×
30.05.2019
219.017.6b5f

Способ получения люминесцирующего стекла

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области получения фторцирконатных и фторгафнатных люминесцирующих стекол, легированных трифторидом церия. В шихту из смеси фторидов металлов, выбранных из ряда: фторид металла IV группы; BaF; LaF; AlF; NaF, где в качестве фторида металла IV группы используют либо ZrF, либо HfF, дополнительно вводят тетрафторид церия в качестве фторирующего агента и люминесцирующего компонента. Тетрафторид церия вводят в шихту в концентрации 1÷5 мол. %. Затем шихту плавят в атмосфере сухого аргона при температуре 850÷950°С в течение 30÷60 минут, после чего охлаждают в той же атмосфере. Технический результат – получение люминесцирующего стекла, оптически прозрачного в области от 295 нм до 7,5 мкм без кислородсодержащих примесей, отсутствие оптических потерь на длине волны полосы поглощения ОН-группы. 4 ил., 6 пр.
Реферат Свернуть Развернуть

Изобретение относится к области получения фторцирконатных и фторгафнатных люминесцирующих стекол, легированных трифторидом церия, без кислородсодержащих примесей. Такие стекла могут оказаться перспективным материалом для создания сцинтилляционных датчиков и электромагнитных калориметров ускорителей нового поколения [S.F. Shaukat, K.J. McKinlay, P.S. Flower, P.R. Hobson, J.M. Parker. Optical and physical characteristics of HBLAN fluoride glasses containing cerium. // Journal of Non-Crystalline Solids. 1999. V. 244. P. 197-204; Hobson P.R, Imrie D.C., Price Т., Sheikh S., Bell K.W., Brown R.M., Cockerill D.J.A., Flower P.S., Grayer G.H., Kennedy B.W., Lintern A.L., Jeffreys P.W., Sproston M, McKinlay K.J., Parker J.M., Bowen D.L., Cliff Т., Stewart-Hannay R., Hammond-Smith R. The development of dense scintillating hafnium flouride glasses for the construction of homogenous calorimeters in particle physics // Journal of Non-Crystalline Solids. 1997. V. 213-214. P. 147-151].

Существенным преимуществом фторидных стекол по сравнению с кварцевыми стеклами является значительно более широкий диапазон пропускания от ближнего УФ до среднего ИК диапазона (0,295~7,5 мкм). Однако ионы гидроксила, попадающие в фторидное стекло из исходных материалов или в процессе получения стекла, сильно поглощают ИК излучение. Оценки показывают, что присутствие 1 ppm ионов гидроксила может привести к затуханию в волоконных световодах ~ равному 104 дБ/км на длине волны 2,9 мкм. Поэтому чистота исходных фторидов особенно по гидроксильным группам и кислороду остается актуальной задачей [Drexhage М.G., Moynihan С.Т. Infrared optical fibers // Scientific American. 1988. V. 259. №5. P. 110-116].

Известно, что для решения одной из принципиальных проблем при получении фторидных стекол, а именно, удаления кислородсодержащих примесей из исходных фторидов, в шихту дополнительно вводят фториды неметаллов: CF4, CCl2F2, CClF3, т.е. вещества, не проявляющие окислительные свойства, а вступающие в реакцию замещения [US 5071460 опубл. 10.12.1991].

Основным недостатком способа является вероятность загрязнения стекла углеродом при разложении металлорганических соединений.

Известно, что для удаления кислородсодержащих примесей из компонентов стекол синтез фторидных стекол проводят в атмосфере бифторида аммония (NH4F⋅HF) путем нагревания и выдерживания исходной смеси при 500°С в течение 1-2 ч. Далее полученную смесь нагревают до температуры плавления 800-1000°С [М. Poulain. Halide Glasses // J. Non-Cryst. Solids. 1983. V. 56. No. 1-3. P. 1-14].

Известен также способ получения фторцирконатного стекла, согласно которому перед плавлением в состав шихты вводят фторцирконат аммония (NH4)3ZrF7. При нагревании фторцирконат аммония разлагается с образованием ZrF4, NH4HF2, NH3 и HF. Испарение NH4HF2, HF создает в печи фторирующую атмосферу, предохраняющую расплав фторидов от протекания реакций пирогидролиза и способствующую образованию фторидом циркония комплексных соединений с другими фторидами, что, в свою очередь, подавляет его сублимацию, понижает его летучесть [RU 2102346, опубл. 20.01.1998].

К недостаткам вышеуказанных способов относится их трудоемкость, поскольку процессы разложения аммонийных комплексов являются многостадийными.

В целом, недостатком реакций замещения является то, что их реализация сопряжена с возможностью образования ряда нежелательных примесей, ухудшающих оптическую прозрачность получаемого фторидного стекла.

Известен способ получения фторидных хлор- и бромсодержащих стекол с малой концентрацией поглощающих в ИК диапазоне кислородсодержащих примесей, с одновременным предотвращением испарения тяжелых галогенов в процессе синтеза. В шихту из смеси галогенидов, выбранных из ряда: HfF4; BaF2; ВаСl2; LaF3; AlF3; InF3; NaF; NaBr, т.е. содержащую хлориды и бромиды, дополнительно вводили 2÷3 мол. % предварительно высушенного при температуре до 100°С гидрофторида бария BaF2⋅2HF для фторирования сорбированных тиглем и шихтой кислородсодержащих примесей. Суть предлагаемого способа заключается в герметизации объема тигля во время синтеза и устранении контакта расплава с окружающей газовой атмосферой как во время синтеза, так и во время литья, [RU 2526955, опубл. 27.08.2014]. В результате получали стекла, характеризующиеся малой концентрацией кислородсодержащих примесей и существенным сдвигом ИК области пропускания в сторону длинных волн.

Недостатком этого способа является сложное аппаратурное оформление, связанное с тем, что плавление осуществляют в герметизированном тигле, а выливание расплава в форму проводят без контакта расплава с окружающей газовой средой.

Вторым недостатком является сложность в выборе концентрации вводимого в шихту гидрофторида бария, которая должна быть, с одной стороны, достаточна для фторирования сорбированных кислородсодержащих примесей, с другой стороны не приводить к изменениям состава стекол из-за частичного замещения хлорида бария и бромида натрия соответствующими фторидами.

Наиболее близким к заявленному является способ получения фторидных стекол, заключающийся в использовании таких фторокислителей, как фториды металлов в высшей степени окисления, из которых по крайней мере один представляет собой комплексное соединение с фторидом брома NaBrF4 или йода NaIF4. Этот способ подразумевает введение в состав шихты вместо простого бинарного фторида металла его комплексного соединения с сильным фторирующим агентом. В качестве фторирующих агентов используются фториды брома или йода, которые образуют комплексы с фторидами металлов, входящими в составы фторидных стекол. При таком способе обработки шихты ИК спектр стекол не содержит полосы поглощения ОН- группы [RU 2263637, опубл. 31.05.2004] (прототип).

Основным недостатком является то, что при реализации способа по прототипу в стеклообразующем составе стекла не присутствует ион активатора, отвечающего за люминесцентные свойства стекла. Кроме того, при нагревании комплексные соединения фторидов брома или йода распадаются с выделением жидкой фазы трифторидов брома или йода, что взрывоопасно, т.к. они возгораются на воздухе.

Изобретение направлено на изыскание простого, безопасного способа получения люминесцирующего фторидного стекла, с одной стороны без кислородсодержащих и других нежелательных примесей, ухудшающих оптическую прозрачность получаемого фторидного стекла и, с другой стороны, активированных ионами церия, отвечающими за люминесцентные свойства стекла.

Технический результат достигается тем, что предложен способ получения люминесцирующего стекла, оптически прозрачного в области от 295 нм до 7,5 мкм, характеризующегося отсутствием оптических потерь на длине волны полосы поглощения ОН-группы, заключающийся в том, что в шихту из смеси фторидов металлов, выбранных из ряда: фторид металла IV группы; BaF2; LaF3; AlF3; NaF, где в качестве фторида металла IV группы используют либо ZrF4, либо HfF4, дополнительно вводят тетрафторид церия в качестве фторирующего агента и люминесцирующего компонента, затем шихту плавят в атмосфере сухого аргона при температуре 850÷950°С в течение 30÷60 минут, после чего охлаждают в той же атмосфере, при этом тетрафторид церия вводят в шихту в концентрации 1÷5 мол. %.

Концентрацию тетрафторида церия выбирают из тех соображений, что при введении CeF4 в концентрации менее 1 мол. % фторирующие свойства добавки недостаточно эффективны, а концентрация более 5 мол. %. приводит к кристаллизации расплава.

Изобретение проиллюстрировано Фиг. 1 «Рентгенограмма смеси фаз CeF3 и CeF4 после начального этапа фторирования трифторида церия Т=330°С t=3 ч»; Фиг. 2 «Рентгенограмма полученного CeF4 после конечного этапа фторирования трифторида церия Т=330°С, общее время синтеза t=12 ч»; Фиг. 3 «ИК спектры пропускания образцов фторцирконатных стекол состава 58ZrF4⋅20BaF2⋅2LaF3⋅3AlF3⋅17NaF без добавок (кривая 1) и с введением в шихту добавок CeF3 (кривая 2) и CeF4 (кривая 3)»; Фиг. 4 «ИК спектры пропускания образцов фторгафнатных стекол состава 58HfF4⋅20BaF2⋅2LaF3⋅3AlF3⋅17NaF без добавок (кривая 1) и с введением в шихту добавок CeF3 (кривая 2) и CeF4 (кривая 3)».

Тетрафторид церия получали путем фторирования трифторида церия дифторидом ксенона по реакции:

CeF3+0,5XeF2=CeF4+0,5Хе

[Киселев Ю.М., Горяченков С.А., Ильинский А.Л. О реакции XeF2 с трифторидом церия и тербия // Ж. неорган. Химии. - 1985. - Т. 30. №4. - С. 835-839]

Реакцию трифторида церия с дифторидом ксенона проводили в тигле из лейкосапфира, помещенном в никелевый автоклав высокого давления, при 300°С. После этого реактор охлаждали до комнатной температуры. Фторирование проводили в 4 этапа по 3 часа каждый.

Контроль полноты прохождения синтеза проводили методом РФА (Фиг. 1 и Фиг. 2).

Эффективность удаления ОН-групп по настоящему изобретению проиллюстрирована спектрами ИК пропускания стекол без добавок с добавками CeF3 и CeF4 (Фиг. 3 и Фиг. 4). В ИК спектрах образцов фторцирконатных (Фиг. 3 кривая 1 и 2) и фторгафнатных стекол (Фиг. 4 кривая 1 и 2), полученных из коммерческих фторидов, присутствует широкая ассиметричная полоса поглощения с максимумом при λ=3400-3450 см-1 (2,9-3,0 мкм), отвечающая валентным колебаниям ОН-группы. В стеклах, полученных по предлагаемому изобретению, полоса поглощения ОН-группы отсутствует (Фиг. 3, кривая 3 и Фиг. 4, кривая 3).

Сущность предлагаемого технического решения заключается в том, что дополнительное введение тетрафторида церия в качестве фторирующего агента приводит к тому, что в процессе плавления стекла тетрафторид разлагается с выделением фтора, удаляющего ОН-группу, с образованием трифторида церия, который и является люминесцирующим компонентом.

На Фиг. 3 и Фиг. 4 представлены ИК спектры образцов стекол, синтезированных без добавок и с добавками трифторида церия и тетрафторида церия. На ИК спектрах стекол, полученных с добавками, проявляются полосы поглощения иона Се3+ при λ макс=4,23 и 4,59 мкм, обусловленные электронным переходом 2F7/2 - 2F5/2 [Н. Poignant. Role of Impurities in Halide Glasses //Halide Glasses for Infrared Fiberoptics. 1987. Martinus Nijhoff Publishers. P. 35-56].

Из тех же иллюстраций видно, что введение в шихту добавки тетрафторида церия приводит к исчезновению полосы поглощения в области 2,9 мкм, что соответствует 3400 см-1 (валентное колебание гидроксильной группы).

Ранее было установлено, что ионы Се+4 являются довольно сильными окислителями (E°CeIV/CeIII=1.66 В) [L.J. Nugent, R.D. Baybarz, J.L. Burnetti, R.J. Ryan. Electron-transfer and ƒ→d absorption bands of some lanthanide and actinide complexes and the standard (III-IV) oxidation potentials for each member of the lanthanide and actinide series // J. Inorg. Nucl. Chem. 1971. V. 33. P. 2503].

Таким образом, CeF4 играет роль внутреннего фторирующего агента, выделяющего фтор при 800°С в сухой атмосфере по реакции:

[N.S. Chilingarov, A.V. Knot'ko, I.M. Shlyapnikov, Z. Mazej, M. Kristl, and L.N. Sidorov Cerium Tetrafluoride: Sublimation, Thermolysis, and Atomic Fluorine Migration // J. Phys. Chem. A 2015, 119, P. 8452-8460].

Основная идея использования тетрафторида церия состояла в том, что фторид Ce(IV) способен непосредственно генерировать элементарный фтор, проявляя окислительные свойства, и выступать в качестве внутреннего фторирующего агента (донора фтора), восстанавливаясь до фторида Се(III), который, как известно, входит в состав люминесцирующих фторидных стекол для сцинтилляционных датчиков и электромагнитых калориметров [Brekhovskikh M.N., Dmitruk L.N., Moiseeva L.V., Fedorov V.A. Glasses Based on Fluorides of Metals of the I-IV Groups: Synthesis, Properties, and Application // Inorganic Materials. 2009. V. 45. №13. P. 39-55].

Ниже приведены примеры иллюстрирующие, но не ограничивающие предложенный способ.

Пример 1. Фторцирконатное стекло

Шихту состава 58ZrF4⋅20BaF2⋅2LaF3⋅3AlF3⋅17NaF с добавкой 1 мол. % CeF4 навеской 1 г плавили в атмосфере сухого аргона при температуре 950°С в течение 30 минут, после чего охлаждали в той же атмосфере. Получили стекло 58ZrF4⋅20BaF2⋅2LaF3⋅3AlF3⋅17NaF+1 мол. % CeF3 с отсутствием оптических потерь на длине волны полосы поглощения ОН-группы.

Пример 2. Фторцирконатное стекло

По примеру 1 отличающемуся тем, что добавку тетрафторида церия вводили в концентрации 4 мол. %. Шихту плавили в атмосфере сухого аргона при температуре 950°С в течение 40 минут. Получили стекло 58ZrF4⋅20BaF2⋅2LaF3⋅3AlF3⋅17NaF+4 мол. % CeF3 с отсутствием оптических потерь на длине волны полосы поглощения ОН-группы (Фиг. 3, кривая 3).

Пример 3. Фторцирконатное стекло

По примеру 1 отличающемуся тем, что добавку тетрафторида церия вводили в концентрации 5 мол. %. Шихту плавили в атмосфере сухого аргона при температуре 950°С в течение 60 минут. Получили стекло 58ZrF4⋅20BaF2⋅2LaF3⋅3AlF3⋅17NaF+5 мол. % CeF3 с отсутствием оптических потерь на длине волны полосы поглощения ОН-группы.

Пример 4. Фторгафнатное стекло

Шихту состава 58HfF4⋅20BaF2⋅2LaF3⋅3AlF3⋅17NaF с добавкой 1 мол. % CeF4 навеской 1 г плавили в атмосфере сухого аргона при температуре 850°С в течение 30 минут, после чего охлаждали в той же атмосфере. Получили стекло 58HfF4⋅20BaF2⋅2LaF3⋅3AlF3⋅17NaF+1 мол. % CeF3 с отсутствием оптических потерь на длине волны полосы поглощения ОН-группы.

Пример 5. Фторгафнатное стекло

По примеру 4 отличающемуся тем, что добавку тетрафторида церия вводили в концентрации 4 мол. %. Шихту плавили в атмосфере сухого аргона при температуре 850°С в течение 40 минут. Получили стекло 58HfF4⋅20BaF2⋅2LaF3⋅3AlF3⋅17NaF+4 мол. % CeF3 с отсутствием оптических потерь на длине волны полосы поглощения ОН-группы (Фиг. 4, кривая 3).

Пример 6. Фторгафнатное стекло

По примеру 4 отличающемуся тем, что добавку тетрафторида церия вводили в концентрации 5 мол. %. Шихту плавили в атмосфере сухого аргона при температуре 860°С в течение 60 минут. Получили стекло 58HfF4⋅20BaF2⋅2LaF3⋅3AlF3⋅17NaF+5 мол. % CeF3 с отсутствием оптических потерь на длине волны полосы поглощения ОН-группы.

Предлагаемый способ позволяет простым безопасным способом получать оптически прозрачные люминесцирующие фторидные стекла без кислородсодержащих примесей, активированные ионами церия, отвечающими за люминесцентные свойства стекол.

Способ получения люминесцирующего стекла, оптически прозрачного в области от 295 нм до 7,5 мкм, характеризующегося отсутствием оптических потерь на длине волны полосы поглощения ОН-группы, заключающийся в том, что в шихту из смеси фторидов металлов, выбранных из ряда: фторид металла IV группы; BaF; LaF; AlF; NaF, где в качестве фторида металла IV группы используют либо ZrF, либо HfF, дополнительно вводят тетрафторид церия в качестве фторирующего агента и люминесцирующего компонента, затем шихту плавят в атмосфере сухого аргона при температуре 850÷950°С в течение 30÷60 минут, после чего охлаждают в той же атмосфере, при этом тетрафторид церия вводят в шихту в концентрации 1÷5 мол.%.
Способ получения люминесцирующего стекла
Способ получения люминесцирующего стекла
Способ получения люминесцирующего стекла
Способ получения люминесцирующего стекла
Источник поступления информации: Роспатент

Показаны записи 1-10 из 50.
27.07.2013
№216.012.59d6

Противогололедная композиция

Изобретение относится к области разработки противогололедных реагентов и может быть использовано для борьбы с гололедом на дорожных и аэродромных покрытиях. Противогололедная композиция состоит из реагента на основе нитрата металла, содержащего либо гранулированный обезвоженный нитрат кальция,...
Тип: Изобретение
Номер охранного документа: 0002488619
Дата охранного документа: 27.07.2013
10.08.2013
№216.012.5e1e

Способ определения монометиланилина в автомобильном бензине индикаторным тестовым средством

Изобретение относится к контролю качества автомобильного бензина. Содержание монометиланилина в автомобильном бензине индикаторным тестовым средством определяют по его цветовому переходу после контактирования с пробой анализируемого бензина. В качестве индикатора используют...
Тип: Изобретение
Номер охранного документа: 0002489715
Дата охранного документа: 10.08.2013
10.09.2013
№216.012.691e

Композиционный катодный материал

Изобретение относится к электротехнической промышленности и может быть использовано для производства катодного материала литий-ионных аккумуляторных батарей для питания портативной электроники, электроинструмента, электротранспорта. Предложен композиционный катодный материал, состоящий из...
Тип: Изобретение
Номер охранного документа: 0002492557
Дата охранного документа: 10.09.2013
10.01.2014
№216.012.9426

Способ получения стабилизированного водного золя нанокристаллического диоксида церия, допированного гадолинием

Изобретение относится к технологии производства наноматериалов для получения оксидных топливных элементов, тонких покрытий, пленок, обладающих высокой ионной проводимостью. Способ включает приготовление водного раствора солей церия и гадолиния, в котором суммарная концентрация редкоземельных...
Тип: Изобретение
Номер охранного документа: 0002503620
Дата охранного документа: 10.01.2014
27.03.2014
№216.012.ae90

Способ получения проницаемого ионообменного материала

Изобретение относится к способу получения проницаемого ионообменного материала, который может быть использован в качестве сырья для изготовления мембран, пленок, гранул и модифицирующих покрытий, обладающих ионообменными свойствами и способностью к быстрому переносу ионов. Способ заключается в...
Тип: Изобретение
Номер охранного документа: 0002510403
Дата охранного документа: 27.03.2014
27.06.2014
№216.012.d926

Реагентная индикаторная трубка на основе хромогенных дисперсных кремнеземов

Изобретение относится к аналитической химии, конкретно к химическим индикаторам на твердофазных носителях, и может быть использовано для экспрессного определения металлов в водных средах и бензинах с помощью реагентных индикаторных трубок на основе хромогенных дисперсных кремнеземов. В качестве...
Тип: Изобретение
Номер охранного документа: 0002521368
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.da39

Способ получения наноструктурированных покрытий оксидов металлов

Изобретение относится к области синтеза оксидов металлов простого и сложного состава, обладающих диэлектрическими или полупроводниковыми свойствами, в виде тонких наноструктурированных покрытий на поверхности изделий различной формы. Способ заключается в том, что готовят спиртовой раствор...
Тип: Изобретение
Номер охранного документа: 0002521643
Дата охранного документа: 10.07.2014
27.08.2014
№216.012.eed0

Способ получения фторидных стекол с широким ик диапазоном пропускания

Изобретение относится к технологии получения фторидных хлор- и бромсодержащих стекол с широким ИК-диапазоном пропускания и повышенной прозрачностью. Способ получения фторидных стекол включает плавление шихты из исходных компонентов в инертной атмосфере в платиновом или углеродном тигле с...
Тип: Изобретение
Номер охранного документа: 0002526955
Дата охранного документа: 27.08.2014
27.08.2014
№216.012.efe9

Композиционная ионообменная мембрана

Изобретение относится к технологии изготовления композиционных ионообменных мембран, обладающих свойством селективности сорбции или переноса нитрат-аниона. Предложена композиционная ионообменная мембрана, характеризующаяся повышенной подвижностью нитрат-анионов и повышенной константой ионного...
Тип: Изобретение
Номер охранного документа: 0002527236
Дата охранного документа: 27.08.2014
10.05.2015
№216.013.48d9

Борсодержащий нейтронозащитный материал

Изобретение относится к нейтронозащитным материалам и может быть использовано, в частности, при капсулировании радиоактивных отходов, при создании защитных щитов. Борсодержащий материал с деформационной устойчивостью ΔL/L=3,0÷7,5% при 600°С получают взаимодействием силиката натрия NaO(SiO) в...
Тип: Изобретение
Номер охранного документа: 0002550156
Дата охранного документа: 10.05.2015
Показаны записи 1-7 из 7.
27.08.2014
№216.012.eed0

Способ получения фторидных стекол с широким ик диапазоном пропускания

Изобретение относится к технологии получения фторидных хлор- и бромсодержащих стекол с широким ИК-диапазоном пропускания и повышенной прозрачностью. Способ получения фторидных стекол включает плавление шихты из исходных компонентов в инертной атмосфере в платиновом или углеродном тигле с...
Тип: Изобретение
Номер охранного документа: 0002526955
Дата охранного документа: 27.08.2014
10.07.2015
№216.013.6066

Каталитически активные перфторкарбоксилатные соединения четырехвалентной платины

Изобретение относится к перфторкарбоксилатным соединениям четырехвалентной платины, характеризующимся устойчивостью при хранении без доступа воздуха. Соединения получают реакцией гидроксосоединения четырехвалентной платины K[Pt(OH)] или свежеприготовленного гидрата двуокиси платины РtO·4НO с...
Тип: Изобретение
Номер охранного документа: 0002556219
Дата охранного документа: 10.07.2015
10.08.2015
№216.013.6cdf

Способ получения гидрогелеобразователя на основе хитозана

Изобретение относится к способу поперечной ковалентной сшивки макромолекул хитозана с получением продукта, образующего при смешивании с водой высоковязкие гидрогели, применяемые в качестве перспективных материалов биотехнологического, биомедицинского и фармакологического назначения. Способ...
Тип: Изобретение
Номер охранного документа: 0002559429
Дата охранного документа: 10.08.2015
20.10.2015
№216.013.841c

Оксоацетатные соединения платины для изготовления гетерогенных катализаторов

Изобретение относится к получению ранее неизвестных оксоацетатных соединений трехвалентной платины MPtO(CHCOO), где М=Li, K, Na, Rb, Cs. Они могут быть использованы для синтеза других соединений платины, в гомогенном и гетерогенном катализе в качестве предшественников катализаторов, а также в...
Тип: Изобретение
Номер охранного документа: 0002565423
Дата охранного документа: 20.10.2015
27.01.2016
№216.014.bd5e

Способ обработки волосяного покрова овчины

Изобретение относится к меховой промышленности и может быть использовано при облагораживании волосяного покрова овчины. Способ обработки волосяного покрова овчины включает обработку полуфабриката пластифицирующим составом, стрижку волоса и 2-х кратную обработку закрепляющим составом, содержащим...
Тип: Изобретение
Номер охранного документа: 0002573959
Дата охранного документа: 27.01.2016
13.01.2017
№217.015.725a

Способ получения фторидных стекол с расширенным диапазоном оптического пропускания

Изобретение относится к области получения фторидных стекол с широким диапазоном пропускания. Технический результат изобретения заключается в получении оптически прозрачных стекол без кислородсодержащих примесей с расширенным диапазоном пропускания от 0,21 мкм до 7,5 мкм для фторцирконатного...
Тип: Изобретение
Номер охранного документа: 0002598271
Дата охранного документа: 20.09.2016
21.03.2019
№219.016.ec14

Монтажное устройство

Изобретение относится к области машиностроения и может быть использовано при сборке, ремонте или переустановке конструкций, имеющих большой вес, в условиях ограниченного пространства, при предъявлении высоких требований к точности монтажа. Монтажное устройство включает рельсовый путь, состоящий...
Тип: Изобретение
Номер охранного документа: 0002414415
Дата охранного документа: 20.03.2011
+ добавить свой РИД