×
29.05.2019
219.017.6a1d

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОПОРИСТОГО НАНОРАЗМЕРНОГО ПОКРЫТИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии получения тонкопленочных материалов на основе систем двойных оксидов, применяемых в быстроразвивающихся областях электронной техники и светотехнической промышленности, производстве материалов катализаторов, в качестве функционально-чувствительных, декоративных, фильтрующих и перераспределяющих излучение покрытий. Способ получения высокопористого наноразмерного покрытия включает приготовление пленкообразующего раствора с последующим нанесением его на поверхность изделия, сушкой, отжигом и охлаждением. Свежеприготовленный пленкообразующий раствор выдерживают в течение 8-13 суток при температуре 6-8°С, сушку проводят при температуре 60°С в течение 30-40 минут, с последующим нелинейным нагревом до 800-900°С в атмосфере воздуха - в первые 15-20 минут скорость нагрева максимальна и составляет 22°С/мин, в следующие 17 минут скорость нагрева поддерживают на уровне 18°С/мин, затем в течение 12 минут скорость нагрева составляет 12°С/мин, последние 40-20 минут скорость нагрева поддерживают на уровне 0,5°С/мин - и выдержкой при 800-900°С в течение 1 часа, постепенным охлаждением в условиях естественного остывания муфельной печи, при содержании следующих компонентов в пленкообразующем растворе: тетраэтоксисилан, соляная кислота, дистиллированная вода, соль металла СоСl·6НО и этиловый спирт. 1 ил., 2 пр.

Изобретение относится к технологии получения тонкопленочных материалов на основе систем двойных оксидов, применяемых в быстроразвивающихся областях электронной техники и светотехнической промышленности, производстве материалов катализаторов, в качестве функционально-чувствительных, декоративных, фильтрующих и перераспределяющих излучение покрытий.

Известен способ получения бактерицидного оксидного покрытия (Патент РФ №2395548, C09D 5/14 публ. 27.07.2010), включающий приготовление кислого пленкообразующего раствора (ПОР), нанесение пленки на поверхность твердого неорганического материала, сушку материала с покрытием, термообработку при температурах, выше температуры разложения солей металлов, но ниже температуры плавления или размягчения твердого неорганического материала. Недостатками такого способа являются специальный подбор растворителей во избежание стекания наносимого слоя по подложке, тщательная очистка используемого для пульверизации воздуха или газа, необходимость поддерживать определенный размер и форму струи распыляемого раствора, а также сложное оборудование. Кроме того, в описываемом способе получения пленок для улучшения смачиваемости поверхности покрываемого материала используют органические добавки, а в качестве связующих компонентов - оксиды металлов: кремния, железа, титана, лантана, что значительно усложняет состав синтезируемых материалов и влияет на свойства получаемых пленок. Для достижения нужного значения pH пленкообразующего раствора в данном способе используют кислотную обработку природных или синтетических оксидов или карбонатов магния, кальция или цинка, что не позволяет точно контролировать содержание кислоты в растворе и технологически усложняет процесс.

Известен способ получения газочувствительного материала из пленкообразующего раствора (Патент РФ №2310833, G01N 27/12, 20.11.2007 г.), включающий приготовление реакционного раствора с использованием тетраэтоксисилана и азотнокислого серебра, нанесение пленки методом центрифугирования, сушку образцов и термообработку при 370-750°С. Недостатками такого способа являются отсутствие в ПОР контролируемого количества воды и кислоты, участвующих в процессах гидролиза тетраэтоксисилана и значительно сокращающих время созревания растворов, а также отсутствие спирта, способствующего равномерному распределению компонентов в растворе и свободной диффузии ионов и молекул в объеме.

Известен способ приготовления пленкообразующих растворов, используемых для получения тонкопленочных покрытий (Hernandez-Torres J. Optical properties of sol-gel Si02 films containing nickel / J. Hernandez-Torres, Mendoza-Galvan // Thin Solid Films. - 2005. - V.472. - P.130-135.), выбранный в качестве прототипа. Способ включает в себя приготовление ПОР для получения пленок SiO2-NiO на основе тетраэтоксисилана, этилового спирта, воды с мольным соотношением компонентов: тетраэтоксисилан/спирт/вода = 1/4/11.7. Количество шестиводного нитрата никеля варьировали для получения пленок с атомным соотношением Si/Ni: 1.2; 3.1; 7.1. Пленки получали на стеклянных и кварцевых подложках методом вытягивания со скоростью 20 см/мин. Все образцы подвергали сушке на воздухе при 180°С в течение 30 минут. Последующую термическую обработку проводили при 300 и 500°С в течение 30 минут.

Недостатками такого способа являются:

1) отсутствие в пленкообразующем растворе кислоты, являющейся катализатором процессов гидролиза и конденсации тетраэтоксисилана, что влияет на время созревания растворов и на пористость пленок:

2) не акцентируется внимание на степени осушенности этанола, что является важным параметром, влияющим на реологические свойства растворов;

3) при получении пленок методом вытягивания трудно получить равномерные по толщине покрытия, что связано как с реологическими особенностями пленкообразующих растворов - растворы с более высокими значениями концентрации и вязкости могут постепенно обогащаться растворенным веществом в зоне погружения, приводя к тому, что толщина покрытия увеличивается сверху вниз при извлечении образца, так и с особенностями закрепления подложки - угол наклона покрываемой плоскости к уровню жидкости должен быть равен 90°. Задачей настоящего изобретения является разработка более простого способа получения равномерного по толщине высокопористого наноразмерного покрытия с целью получения развитой поверхности, более высоких значений коэффициента отражения (90-110%) в видимом диапазоне длин волн и коэффициента пропускания ближнего ультрафиолетового излучения (60-90%) с одновременным сочетанием невысоких значений показателя преломления (1,39-1,4) и толщины (170-283 нм), что позволит использовать их в качестве перераспределяющих излучение покрытий.

Поставленная задача решается тем, что способ получения высокопористого наноразмерного покрытия включает приготовление пленкообразующего раствора с последующим нанесением его на поверхность изделия, сушкой, отжигом и охлаждением, но в отличие от прототипа свежеприготовленный пленкообразующий раствор выдерживают в течение 8-13 суток при температуре 6-8°С, сушку проводят при температуре 60°С в течение 30-40 минут, с последующим нелинейным нагревом до 800-900°С в атмосфере воздуха - в первые 15-20 минут скорость нагрева максимальна и составляет 22°С/мин, в следующие 17 минут скорость нагрева поддерживают на уровне 18°С/мин, затем в течение 12 минут скорость нагрева составляет 12°С/мин, последние 40-20 минут нагревания скорость нагрева поддерживают на уровне 0,5°С/мин - и выдержкой при 800-900°С в течение 1 часа, постепенным охлаждением в условиях естественного остывания муфельной печи. Для получения высокопористого наноразмерного покрытия использовали пленкообразующие растворы, приготовленные при следующем соотношении компонентов, мас.%:

тетраэтоксисилан 22,4-21,5;

соляная кислота 4,4·10-4-1,2·10-4;

дистиллированная вода 3,1-0;

соль металла CoCl2·6H2O 1-7,8;

этиловый спирт (98 об.%) - остальное.

Наличие большой площади раздела фаз за счет формирования пор в наноструктурированных пленках позволяет существенно изменять их свойства, как путем модификации наноструктуры, так и путем легирования различными элементами и заполнения пор другими составами, что позволяет управлять целевыми функционально-чувствительными свойствами, которые тесно связаны с технологическими параметрами синтеза.

Процессы гидролиза тетраэтоксисилана (ТЭОС) экзотермичны. При создании соответствующих условий по отводу тепла из системы можно контролировать процессы сшивания силоксанов продуктами гидролиза ТЭОС уже в первые минуты созревания растворов, тем самым предопределяя структуру и свойства синтезируемых пленок.

Добавление в ПОР соли d-металла приводит к повышению ионной силы раствора, что способствует изменению сольватной оболочки реагирующих фрагментов и снижению энергии реорганизации среды, и, соответственно, к снижению энергии активации идущих процессов. Скорость гидролиза ТЭОС в таких системах зависит от лабильности аквакомплексов металлов и их устойчивости.

На протяжении первых суток созревания раствора активно идут процессы гидролиза и конденсации гидроксопроизводных тетраэтоксисилана, в результате которых появляются молекулярно связанные единичные образования с постоянно увеличивающимися размерами. По второй и третьей ступеням процесс гидролиза ТЭОС в пленкообразующих растворах, содержащих соли металлов, протекает значительно быстрее, что объясняется стерическим фактором, нарушением симметрии молекул гидроксопроизводных тетраэфира и участием гидроксокомплексов металлов в процессах замещения этокси-групп на группы -ОН.

Как результат, растворы, содержащие ионы кобальта (II), уже через 10 минут созревания содержат высокую концентрацию ди- и тригидроксопроизводных тетраэтоксисилана, что способствует не только увеличению концентрации соответствующих продуктов конденсации, но и сшиванию силоксановых цепочек, приводящему к раннему формированию сетчатой структуры растущего полимера, увеличению вязкости раствора и концентрации свободной воды.

Созревание пленкообразующих растворов при температуре 6-8°С способствует увеличению степени гидролиза тетраэтоксисилана, приводящему к раннему формированию сетчатой структуры растущей полимерной матрицы. Высокая скорость нагревания покрытий в первые минуты отжига приводит к порообразованию вследствие закипания воды, равномерно распределенной в пленке. Валентные и деформационные колебания связей Н-О-Н фиксируются в ИК-спектрах пленок до 300°С. Постепенное снижение скорости нагревания способствует глубокому протеканию процессов окисления гидроксохлоридов металлов и процессов формирования оксидов.

Выдерживание пленок при температуре 800-900°С в течение часа приводит к завершению протекающих процессов и увеличению степени кристалличности получаемых образцов. Равномерное охлаждение способствует формированию стабильных пленочных структур.

В результате, получаемые пористые покрытия (рис.1) характеризуются высокими значениями коэффициента отражения (90-110%) в видимом диапазоне длин волн и коэффициента пропускания ближнего ультрафиолетового излучения (60-90%) с одновременным сочетанием невысоких значений показателя преломления (1,39-1,4) и толщины (170-283 нм). Пористость пленок составляет 28-40%, размер пор - от 200 нм до 850 нм.

Пример 1

Для приготовления 100 мл пленкообразующего раствора необходимо соединить 2,6 мл дистиллированной воды (3,1 мас.%), 0,06 мл раствора соляной кислоты с концентрацией 2 моль/л (4,4·10-4 мас.%), 0,84 г соли CoCl2·6H2O (1 мас.%) и довести до объема 80 мл этиловым спиртом (98 об.%). Полученный однородный раствор охладить до 6-8°С. На заключительном этапе приготовления ПОР вливают в подготовленный раствор предварительно охлажденный до 6-8°С тетраэтоксисилан объемом 20 мл (22,4 мас.%). После созревания раствора в течение 8 суток при температуре 6-8°С ПОР наносят на кремниевую подложку методом центрифугирования и подвергают ступенчатой термообработке: при температуре 60°С в течение 30-40 минут, с последующим нелинейным нагревом до 800°С в атмосфере воздуха - в первые 15 минут скорость нагрева максимальна и составляет 22°С/мин, в следующие 17 минут скорость нагрева поддерживают на уровне 18°С/мин, затем в течение 12 минут скорость нагрева составляет 12°С/мин, последние 40 минут нагревания скорость нагрева поддерживают на уровне 0,5°С/мин - и выдержкой при 800°С в течение 1 часа, постепенным охлаждением в условиях естественного остывания муфельной печи. При этом получается тонкопленочное покрытие состава 5 мас.% Co3O4, 95 мас.% SiO2 толщиной 170 нм, показателем преломления 1,4. Пористость пленки 28%, размер пор 200-600 нм.

Пример 2

Для приготовления 100 мл пленкообразующего раствора необходимо соединить 0,06 мл раствора соляной кислоты с концентрацией 2 моль/л (1,2·10-4 мас.%), 6,79 г соли CoCl2·6H2O (7,8 мас.%) и довести до объема 80 мл этиловым спиртом (98 об.%). Полученный однородный раствор охладить до 6-8°С. На заключительном этапе приготовления ПОР вливают в подготовленный раствор предварительно охлажденный до 6-8°С тетраэтоксисилан объемом 20 мл (21,5 мас.%). После созревания раствора в течение 13 суток при температуре 6-8°С ПОР наносят на кремниевую подложку методом центрифугирования и подвергают ступенчатой термообработке: при температуре 60°С в течение 30-40 минут, с последующим нелинейным нагревом до 900°С в атмосфере воздуха - в первые 20 минут скорость нагрева максимальна и составляет 22°С/мин, в следующие 17 минут скорость нагрева поддерживают на уровне 18°С/мин, затем в течение 12 минут скорость нагрева составляет 12°С/мин, последние 20 минут нагревания скорость нагрева поддерживают на уровне 0,5°С/мин - и выдержкой при 900°С в течение 1 часа, постепенным охлаждением в условиях естественного остывания муфельной печи. При этом получается тонкопленочное покрытие состава 30 мас.% Co3O4, 70 мас.% SiO2 толщиной 283 нм и показателем преломления 1,39. Пористость пленки 40%, размер пор 250-850 нм.

В отличие от прототипа, в описанном способе осуществляется контроль процессов гидролиза и конденсации тетраэтоксисилана в пленкообразующем растворе путем введения необходимого количества кислоты и воды, что позволяет расширить временную область пригодности пленкообразующих растворов для нанесения равномерных покрытий. Соответствующие условия синтеза позволяют управлять морфологией поверхности. Кроме того, пленки наносятся более простым способом.

Покрытия, полученные описанным способом, характеризуются высокоразвитой пористой структурой, высокими значениями коэффициента отражения в видимом диапазоне спектра и коэффициента пропускания ближнего ультрафиолетового излучения с одновременным сочетанием невысоких значений показателя преломления и толщины, что открывает возможности использования пленок в производстве материалов катализаторов, в качестве функционально-чувствительных, декоративных, фильтрующих и перераспределяющих излучение покрытий.

Способ получения высокопористого наноразмерного покрытия, включающий приготовление пленкообразующего раствора с последующим нанесением его на поверхность изделия, сушкой, отжигом и охлаждением, отличающийся тем, что свежеприготовленный пленкообразующий раствор выдерживают в течение 8-13 суток при температуре 6-8°С, сушку проводят при температуре 60°С в течение 30-40 мин с последующим нелинейным нагревом до 800-900°С в атмосфере воздуха в первые 15-20 мин скорость нагрева максимальна и составляет 22°С/мин, в следующие 17 мин скорость нагрева поддерживают на уровне 18°С/мин, затем в течение 12 мин скорость нагрева составляет 12°С/мин, последние 40-20 мин скорость нагрева поддерживают на уровне 0,5°С/мин и выдержкой при 800-900°С в течение 1 ч, постепенным охлаждением в условиях естественного остывания муфельной печи при следующем соотношении компонентов в пленкообразующем растворе, мас.%:
Источник поступления информации: Роспатент

Показаны записи 1-10 из 21.
20.01.2013
№216.012.1b71

Способ увеличения степени извлечения экдистероидов из растительных объектов

Изобретение относится к фармацевтической промышленности, в частности к способу извлечения экдистероидов. Способ извлечения экдистероидов из надземной части Serratula cupuliformis, включающий экстракцию растительного сырья 70% этиловым спиртом с одновременной обработкой ультразвуком, при...
Тип: Изобретение
Номер охранного документа: 0002472519
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1cd6

Способ изменения обыкновенного показателя преломления нелинейного кристалла gase

Изобретение относится к технической физике и нелинейной оптике и может быть использовано при создании параметрических преобразователей частоты лазерного излучения в средний инфракрасный (ИК) и терагерцовый (ТГц) диапазоны спектра. Изменение обыкновенного показателя преломления нелинейного...
Тип: Изобретение
Номер охранного документа: 0002472876
Дата охранного документа: 20.01.2013
27.01.2013
№216.012.1f22

Способ получения катализатора на основе нитрида бора для очистки сточных вод от фенола, катализатор, полученный этим способом, и способ очистки сточных вод от фенола с использованием этого катализатора

Группа изобретений относится к порошковой металлургии, к обработке промышленных и бытовых сточных вод. Процесс азотирования ферросплава осуществляют в самоподдерживающемся режиме послойного горения при давлении азота 1,0-12,0 МПа. Ферросплав содержит 20-40 мас.% бора и имеет размер частиц менее...
Тип: Изобретение
Номер охранного документа: 0002473471
Дата охранного документа: 27.01.2013
27.03.2013
№216.012.3124

Суспензионно-эмульсионная композиция антитурбулентной добавки

Изобретение относится к нефтяной промышленности, а именно к суспензионно-эмульсионной композиции антитурбулентной добавки, используемой в процессах перекачки водонефтяных эмульсий по промысловым трубопроводам от добывающих скважин к установкам подготовки нефти и для энергосберегающего...
Тип: Изобретение
Номер охранного документа: 0002478118
Дата охранного документа: 27.03.2013
20.05.2013
№216.012.410d

Средство для удаления ржавчины, накипи и других минеральных отложений на основе глиоксаля и его производных

Изобретение относится к химическим средствам удаления ржавчины, накипи и минеральных отложений с металлических поверхностей и может быть использовано для очистки поверхностей теплообменных аппаратов, нагревательных элементов, трубопроводов, котлов, бойлеров, отопительных систем, а также...
Тип: Изобретение
Номер охранного документа: 0002482223
Дата охранного документа: 20.05.2013
01.03.2019
№219.016.cfa8

Способ увеличения семенной продуктивности и всхожести семян hedysarum alpinum l.

Изобретение относится к области сельского хозяйства, в частности к растениеводству, и может найти применение при получении семян лекарственного растения - копеечника альпийского (Hedysarum alpinum L.). Техническим результатом является получение семян более высокого качества. Способ увеличения...
Тип: Изобретение
Номер охранного документа: 0002439869
Дата охранного документа: 20.01.2012
01.03.2019
№219.016.d035

Способ разделения минералов меди и серебра из зон окисления сульфидных полиметаллических месторождений

Использование: для разделения минералов меди и серебра из зон окисления сульфидных полиметаллических месторождений. Сущность: заключается в том, что отбирают монофракции, возбуждают в них люминесценцию с помощью рентгеновской трубки, снимают спектр рентгенолюминесценции в спектральном диапазоне...
Тип: Изобретение
Номер охранного документа: 0002444724
Дата охранного документа: 10.03.2012
01.03.2019
№219.016.d04b

Способ получения фторалкансульфохлоридов

Изобретение относится к процессам получения фторалкансульфохлоридов RCHX-SOCl, где (R=F, перфторалкил СF…,; X=F, H) и может быть использовано при синтезе пестицидов, инсектицидов и других биологически активных соединений. Применение предлагаемого способа позволяет получать...
Тип: Изобретение
Номер охранного документа: 0002440979
Дата охранного документа: 27.01.2012
08.03.2019
№219.016.d5b4

Способ перевода растения водного гиацинта (eichhornia crassipes) из вегетативной фазы в репродуктивную

Изобретение относится к области физиологии растений, в частности биотехнологии. Способ перевода растения водного гиацинта (Eichhornia crassipes) из вегетативной фазы в репродуктивную включает изменение режима освещения растений, отличающийся тем, что для растений гиацинта, выращенных со сменой...
Тип: Изобретение
Номер охранного документа: 0002460280
Дата охранного документа: 10.09.2012
29.03.2019
№219.016.f5f8

Способ получения тонких наноструктурированных однослойных покрытий на основе диоксида кремния золь-гель методом в присутствии неорганических кислот и их солей

Изобретение относится к тонкопленочным интерференционным покрытиям для просветления оптических элементов. Способ получения тонких наноструктурированных однослойных покрытий на основе диоксида кремния включает золь-гель процесс тетраалкоксида кремния в присутствии добавки соляной кислоты и...
Тип: Изобретение
Номер охранного документа: 0002450984
Дата охранного документа: 20.05.2012
Показаны записи 1-10 из 48.
10.06.2013
№216.012.4a0b

Способ моделирования динамики полета летательного аппарата и моделирующий комплекс для его осуществления

Изобретения относятся к авиационной технике. Способ моделирования динамики полета летательного аппарата включает формирование виртуальных трехмерных изображений объектов окружающей обстановки и имитацию полета летательного аппарата. Виртуальные трехмерные изображения объектов окружающей...
Тип: Изобретение
Номер охранного документа: 0002484535
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4b32

Способ получения покрытого стабилизирующей оболочкой нанокристаллического диоксида церия

Изобретение относится к способу получения покрытого стабилизирующей оболочкой нанокристаллического диоксида церия, который характеризуется антиоксидантной активностью. Способ включает приготовление водного раствора соли церия и стабилизатора, представляющего собой мальтодекстрин, с мольным...
Тип: Изобретение
Номер охранного документа: 0002484832
Дата охранного документа: 20.06.2013
10.07.2013
№216.012.53e9

Способ получения планарного волновода оксида цинка в ниобате лития

Изобретение может быть использовано области интегральной и нелинейной оптики. Способ создания планарного волновода оксида цинка на ниобате лития включает приготовление пленкообразующего раствора с последующим выдерживанием его в течение 1 суток при комнатной температуре, нанесение раствора на...
Тип: Изобретение
Номер охранного документа: 0002487084
Дата охранного документа: 10.07.2013
20.08.2013
№216.012.5f7a

Способ получения высокопористого покрытия на основе двойных оксидов кремния и никеля

Изобретение относится к технологии получения тонкопленочных материалов на основе систем двойных оксидов, применяемых в быстро развивающихся областях электронной техники и светотехнической промышленности, производстве материалов катализаторов, в качестве функционально-чувствительных,...
Тип: Изобретение
Номер охранного документа: 0002490074
Дата охранного документа: 20.08.2013
27.10.2013
№216.012.794a

Способ получения высокопористого покрытия на основе двойных оксидов кремния и марганца

Изобретение относится к технологии получения высокопористых покрытий на основе систем двойных оксидов, применяемых в быстро развивающихся областях электронной техники и светотехнической промышленности, производстве материалов катализаторов, в качестве функционально-чувствительных, декоративных,...
Тип: Изобретение
Номер охранного документа: 0002496712
Дата охранного документа: 27.10.2013
10.11.2013
№216.012.7d07

Способ получения многослойного покрытия на основе sio-zro-po-cao

Изобретение относится к тонкопленочным стеклокерамическим покрытиям, широко применяемым в материаловедении и медицинском материаловедении, в частности. Способ получения многослойного покрытия на основе SiO-ZrO-PO-CaO включает приготовление пленкообразующего раствора (ПОР) с дальнейшим...
Тип: Изобретение
Номер охранного документа: 0002497680
Дата охранного документа: 10.11.2013
27.12.2013
№216.012.906e

Композиция на основе сложных оксидов циркония, фосфора и кальция для получения покрытия

Изобретение может быть использовано в химической промышленности. Состав для получения тонкой пленки сложных оксидов циркония, фосфора и кальция содержит этиловый спирт, предварительно перегнанный и осушенный до 96 мас.%, оксохлорид циркония, хлорид кальция и ортофосфорную кислоту при следующем...
Тип: Изобретение
Номер охранного документа: 0002502667
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.9426

Способ получения стабилизированного водного золя нанокристаллического диоксида церия, допированного гадолинием

Изобретение относится к технологии производства наноматериалов для получения оксидных топливных элементов, тонких покрытий, пленок, обладающих высокой ионной проводимостью. Способ включает приготовление водного раствора солей церия и гадолиния, в котором суммарная концентрация редкоземельных...
Тип: Изобретение
Номер охранного документа: 0002503620
Дата охранного документа: 10.01.2014
27.08.2014
№216.012.eeb3

Светоперераспределяющее покрытие

Изобретение может быть использовано для оптических приборов и методов исследования в различных областях науки и техники. Светоперераспределяющее покрытие включает в качестве пленкообразующей основы тетраэтоксисилан, этиловый спирт и соляную кислоту. Пленкообразующий раствор, используемый для...
Тип: Изобретение
Номер охранного документа: 0002526926
Дата охранного документа: 27.08.2014
27.11.2014
№216.013.0b22

Способ получения многослойного покрытия

Изобретение относится к тонкопленочным стеклокерамическим покрытиям, широко применяемым в материаловедении и медицинском материаловедении в частности. Способ получения многослойного покрытия на основе SiO-ZrO-PO-NaO, включающий приготовление пленкообразующего раствора с дальнейшим...
Тип: Изобретение
Номер охранного документа: 0002534258
Дата охранного документа: 27.11.2014
+ добавить свой РИД