×
30.05.2019
219.017.6b6d

Результат интеллектуальной деятельности: Способ получения модифицированных кристаллов магнетита

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения модифицированных кристаллов магнетита (FeO), содержащих на поверхности смесь липидов, и может быть использовано в фармацевтической промышленности. Предложенный способ получения модифицированных кристаллов магнетита включает смешение 138 мас.ч. кристаллов магнетита с размером 23-27 нм с 1 мас.ч. смеси холестерина, 1,2-дистеароил-sn-глицеро-3-фосфохолина, 1,1'-(2-(4-(2-((2-(бис(2-гидроксидодецил)амино)этил)(2-гидроксидецил)амино)этил)пиперазин-1-ил)этилазанедиил)дидодекан-2-ола и липида на основе полиэтиленгликоля-2000, взятых в массовом соотношении 15:7:75:3, соответственно, вначале с 60000 мас.ч. хлороформа, затем с водой, обработку смеси ультразвуком и отделение кристаллов магнетита и отличается тем, что в качестве липида на основе полиэтиленгликоля-2000 используют аммонийную соль 1,2-дистеароил-sn-глицеро-3-фосфоэтаноламин-N-[амино(полиэтиленгликоля)-2000] и проводят обработку смеси ультразвуком в течение 20-60 мин с использованием помещенного в смесь ультразвукового щупа. Предложен новый эффективный способ получения модифицированных кристаллов магнетита, позволяющий получить кристаллы продолжительного хранения. 3 пр.

Изобретение относится к области неорганической химии и касается способа получения модифицированных кристаллов магнетита (Fe3O4), содержащих на поверхности смесь липидов, что дает возможность в дальнейшем адсорбировать на поверхности кристаллов нуклеиновые кислоты для их селективной доставки в живой организм.

Известен способ получения модифицированных кристаллов магнетита путем смешения дисперсии кристаллов магнетита сферической формы, имеющих размер 26-38 нанометров (нм), в хлороформе с раствором, содержащим смесь 1,2-диолеоил-3-триметиламмоний-пропана и холестерина в хлороформе, добавления в полученную смесь дистиллированной воды, обработки смеси ультразвуком, удаления хлороформа и повторной обработки смеси ультразвуком (Namiki Y, Namiki Т, Yoshida Н, Ishii Y, Tsubota A, Koido S, Nariai K, Mitsunaga K, Yanagisawa S, Kashiwagi H, Mabashi Y, Yumoto Y, Hoshina S, Fujise K, Tada N. A novel magnetic crystal-lipid nanostructure for magnetically guided in vivo gene delivery // Nature Nanotechnology. 2009. V. 4, P. 598-606).

Данный способ получения модифицированных кристаллов магнетита имеет такие признаки, совпадающие с существенными признаками предлагаемого технического решения, как смешение кристаллов магнетита со смесью холестерина и липида в хлороформе, затем добавления в нее воды и обработки полученной смеси ультразвуком.

Известен способ получения модифицированных кристаллов магнетита путем диспергирования сферических кристаллов магнетита, имеющих диаметр 4-11 нм, в хлороформе под действием ультразвука, добавления в дисперсию раствора дипальмитоилфосфатидилхолина, выпаривания хлороформа из смеси в инертной атмосфере, удаления остаточного растворителя в вакуумной камере, добавления фосфатного буферного раствора, нагрева смеси до 50°С и обработки ее ультразвуком (Gonzales М. & Krishnan K.М. Synthesis of magnetoliposomes with monodisperse iron oxide nanocrystal cores for hyperthermia// Journal of Magnetism and Magnetic Materials. 2005. V. 293, P. 265-270).

Данный способ получения модифицированных кристаллов магнетита имеет такие признаки, совпадающие с существенными признаками предлагаемого технического решения, как смешение кристаллов магнетита с хлороформом и липидом с последующей обработкой полученной смеси ультразвуком.

Наиболее близким к заявляемому является известный способ получения модифицированных кристаллов магнетита путем смешения 138 мас. ч. кристаллов магнетита с размером 23-27 нм и 1 мас. ч. смеси холестерина, 1,2-дистеароил-sn-глицеро-3-фосфохолина, 1,1'-(2-(4-(2-((2-(бис(2-гидроксидодецил)амино)этил)(2-гидроксидецил)амино)этил)пиперазин-1-ил)этилазанедиил)дидодекан-2-ола и липида на основе полиэтиленгликоля-2000, имеющего химическое название 1,2-димиристоил-sn-глицеро-метокси(полиэтиленгликоль)-2000, взятых в массовом соотношении 15:7:75:3, соответственно, сначала с 60000 мас. ч. хлороформа, затем с 82240 мас. ч. N-метил-2-пирролидона, обработки смеси ультразвуком в течение 0,5-7,0 ч с мощностью ультразвука 116-580 Вт, удаления хлороформа и добавления в нее воды объемом 400-600% от объема смеси с последующим диализом полученной дисперсии против воды в течение 24-48 ч в диализном мешке с размером пор 25-50 килодальтон (кДа) и отделением модифицированных кристаллов магнетита (методом центрифугирования), описанный в патенте RU №2656667, МПК С30В 29/16 (2006.01), 2017 - прототип.

Недостатком известного способа является его относительная сложность и длительность, а также то, что при диспергировании полученных кристаллов магнетита в воде полученная дисперсия недостаточно устойчива, т.е. обладает относительно низкой продолжительностью хранения (1 месяц), после чего гидродинамический размер частиц увеличивается за счет агрегации, что при использовании таких частиц уменьшает уровень адсорбции нуклеиновых кислот на модифицированных частицах, что ведет к непригодности таких частиц для их биологического применения.

Техническая проблема изобретения заключается в разработке способа получения модифицированных кристаллов магнетита, лишенного вышеуказанных недостатков.

Технический результат изобретения заключается в упрощении способа получения модифицированных кристаллов магнетита и повышении продолжительности их хранения без увеличения гидродинамического размера частиц.

Технический результат достигается следующим образом, когда в способе получения модифицированных кристаллов магнетита, включающем смешение 138 мас. ч. кристаллов магнетита с размером 23-27 нм с 1 мас. ч. смеси холестерина, 1,2-дистеароил-sn-глицеро-3-фосфохолина, 1,1'-(2-(4-(2-((2-(бис(2-гидроксидодецил)амино)этил)(2-гидроксидецил)амино)этил)пиперазин-1-ил)этилазанедиил)дидодекан-2-ола и липида на основе полиэтиленгликоля-2000, взятых в массовом соотношении 15:7:75:3, соответственно, вначале с 60000 мас. ч. хлороформа, затем с водой, обработку смеси ультразвуком и отделение кристаллов магнетита, в качестве липида на основе полиэтиленгликоля-2000 используют аммонийную соль 1,2-дистеароил-sn-глицеро-3-фосфоэтаноламин-N-[амино(полиэтиленгликоля)-2000] и проводят обработку смеси ультразвуком в течение 20-60 мин с использованием помещенного в смесь ультразвукового щупа.

Предлагаемый способ является новым и не описан в патентной и научно-технической литературе.

Способ получения используемых в предлагаемом техническом решении кристаллов магнетита размером 23-27 нм, определенным с помощью просвечивающей электронной микроскопии, описан в нашем патенте RU №2668440, МПК С30В 29/16 (2006.01), 2017. Такие кристаллы могут быть получены путем смешения октадецена с олеатом железа (III) или ацетилацетонатом железа (III) в диапазоне концентраций 0,02-0,10 моль/л, олеиновой кислотой и олеатом натрия в диапазоне концентраций 0,02-0,10 моль/л и 0,06-0,30 моль/л соответственно, нагрева смеси до 70°С и ее выдерживания при этой температуре в течение 30 мин, повторного нагрева смеси в атмосфере инертного газа с 70°С до 320°С со скоростью от 2 до 6°С/мин, ее выдерживания при этой температуре в течение 25-60 мин и охлаждения смеси до комнатной температуры в течение 30-120 мин, проводимыми в атмосфере инертного газа, введения в систему осадителя изопропанола объемом 200-400% от объема реакционной смеси, отделения кристаллов магнетита, их диспергирования в неполярном высококипящем органическом растворителе, выбранном из группы, включающей дибензиловый эфир, октадецен и триоктиламин, до достижения концентрации 3,20-15,5 мг/мл по магнетиту в присутствии олеиновой кислоты и олеата натрия с концентрациями в диапазоне 0,02-0,10 моль/л и 0,06-0,30 моль/л соответственно, нагрева полученной дисперсии до температуры 290-350°С в атмосфере инертного газа со скоростью 2-6°С/мин с последующим введением в нагретую дисперсию по каплям раствора олеата железа (III) в неполярном высококипящем органическом растворителе с концентрацией 0,04-0,50 моль/л в течение 1-10 ч и охлаждения дисперсии до комнатной температуры в течение 30-120 мин, проводимыми в атмосфере инертного газа, повторного введения в систему изопропанола и отделения магнетита

Следует отметить, что в предлагаемом способе можно использовать любой немодифицированный холестерин. Синтез 1,1'-(2-(4-(2-((2-(бис(2-гидроксидодецил)амино)этил)(2-гидроксидецил)амино)этил)пиперазин-1-ил)этилазанедиил)дидодекан-2-ола описан (Love, K.Т. et al. Lipid-like materials for low-dose, in vivo gene silencing// Proceedings of the National Academy of Sciences, 2010. V. 107, P. 1864-1869). Реагент 1,2-дистеароил-sn-глицеро-3-фосфохолин коммерчески доступен (http://www.echelon-inc.com/index.php?module=Products&func=detail&id=618). Аммонийная соль 1,2-дистеароил-sn-глицеро-3-фосфоэтаноламин-N-[амино(полиэтиленгликоля)-2000] также коммерчески доступна (https://avantilipids.com/product/880128). Однако использование данного соединения для получения модифицированных смесью липидов кристаллов магнетита по предложенной более простой методике в научно-технической литературе не описано.

В предложенном техническом решении модифицированные кристаллы магнетита получают путем смешения 138 мас. ч. кристаллов магнетита с размером 23-27 нм с 1 мас. ч. смеси холестерина, 1,2-дистеароил-sn-глицеро-3-фосфохолина, 1,1'-(2-(4-(2-((2-(бис(2-гидроксидодецил)амино)этил)(2-гидроксидецил)амино)этил)пиперазин-1-ил)этилазанедиил)дидодекан-2-ола и аммонийной соли 1,2-дистеароил-sn-глицеро-3-фосфоэтаноламин-N-[амино(полиэтиленгликоля)-2000], взятых в массовом соотношении 15:7:75:3, соответственно, вначале с 60000 мас. ч. хлороформа, затем с водой, обработки смеси ультразвуком и отделения кристаллов магнетита методом центрифугирования. Следует отметить, что вышеуказанный размер немодифицированных кристаллов магнетита и его оптимальное массовое соотношение со смесью вышеуказанных липидов, оптимальное соотношение каждого из липидов в их смеси, а также оптимальное массовое соотношение кристаллов магнетита, смеси липидов и хлороформа были установлены экспериментально. Также экспериментально была определена оптимальная продолжительность обработки смеси ультразвуком 20-60 мин с использованием ультразвукового щупа. Если в предлагаемом способе в качестве липида на основе полиэтиленгликоля-2000 применять не используемою нами аммонийную соль 1,2-дистеароил-sn-глицеро-3-фосфоэтаноламин-N-[амино(полиэтиленгликоля)-2000], а описанное в прототипе соединение 1,2-димиристоил-sn-глицеро-метокси(полиэтиленгликоль)-2000, то получать модифицированные кристаллы по более простой и короткой схеме не удается из-за агрегации частиц на стенках реакционного сосуда.

В процессе получения модифицированных кристаллов магнетита количество вводимой воды может варьироваться и составлять, например, 100-200% от объема хлороформа. В данном техническом решении выбор в качестве растворителя хлороформа обусловлен тем, что он обладает относительно низкой температурой кипения и впоследствии может быть легко удален из реакционной смеси в процессе ее обработки ультразвуком, сопровождающимся нагревом смеси.

В предложенном техническом решении используют не традиционную ультразвуковую баню, в которой ультразвук неизбежно рассеивается и значительная часть энергии ультразвуковых волн не попадает в реакционную систему, а помещенный в смесь ультразвуковой щуп, что позволяет существенно повысить эффективность воздействия ультразвука на реакционную смесь и, следовательно, уменьшить его мощность. При этом мощность ультразвукового щупа может варьироваться и составлять, например, 20-100 ватт (Вт). Экспериментально определенная оптимальная продолжительность обработки смеси ультразвуком в этих условия составляет 20-60 мин, поскольку при меньшей продолжительности обработки в смеси может сохраниться остаточный хлороформ, а при продолжительности обработки более 60 мин возможен перегрев смеси, приводящий к нежелательной агрегации частиц. При этом следует отметить, что сравнивать мощности ультразвука при использовании традиционной ультразвуковой бани и помещенного в смесь ультразвукового щупа некорректно ввиду различия их воздействия на смесь.

Отделять модифицированные кристаллы магнетита можно различными способами, например, путем центрифугирования, магнитной декантации и т.д. Модифицированные кристаллы магнетита можно хранить в водных средах в закрытой стеклянной емкости, например, при 4°С. Коллоидную стабильность дисперсии модифицированных кристаллов магнетита в водных растворах, т.е. отсутствие агрегации частиц в процессе хранения, определяют с использованием прибора Zetasizer NanoZS, позволяющего наблюдать за измерением гидродинамического размера частиц. В этих условиях продолжительность хранения модифицированных кристаллов магнетита без изменения составляет не менее 3 месяцев.

Преимущества предложенного способа иллюстрируют следующие примеры.

Пример 1

345 мг (138 мас.ч.) кристаллов магнетита с размером 25 нм и 2,5 мг (1 мас. ч.) смеси холестерина, 1,2-дистеароил-sn-глицеро-3-фосфохолина, 1,1'-(2-(4-(2-((2-(бис(2-гидроксидодецил)амино)этил)(2-гидроксидецил)амино)этил)пиперазин-1-ил)этилазанедиил)дидодекан-2-ола и аммонийной соли 1,2-дистеароил-sn-глицеро-3-фосфоэтаноламин-N-[амино(полиэтиленгликоля)-2000], взятых в массовом соотношении 15:7:75:3, соответственно, смешивают вначале с 100 мл (60000 мас. ч.) хлороформа и 100 мл воды, после чего полученную смесь обрабатывают в течение 40 мин ультразвуком с использованием помещенного в дисперсию ультразвукового щупа мощностью 50 Вт, затем модифицированные кристаллы отделяют методом центрифугирования. Полученные модифицированные кристаллы магнетита хранят в водной среде в закрытой стеклянной емкости при 4°С. В этих условия продолжительность хранения модифицированных кристаллов магнетита без увеличения их гидродинамического размера составляет 5 месяцев.

Пример 2

172,5 мг (138 мас. ч.) кристаллов магнетита с размером 23 нм и 1,25 мг (1 мас. ч.) смеси холестерина, 1,2-дистеароил-sn-глицеро-3-фосфохолина, 1,1'-(2-(4-(2-((2-(бис(2-гидроксидодецил)амино)этил)(2-гидроксидецил)амино)этил)пиперазин-1-ил)этилазанедиил)дидодекан-2-ола и аммонийной соли 1,2-дистеароил-sn-глицеро-3-фосфоэтаноламин-N-[амино(полиэтиленгликоля)-2000], взятых в массовом соотношении 15:7:75:3, соответственно, смешивают вначале с 50 мл (60000 мас. ч.) хлороформа и 75 мл воды, после чего полученную смесь обрабатывают в течение 20 мин ультразвуком с использованием помещенного в дисперсию ультразвукового щупа мощностью 80 Вт, затем модифицированные кристаллы отделяют методом центрифугирования. Полученные модифицированные кристаллы магнетита хранят в водной среде в закрытой стеклянной емкости при 4°С. В этих условия продолжительность хранения модифицированных кристаллов магнетита без увеличения их гидродинамического размера составляет 5 месяцев.

Пример 3

690 мг (138 мас. ч.) кристаллов магнетита с размером 27 нм и 5 мг (1 мас. ч.) смеси холестерина, 1,2-дистеароил-sn-глицеро-3-фосфохолина, 1,1'-(2-(4-(2-((2-(бис(2-гидроксидодецил)амино)этил)(2-гидроксидецил)амино)этил)пиперазин-1-ил)этилазанедиил)дидодекан-2-ола и аммонийной соли 1,2-дистеароил-sn-глицеро-3-фосфоэтаноламин-N-[амино(полиэтиленгликоля)-2000], взятых в массовом соотношении 15:7:75:3, соответственно, смешивают вначале с 200 мл (60000 мас. ч.) хлороформа и 400 мл воды, после чего полученную смесь обрабатывают в течение 60 мин ультразвуком с использованием помещенного в дисперсию ультразвукового щупа мощностью 100 Вт, затем модифицированные кристаллы отделяют методом магнитной декантации. Полученные модифицированные кристаллы магнетита хранят в водной среде в закрытой стеклянной емкости при 4°С. В этих условия продолжительность хранения модифицированных кристаллов магнетита без увеличения их гидродинамического размера составляет 5 месяцев.

Таким образом, из приведенных примеров видно, что предложенный способ действительно существенно упрощает известный способ получения модифицированных кристаллов магнетита за счет сокращения продолжительности способа и устранения таких стадий синтеза, как введение в реакционную систему N-метил-2-пирролидона и диализ полученной смеси в течение 24-48 ч, а также повышает продолжительность хранения модифицированных кристаллов магнетита без увеличения их гидродинамического размера с 1 до 5 месяцев.

Способ получения модифицированных кристаллов магнетита, включающий смешение 138 мас.ч. кристаллов магнетита с размером 23-27 нм с 1 мас.ч. смеси холестерина, 1,2-дистеароил-sn-глицеро-3-фосфохолина, 1,1'-(2-(4-(2-((2-(бис(2-гидроксидодецил)амино)этил)(2-гидроксидецил)амино)этил)пиперазин-1-ил)этилазанедиил)дидодекан-2-ола и липида на основе полиэтиленгликоля-2000, взятых в массовом соотношении 15:7:75:3, соответственно, вначале с 60000 мас.ч. хлороформа, затем с водой, обработку смеси ультразвуком и отделение кристаллов магнетита, отличающийся тем, что в качестве липида на основе полиэтиленгликоля-2000 используют аммонийную соль 1,2-дистеароил-sn-глицеро-3-фосфоэтаноламин-N-[амино(полиэтиленгликоля)-2000] и проводят обработку смеси ультразвуком в течение 20-60 мин с использованием помещенного в смесь ультразвукового щупа.
Источник поступления информации: Роспатент

Показаны записи 21-30 из 322.
10.06.2016
№216.015.481e

Интегральная схема силового биполярно-полевого транзистора

Изобретение относится к силовым полупроводниковым приборам и биполярным интегральным схемам. Изобретение обеспечивает повышение быстродействия, уменьшение энергетических потерь при переключении, упрощение технологии изготовления. Интегральная схема силового биполярно-полевого транзистора...
Тип: Изобретение
Номер охранного документа: 0002585880
Дата охранного документа: 10.06.2016
20.08.2016
№216.015.4aa1

Способ дефосфорации марганцевых руд и концентратов

Изобретение относится к дефосфорации расплавов марганцевых руд и концентратов. Селективное восстановление фосфора из расплава ведут газообразным монооксидом углерода (СО), который продувают через расплав. Может быть использован газообразный монооксид углерода, полученный в газогенераторе и...
Тип: Изобретение
Номер охранного документа: 0002594997
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4e67

Композиция для изготовления режущего инструмента для стали и чугуна

Изобретение относится к порошковой металлургии и может быть использовано для изготовления режущего инструмента. Композиция содержит сверхтвердый материал, включающий смесь порошков кубического нитрида бора и алмаза, при следующем соотношении компонентов, мас. %: кубический нитрид бора 20-60,...
Тип: Изобретение
Номер охранного документа: 0002595000
Дата охранного документа: 20.08.2016
10.08.2016
№216.015.54e5

Способ определения термостойкости углей

Изобретение относится к метрологии, в частности к средствам измерения термостойкости углей. Способ предполагает воздействие на образец угля двух последовательных термоударов, второй из которых имеет большую по сравнению с первым интенсивность, и регистрацию параметров акустической эмиссии....
Тип: Изобретение
Номер охранного документа: 0002593441
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.55b2

Способ определения пористости металлоизделий

Изобретение относится к области обработки металлов давлением, а именно к определению пористости металлоизделия, полученного обработкой давлением литого изделия, и может быть использовано для определения влияния обработки давлением на пористость получаемого металлоизделия. Способ заключается в...
Тип: Изобретение
Номер охранного документа: 0002593525
Дата охранного документа: 10.08.2016
10.07.2016
№216.015.56a6

Способ сорбционного извлечения селена, теллура и мышьяка из водных растворов.

Изобретение относится к области гидрометаллургии, а именно к способу сорбционного извлечения селена, теллура и мышьяка из растворов. Сущность способа заключается во введении растворимых соединений индия в раствор извлекаемых элементов перед сорбцией. Количество соединений индия должно превышать...
Тип: Изобретение
Номер охранного документа: 0002590806
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5d1e

Способ измерения величины и пространственного распределения локальных магнитных полей, возникающих вследствие протекания коррозионных процессов на металлической поверхности в проводящем растворе

Использование: для проведения коррозионных in-situ исследований материалов в различных проводящих средах. Сущность изобретения заключается в том, что исследуемый образец помещают в кювету с проводящим раствором, в котором требуется исследовать коррозионное поведение материала образца, после...
Тип: Изобретение
Номер охранного документа: 0002591027
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5dcc

Способ получения порошка титаната диспрозия для поглощающих элементов ядерного реактора

Изобретение относится к способу получения высокодисперсных порошков титаната диспрозия для поглощения нейтронов и может быть использовано в стержнях регулирования ядерных реакторов. Способ включает получение порошка титаната диспрозия путем механической активации смеси компонентов - диоксида...
Тип: Изобретение
Номер охранного документа: 0002590887
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.62ef

Способ переработки сульфидных никелевых концентратов

Изобретение относится к металлургии цветных металлов. Способ переработки сульфидного никелевого сырья включает обжиг шихты, содержащей сульфидное никелевое сырье и хлорид натрия, при температуре 350-400°С с доступом кислорода в течение 1,5-2 ч и выщелачивание полученного огарка водой при...
Тип: Изобретение
Номер охранного документа: 0002588904
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6ad8

Способ получения нанокомпозита feni/c в промышленных масштабах

Изобретение относится к нанотехнологии изготовления нанокомпозита FeNi/C. Техническим результатом является получение нанокомпозита FeNi/C, содержащего наночастицы FeNi с размером от 12 до 85 нм. Способ синтеза нанокомпозита FeNi/C включает приготовление совместного раствора порошка графита,...
Тип: Изобретение
Номер охранного документа: 0002593145
Дата охранного документа: 27.07.2016
Показаны записи 21-30 из 42.
22.06.2019
№219.017.8e65

Способ получения производного мочевины с хелатным центром, тропного к простат-специфичному мембранному антигену для связывания технеция-99м/рения для диагностики/лечения рака предстательной железы

Изобретение относится к способу получения производного мочевины с хелатным центром, тропного к простат-специфичному мембранному антигену для связывания технеция-99м/рения 188/186 для диагностики рака предстательной железы. Способ включает получение конъюгата ингибитора простат-специфичного...
Тип: Изобретение
Номер охранного документа: 0002692126
Дата охранного документа: 21.06.2019
12.07.2019
№219.017.b312

Способ получения частиц для лечения гинекологических и проктологических заболеваний, сопровождающихся окислительным стрессом

Изобретение относится к химико-фармацевтической промышленности. Способ получения частиц для лечения гинекологических и проктологических заболеваний, сопровождающихся окислительным стрессом, включает смешение буферных растворов антиоксидантного фермента супероксиддисмутазы (СОД) и поликатиона,...
Тип: Изобретение
Номер охранного документа: 0002694225
Дата охранного документа: 10.07.2019
12.07.2019
№219.017.b315

Фармацевтическая композиция для лечения заболеваний глаз, сопровождающихся окислительным стрессом, и способ ее применения

Группа изобретений относится к лекарственным средствам местного применения для моно- и комплексной терапии заболеваний глаз, сопровождающихся окислительным стрессом. Фармацевтическая композиция для местного применения в форме суспензии содержит действующее вещество в виде включенной в сшитые...
Тип: Изобретение
Номер охранного документа: 0002694226
Дата охранного документа: 10.07.2019
02.08.2019
№219.017.bb5b

Низкомолекулярные конъюгаты противоопухолевых агентов и высокоселективных лигандов асиалогликопротеинового рецептора для терапии онкологических патологий печени

Группа изобретений относится к медицине и касается лиганда, характеризующегося аффинностью к асиалогликопротеиновому рецептору и предназначенного для доставки противоопухолевого соединения, используемого при терапии гепатоцеллюлярной карциномы, представляющего собой производное...
Тип: Изобретение
Номер охранного документа: 0002696096
Дата охранного документа: 31.07.2019
17.08.2019
№219.017.c139

Средство пептидной природы, включающее псма-связывающий лиганд на основе производного мочевины, способ его получения и применение для получения конъюгата с лекарственным и диагностическим агентом

Настоящее изобретение относится к веществу общей формулы где n=3-5; X, Y, Z независимо друг от друга представляют собой F, Cl, Br, Н; R = ОН, Н; R = Н, Br. Также изобретение относится к способу получения такого вещества, к его применению для получения конъюгата с лекарственным или...
Тип: Изобретение
Номер охранного документа: 0002697519
Дата охранного документа: 15.08.2019
05.09.2019
№219.017.c780

Способ обратимого ингибирования в опухолевых клетках гепатоцеллюлярной карциномы экспрессии гена, кодирующего синтез аполипопротеина в

Изобретение относится к области биотехнологии, а именно к обратимому ингибированию в опухолевых клетках гепатоцеллюлярной карциномы экспрессии гена, кодирующего синтез аполипопротеина В. Способ включает введение дисперсии липидных наночастиц, в качестве которых используют наночастицы...
Тип: Изобретение
Номер охранного документа: 0002699172
Дата охранного документа: 03.09.2019
04.11.2019
№219.017.de38

Способ обратимого ингибирования в опухолевых клетках гепатоцеллюлярной карциномы экспрессии гена, кодирующего синтез аполипопротеина в

Изобретение относится к области биотехнологии, а именно к обратимому ингибированию в опухолевых клетках гепатоцеллюлярной карциномы экспрессии гена, кодирующего синтез аполипопротеина В. Способ включает введение в среду, содержащую опухолевые клетки Huh7 гепатоцеллюлярной карциномы человека,...
Тип: Изобретение
Номер охранного документа: 0002704998
Дата охранного документа: 01.11.2019
19.11.2019
№219.017.e36d

Способ лечения онкологических заболеваний с помощью инъекций лекарственного препарата

Изобретение относится к медицине и может быть использовано для лечения онкологических заболеваний. Для этого вводят водосодержащую суспензию липосом одинакового диаметра с инкапсулированным противоопухолевым лекарственным препаратом. Перед введением суспензии липосом одинакового диаметра с...
Тип: Изобретение
Номер охранного документа: 0002706356
Дата охранного документа: 18.11.2019
21.11.2019
№219.017.e456

Способ лечения онкологических заболеваний с помощью инъекций лекарственного препарата

Изобретение относится к области медицины, а именно, к онкологии и может быть использовано при лечении опухолей. Способ включает введение водосодержащей суспензии липосом одинакового диаметра с инкапсулированным противоопухолевым лекарственным препаратом. Перед введением суспензии липосом...
Тип: Изобретение
Номер охранного документа: 0002706427
Дата охранного документа: 19.11.2019
08.12.2019
№219.017.eae2

Новые производные арил-тиогидантоина, ингибиторы андрогенового рецептора, способ получения и применения

Изобретение относится к области органической химии, а именно к производным S-5-арилиден-2-(арилтио)-3,5-дигидро-4Н-имидазол-4-она формул 1 или 2, где R - заместитель, выбранный из атома водорода, атома галогена, метокси-группы, циано-группы; R - заместитель, выбранный из атома водорода, атома...
Тип: Изобретение
Номер охранного документа: 0002708253
Дата охранного документа: 05.12.2019
+ добавить свой РИД