), а на модели упругого стержня В.Ф. Журавлевым построено оптимальное управление формой изгиба змеи с помощью силового воздействия мышц при ее движении в канале синусоидальной формы (Об одной модели механизма движения змеи // Прикл. мат. и мех. 2002. т. 66. вып. 4 с. 534-538//). В предлагаемом устройстве управление формой внутритрубного робота осуществляется с помощью встроенного пьезоактюатора.

Указанный выше технический эффект достигается тем, что внутритрубный упругий микроробот, согласно изобретению, выполнен в виде гибкого многоопорного неразрезного стержня, опорами которого служат шарнирно закрепленные ползуны, расположенные симметрично по всей его длине и на концах стержня, имеет встроенный пьезоактюатор, формирующий с помощью блока управления и питания изгибающие моменты, управляющие формой микроробота в зависимости от изменения кривизны трубного канала.

Кроме того, во внутритрубном упругом микророботе с управляемой формой пьезоактюатор выполнен в виде композита биморфного типа: пьезопленка-металл и соответствующие проводящие слои.

Кроме того, во внутритрубном упругом микророботе с управляемой формой пьезоактюатор выполнен в виде композита триморфного типа: пьезопленка-металл-пьезопленка и соответствующие проводящие слои.

Кроме того, движение внутритрубного упругого микроробота с управляемой пьезоактюатором формой, может быть реализовано в трубе малого поперечного размера (менее 20 мм), осевая линия которой является комбинацией двух кривых: линии постоянной кривизны - горизонтальной прямой - и линии с периодически изменяющейся кривизной.

Кроме того, движение внутритрубного упругого микроробота с управляемой пьезоактюатором формой, может быть реализовано в трубе большого поперечного размера (более 100 мм), на внутренней поверхности которой выполнены направляющие специальной формы, являющиеся комбинацией двух кривых: винтовой линии с углом подъема θ - кривая постоянной кривизны - и геодезической кривой с периодически изменяющейся кривизной.

Упругий микроробот представлен на фиг. 1, выполнен в виде гибкого многоопорного неразрезного стержня 1, опорами которого служат шарнирно закрепленные ползуны 2, расположенные симметрично по всей его длине и на концах стержня (Фиг. 1, Фиг. 2).

Кроме того, во внутритрубном упругом микророботе с управляемой формой, пьезоактюатор выполнен в виде слоистой структуры (композита) (Фиг. 3).

Кроме того, во внутритрубном упругом микророботе с управляемой формой, пьезоактюатор выполнен в виде композита биморфного типа (пьезопленка-металл и соответствующие проводящие слои, образующие систему электродов).

Кроме того, во внутритрубном упругом микророботе с управляемой формой, пьезоактюатор выполнен в виде композита триморфного типа (пьезопленка 4, металл 5, пьезопленка 4 и соответствующие проводящие слои 6, образующие систему электродов (Фиг. 3).

На электроды 6 от блока, содержащего систему управления и источник питания (блок СУиП - Фиг. 3), по традиционной схеме подается управляющее электрическое напряжение. При электрическом нагружении пьезоактюатора в соответствии с обратным пьезоэффектом в неразрезном гибком стержне 1 слоистой структуры возникает напряженно-деформированное состояние, соответствующее изгибу под действием эквивалентных изгибающих управляющих моментов H, величина которых пропорциональна напряжению и формируется блоком управления и питания в зависимости от изменения кривизны трубного канала.

Предлагается упругий микроробот с управляемой пьезоактюатором формой для использования в трубных каналах двух типов: малого поперечного и большого поперечного сечений. При этом реверс движения осуществляется изменением знака напряжения, подаваемого на актюатор блоком управления и питания.

На фиг. 1 изображен микроробот при движении в трубчатом канале малого поперечного размера.

На фиг. 2 изображен микроробот при движении в трубчатом канале большого поперечного размера.

Для реализации движения микроробота в канале малого поперечного размера (менее 20 мм) используется трубка 3 (фиг. 1), осевая линия которой является комбинацией двух кривых: линии постоянной кривизны (горизонтальная прямая) и линии с периодически изменяющейся кривизной. Движение микроробота в канале большого поперечного размера (более 100 мм) реализуется в трубе 3 (фиг. 2), на внутренней поверхности которой выполнены направляющие, являющиеся комбинацией двух кривых: винтовой линии с постоянным углом подъема θ и геодезической кривой с периодически изменяющейся кривизной. Положение робота определяется координатой s на скелетной винтовой линии Трубный канал с направляющими указанного типа может быть выполнен с помощью современных 3D-технологий.


ВНУТРИТРУБНЫЙ УПРУГИЙ МИКРОРОБОТ С УПРАВЛЯЕМОЙ ПЬЕЗОАКТЮАТОРОМ ФОРМОЙ
ВНУТРИТРУБНЫЙ УПРУГИЙ МИКРОРОБОТ С УПРАВЛЯЕМОЙ ПЬЕЗОАКТЮАТОРОМ ФОРМОЙ
ВНУТРИТРУБНЫЙ УПРУГИЙ МИКРОРОБОТ С УПРАВЛЯЕМОЙ ПЬЕЗОАКТЮАТОРОМ ФОРМОЙ
Источник поступления информации: Роспатент

Показаны записи 71-80 из 208.
10.05.2018
№218.016.41c7

Эквидистантная решетка остронаправленных антенн

Эквидистантная решетка остронаправленных антенн содержит антенны, которые расположены вдоль прямой лини на равном расстоянии друг от друга, каждая из которых содержит параболическое зеркало, опорный кронштейн, на котором закреплен рупорный облучатель, расположенный в фокусе зеркала. При этом...
Тип: Изобретение
Номер охранного документа: 0002649043
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.43bc

Цифровой некогерентный демодулятор четырехпозиционных сигналов с относительной фазовой манипуляцией

Изобретение относится к области радиотехники и может быть использовано в устройствах приема цифровых информационных сигналов для цифровой некогерентной демодуляции четырехпозиционных сигналов с относительной фазовой манипуляцией (ОФМ4 или QPSK). Технический результат - обеспечение...
Тип: Изобретение
Номер охранного документа: 0002649782
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.469a

Установка для компримирования пара низкого потенциала

Изобретение относится к промышленности, связанной с выработкой пара низкого потенциала. Установка для компримирования пара низкого потенциала содержит паропровод низкого давления, соединенный со входом турбокомпрессора, кинематически соединенного с электродвигателем. Выход турбокомпрессора...
Тип: Изобретение
Номер охранного документа: 0002650446
Дата охранного документа: 13.04.2018
18.05.2018
№218.016.5239

Исполнительный агрегат электропривода

Изобретение относится к области электротехники и может быть использовано в следящих электроприводах. Технический результат заключается в улучшении технических характеристик исполнительного агрегата и привода в целом, а именно в повышении момента двигателя и крутизны генератора; компенсации...
Тип: Изобретение
Номер охранного документа: 0002653065
Дата охранного документа: 07.05.2018
29.05.2018
№218.016.5897

Устройство для обогрева криогенного аппарата

Устройство предназначено для обогрева криогенного регулирующего аппарата и содержит размещенный вблизи обогреваемого элемента аппарата электрический нагреватель (1), подключенный к выходу регулятора напряжения (2), снабженного источником питания (3), силовой выход регулятора напряжения...
Тип: Изобретение
Номер охранного документа: 0002653529
Дата охранного документа: 11.05.2018
09.06.2018
№218.016.5b81

Способ защиты от эксцентриситета ротора электрической машины переменного тока

Изобретение относится к области электроэнергетики и может быть использовано для защиты электрических машин от эксцентриситета ротора. Техническим результатом является повышение надежности и расширение области применения способа защиты от эксцентриситета ротора электрической машины переменного...
Тип: Изобретение
Номер охранного документа: 0002655913
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5bf3

Способ регулирования координат взаимосвязанных электроприводов

Изобретение относится к области электротехники и может быть использовано в опорно-поворотных устройствах, металлообрабатывающих станках, механизмах металлургического производства и других системах управления движением. Техническим результатом является повышение быстродействия и точности при...
Тип: Изобретение
Номер охранного документа: 0002655723
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5c1d

Способ защиты от эксцентриситета ротора электрической машины переменного тока

Изобретение относится к области электротехники и может быть использовано в электрических машинах. Техническим результатом является повышение точности защиты от эксцентриситета ротора электрической машины переменного тока. В способе защиты от эксцентриситета ротора электрической машины...
Тип: Изобретение
Номер охранного документа: 0002655718
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5dbf

Устройство для выращивания монокристаллов

Изобретение относится к устройствам для выращивания монокристаллов методом зонной плавки со световым (радиационным) нагревом и может быть использовано в области технической оптики. Устройство содержит источник излучения 1, расположенный в фокусе F1 основного эллипсоидного отражателя 2,...
Тип: Изобретение
Номер охранного документа: 0002656331
Дата охранного документа: 04.06.2018
09.06.2018
№218.016.5fd0

Исполнительный агрегат электропривода

Изобретение относится к области электротехники и может быть использовано в электроприводах. Техническим результатом является повышение плавности вращения нагрузки и расширение полосы пропускания электропривода. Исполнительный агрегат содержит синхронный двигатель с возбуждением от постоянных...
Тип: Изобретение
Номер охранного документа: 0002656882
Дата охранного документа: 07.06.2018
Показаны записи 21-21 из 21.
20.04.2023
№223.018.4aa0

Проходка волоконно-оптическая

Изобретение относится к волоконно-оптическим линиям связи и может быть использовано для обеспечения герметичного пропуска волоконно-оптических кабелей через стены в загрязненную зону, в частности, во внутреннее пространство герметичного подземного сооружения, предназначенного для проведения...
Тип: Изобретение
Номер охранного документа: 0002781766
Дата охранного документа: 17.10.2022
+ добавить свой РИД