×
29.05.2019
219.017.6857

Результат интеллектуальной деятельности: НАНОКОМПОЗИЦИОННОЕ ПРОСВЕТЛЯЮЩЕЕ ПОКРЫТИЕ В ВИДЕ ТОЛСТОЙ ПЛЕНКИ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области нанотехнологий. Техническим результатом изобретения является получение просветляющего покрытия, обладающего высоким качеством и увеличенным коэффициентом полезного действия. Сущность изобретения: нанокомпозиционное просветляющее покрытие в виде толстой пленки включает полимерную матрицу полиметилметакрилата, наполненную наночастицами серебра размером 1-10 нм с массовой концентрацией 3±0,5% и модифицированную вязким полиметилметакрилатом в объемном соотношении 10:1, соответственно. Способ получения нанокомпозиционного покрытия в виде толстой пленки включает растворение композиции на основе полиметилметакрилата, содержащей наночастицы серебра размером 1-10 нм с массовой концентрацией 3±0,5% до образования исходной жидкой композиции с кинематической вязкостью от 26,1±0,7 до 80±4 сСт и концентрацией полимера 0,15-0,31 мас. долей, стабилизацию полученной исходной композиции добавлением в нее при перемешивании модифицирующей добавки в виде полиметилметакрилата с кинематической вязкостью 84,2±0,5 сСт в объемном соотношении 10:1, соответственно, обеспечивающей образование адсорбционно-сольватного слоя на поверхности частиц исходной композиции, с последующим нанесением полученной технологической нанокомпозиции на твердотельную подстилающую поверхность и сушкой. 2 н. и 2 з.п. ф-лы, 5 ил., 5 табл.

Изобретение относится к области нанотехнологий, а именно к наноэлектронике, и может быть использовано, в частности, при изготовлении функциональных структур в виде толстых пленок, толщина которых занимает размерный ряд от 2 до 100 мкм, используемых в качестве просветляющих покрытий активных элементов преобразования солнечной энергии в электричество для солнечных батарей, лазерной техники и др.

Известна подложка, покрытая композиционной пленкой, способ изготовления и применение (патент РФ на изобретение №2288167, МПК: B82B 1/00). Композиционная пленка представляет собой среду в виде мезопористого неорганического слоя, модифицированную наночастицами (in situ), частично периодическую в масштабе доменов. Периодическую структуру пленки получают из среднего (мезопористого) неорганического слоя частично периодической структуры, которая образует на подложке матрицу, путем осаждения прекурсора в поры слоя матрицы.

Однако технологический процесс изготовления пленки является трудоемким и включает дополнительный технологический процесс синтеза (осаждение прекурсора) при повышенных температурных режимах, что может привести, в нашем случае, к разрушению нанокомпозиции.

Известно просветляющее покрытие (патент РФ на изобретение №2097801, МПК: G02B 5/28, G02B 1/11), включающее подложку с показателем преломления от 2,2 до 4,0, нанесенные на подложку адгезионный слой из ZnS или ZnSe, слой с низким значением показателя преломления из фторида висмута (BiF3) и четвертьволновый слой с высоким значением показателя преломления из сульфида цинка (ZnS) или селенида цинка (ZnSe).

Однако, несмотря на высокую прочность к интенсивным лазерным потокам, данный метод создания просветляющего покрытия имеет ограничения, связанные с необходимостью иметь подложки с высоким показателем преломления (от 2,2 до 4,0), что ограничивает применение известного метода для широкого класса устройств оптоэлектроники на основе кремниевых технологий. Кроме того, известный метод наиболее перспективен для создания покрытий для работы в длинноволновой области оптического спектра (10-12 мкм) и мало пригоден для работы создаваемых покрытий в коротковолновой области спектра.

Известно просветляющее покрытие на основе гетероструктур фуллерен-кремний (C60/p-Si) с сильным поглощением в коротковолновой области солнечного спектра (Light S., Khaselev О., Ramakrishna P.A. et. al. Fullerene Photoelectromechanical Solar Cells. - Solar Energy Materials and Solar Cells, 51 (1998), p.9-19). Поликристаллический фуллерен толщиной 1 мкм осаждают на кремниевую подложку в глубоком вакууме. В качестве контактов используется алюминий и сплав GaxIny на позолоченной подложке.

Недостатком такого покрытия являются низкая эффективность фотоэлектрического преобразования в видимой и ближней ИК-областях солнечного спектра.

Наиболее близким к предлагаемому просветляющему покрытию является покрытие фотоэлемента на основе органических материалов в виде красителя (Мейтин М. Фотовольтаика: материалы, технологии, перспективы. Электроника-НТ. - №6. - 2000 г.). Подложками в таких элементах могут выступать полимерные пленки. Основа фотоэлемента такого типа - широкозонный полупроводник (например, диоксид титана), покрытый монослоем органического красителя, как правило - цис-(NCS)2бис(4,4′-дикарбокси-2,2′бипиридин)-рутением (II). Фотоэлектрод такого устройства представляет собой нанопористую пленку TiO2 толщиной 1 мкм, осажденную на оптически прозрачное электропроводящее покрытие (ТСО) на стекле. Отражающим электродом служит тонкий слой платины, осажденный на ТСО на стекле. Пространство между двумя электродами заполнено электролитом, содержащим иодид/трииодид.

Недостатком данного технического решения является невысокий КПД фотоэлектрического преобразования (КПД около 11%).

Наиболее близким к предлагаемому способу получения просветляющего покрытия является способ получения тонкопленочного нанокомпозитного покрытия на твердотельной подложке (патент РФ на изобретение №2324643, МПК; B82B 3/00), включающий введение раствора нанокомпонентов и водонерастворимого соединения амфифильного полиэлектролита в летучем неполярном растворителе на поверхность водной фазы с формированием нанокомпозитного монослоя и его последующий перенос по методу Ленгмюра-Блоджетт на твердотельную подложку с образованием на ее поверхности нанокомпозитного покрытия. При этом в процессе формирования нанокомпозитный монослой инкубируют при Т=16-58°С в течение времени, достаточного для образования упорядоченной структуры нанокомпонентов в плоскости монослоя.

Однако данный способ является трудоемким, длительным по времени и требует применения целого комплекса химических компонентов, множества операций и широкого температурного режима.

Задачей изобретения является получение просветляющего покрытия в виде нанокомпозиционной толстой пленки, обладающего высоким качеством и увеличенным коэффициентом полезного действия за счет предотвращения коалесценции (срастания) и переориентации наночастиц в композиции, а также их агрегативной устойчивости при нанесении композиции на твердую подстилающую поверхность.

Поставленная задача решается тем, что нанокомпозиционное просветляющее покрытие в виде толстой пленки включает полимерную матрицу полиметилметакрилата, наполненную наночастицами серебра размером 1-10 нм с массовой концентрацией 3±0,5% и модифицированную вязким полиметилметакрилатом в объемном соотношении 10:1, соответственно.

Модифицирующая добавка полиметилметакрилата выбрана кинематической вязкостью 84,2±0,5 сСт.

Нанокомпозиционное покрытие имеет толщину от 55 до 70 мкм.

Способ получения нанокомпозиционного просветляющего покрытия в виде толстой пленки включает растворение композиции на основе полиметилметакрилата, содержащей наночастицы серебра размером 1-10 нм с массовой концентрацией 3±0,5% до образования исходной жидкой композиции с кинематической вязкостью от 26,1±0,7 до 80±4 сСт и концентрацией полимера 0,15-0,31 мас. долей, стабилизацию полученной исходной композиции добавлением в нее при перемешивании модифицирующей добавки в виде полиметилметакрилата с кинематической вязкостью 84,2±0,5 сСт в объемном соотношении 10:1, соответственно, обеспечивающей образование адсорбционно-сольватного слоя на поверхности частиц исходной композиции, с последующим нанесением полученной технологической нанокомпозиции на твердотельную подстилающую поверхность и сушкой.

Заявляемое изобретение поясняется схемами и фотографиями, где на фиг.1 представлена функциональная схема технологического процесса получения толстопленочного нанокомпозиционного просветляющего покрытия, на фиг.2 - схема технологической операции нанесения нанокомпозиции на твердотельную подложку, на Фото 1, 2 - образцы элементов солнечных батарей с покрытием, на Фото 3 - образец без покрытия.

Позициями на фиг.2 обозначены: 1 - ракель; 2 - подложка; 3 - вязкая нанокомпозиция; 4 - толстопленочное нанокомпозиционное просветляющее покрытие.

Способ осуществляют следующим образом.

Полимерную матрицу полиметилметакрилата (ПММА) наполняют наночастицами серебра Ag размером 1-10 нм с массовой концентрацией 3±0,5%. При этом химический синтез осуществляют по классической методике "класпол", когда металлсодержащее соединение подвергается высокоскоростному термическому разложению с образованием дисперсной фазы металла, стабилизированного в полимере (Юрков Г.Ю., Кособудский И.Д., Севостьянов В.П. Наноразмерные металлические частицы в полимерных матрицах, синтез и физико-химические свойства // Известия ВУЗов, Химия и химическая технология, 2000, №2. С.56-61). Полученный нанодисперсный порошок растворяют, например, введением дихлорэтана, до образования исходной жидкой нанокомпозиции с кинематической вязкостью в интервале от 26,1±0,7 до 80±4 сСт и концентрацией полимера 0,15-0,31 мас. долей. Затем в жидкую нанокомпозицию для улучшения технологических характеристик (вязкости, адгезионной стойкости, механической и оптической однородности) вводят при перемешивании модифицирующую добавку в объемном соотношении 10 к 1, соответственно. При этом на поверхностях наночастиц, располагающихся на глобулах полимера, образуется адсорбционно-сольватный слой, защищающий наночастицы от агломерации. В качестве модифицирующей добавки используют растворенный ПММА кинематической вязкостью 84,2±0,5 сСт, который химико-технически совместим с глобулами и усиливает структуризацию наномерной среды. Полимер ПММА наиболее склонен к глобуляции с серебром, который является более подходящим для области излучений инфракрасного диапазона с точки зрения плазменного резонанса в получаемой композиционной пленке (коэффициент отражения серебра 0,96).

Затем полученную нанокомпозицию равномерно наносят при комнатной температуре на подстилающую поверхность твердого тела (плату) посредством ракеля и осуществляют сушку в течение времени, необходимого для образования адгезионного толстопленочного покрытия (в среднем 24 ч). Технологическая операция нанесения нанокомпозиции на подстилающую поверхность проводилась на полуавтоматической установке типа ПТП-2, при этом были установлены базовые технологические параметры «нанесения», обеспечивающие высокое качество получаемых толстых пленок: угол наклона ракеля к поверхности подложки α=45°, зазор между ракелем и подложкой h=0,45-0,5 мм, давление ракеля на вязкую нанокомпозицию P=3,9·10-3-6,6·102 Н/м2, скорость движения ракеля υ=15·10-3 м/с (фиг.2), которые сведены в таблицу 1.

Таблица 1
Зазор h, мм Давление ракеля (искусственный вес ракеля), P, Н/м2 Площадь подложки, S, м2 Скорость движения ракеля, υ, м/с Время технологической операции, τ, с Погрешность измерении, Δ, %
1 0,5 6,6·102 144·10-5 15·10-3 0,5 0,5
2 0,45 3,9·10-3 144·10-5 15·10-3 0,5 0,5

Время, в течение которого совершается технологическая операция нанесения нанокомпозиции на подложку, является постоянным 0,5 с и установлено для подложек и плат размерами ≤155×155×0,22 мм.

Таким образом, при перемешивании синтезированной серебряной нанокомпозиции с модифицирующей добавкой в виде растворенного полимера ПММА на поверхности наночастиц металла образуется адсорбционно-сольватный слой, препятствующий сближению частиц при расклинивающем механическом воздействии ракеля в момент совершения технологической операции нанесения нанокомпозиции на подстилающую поверхность. Варьируя основными технологическими параметрами нанесения, можно получать толстопленочные покрытия на фотоэлементах с улучшенными физико-химическими характеристиками в быстропротекающем технологическом процессе.

Расклинивающее давление Р ракеля на вязкую нанокомпозитную среду, сольватно связанную в адсорбционном слое молекулами или ионами стабилизатора, позволяет предотвратить вероятное электростатическое отталкивание одноименно заряженных ионов, адсорбированных на поверхности частиц, и повысить структурную вязкость поверхностного защитного слоя, называемого структурно-механическим барьером.

Расклинивающее действие ракеля в момент исполнения технологической операции «нанесение» нанокомпозиции на подстилающую поверхность твердого тела влияет на характер течения нанокомпозитной среды, на вязкость и возможность разрушения среды, переориентацию частиц в потоке и их слипание. Поэтому весь технологический процесс, начиная от внесения модифицирующей добавки в исходную композицию и заканчивая сушкой нанесенного толстопленочного покрытия - быстропротекающий. Он исключает нарушение молекулярной архитектуры вязкой среды и преждевременной коагуляции структурной композиции.

Основной мерой равномерности и однородности покрытия является вязкость наносимой на подложку растворенной композиции.

Параметры получения исходной композиции (ПММА + Ag + растворитель) для выбора необходимой вязкости приведены в таблице 2.

Таблица 2
Масса полимера в исходной композиции, г Объем растворителя, мл Масса полимера в исходной композиции (в долях) Кинематическая вязкость исходной композиции, сСт
1,0 1 0,45 165±3
2 0,31 80±4
3 0,22 46,4±0,9
4 0,18 33±1
5 0,15 26,1±0,7
6 0,13 19,9±0,2
7 0,11 15,4±0,5
8 0,10 11,1±0,7
9 0,09 8,2±0,1
10 0,08 5,0±0,2
0 10 0,0 2,2±0,1

В диапазоне вязкостей исходной композиции от 26,1±0,7 до 80±4 сСт с концентрацией полимера 0,15-0,31 мас. долей удается получить достаточно однородные пленки, однако они характеризуются высокой склонностью к растрескиванию и плохими адгезионными свойствами. Для улучшения физико-химических характеристик получаемого покрытия применяют модифицирующую добавку в виде вязкого раствора ПММА, добавляемую в исходную композицию.

В таблице 3 приведены параметры получения модифицирующей добавки для выбора нужной вязкости.

Оптимальная вязкость модифицирующей добавки составляет 84,2±0,5 сСт. Использование добавки с большей (133±2 сСт) или меньшей (18,4±0,4 сСт) вязкостью вызывает ухудшение реологических и механических свойств покрытия.

Таблица 3
Масса полимера, г Объем растворителя, мл Масса полимера ПММА,(в долях) Кинематическая вязкость добавки, сСт
1 0,45 133±2
1 2 0,37 84,2±0,5
5 0,15 18,4±0,4

В таблице 4 приведены технологические параметры покрытия в зависимости от физико-химических свойств наносимой на плату технологической композиции (исходная композиция + модифицирующая добавка).

Таблица 4
Масса полимера в технологической композиции (в долях) Кинематическая вязкость технологической композиции, сСт Адгезионная прочность покрытия, кгс/см2 Шероховатость поверхности покрытия, нм
0,56 104±4 67±2 1124±4
0,40 39,1±0,2 74±2 132±2
0,24 19±1 58±3 86±3
0,18 11,8±0,1 53±1 59±1
0,11 3,6±0,3 19±1 73±2

Экспериментально установлено, что оптимальный интервал концентрации полимера в растворе технологической композиции, при которой наблюдаются лучшие адгезионные свойства толстопленочного покрытия, составляет 0,18-0,40 массовых долей, при этом оптимальная вязкость технологической композиции составляет от 11,8±0,1 сСт до 39,1±0,2 сСт.

На фото 1 и 2 представлены полученные образцы элементов солнечных батарей с толстопленочным просветляющим покрытием. На фото 3 показан образец без просветляющего покрытия. При сравнении образцов на фото 1, 2 с образцом, представленным на фото 3, визуально наблюдается характерный эффект затемнения подстилающей поверхности солнечного элемента на фото 3. Это говорит о способности фотоэлементов с нанесенной нанокомпозиционной пленкой значительно эффективнее преобразовывать энергию солнечного излучения в электрическую, по сравнению с элементами без покрытия.

Параметры эффективности получаемого просветляющего покрытия в виде толстой пленки сведены в таблицу 5.

Таблица 5
№ фотоэлемента Вольтаический эффект КПД активного элемента, %
без пленки с пленкой
без пленки с пленкой
Isc, A Uos, V Isc, A Uos, V
20К 1,12 0,6 1,43 0,6 17 22
02К 1,16 0,58 1,25 0,58 19 22

В таблице 5: Isc - ток короткого замыкания, в амперах; Uos - напряжение холостого хода, в вольтах.

Полученные пленки просветляющего покрытия на основе нанокомпозитных сред толщиной от 55 до 70 мкм обеспечивают КПД=22% и соответствуют требованиям, предъявляемым к просветляющим покрытиям в толстопленочной технологии микроэлектроники (ОСТ4 ГО.054.240, ОСТ 92-4179-79).

Источник поступления информации: Роспатент

Показаны записи 1-10 из 16.
10.02.2013
№216.012.24c4

Мощный свч-генератор монотронного типа

Изобретение относится к области электронной техники, в частности к электровакуумным генераторным устройствам пролетного типа, а именно к монотронам, в которых взаимодействие электронного потока с СВЧ-полем и отбор энергии совмещены в одном резонаторе. Мощный СВЧ-генератор монотронного типа...
Тип: Изобретение
Номер охранного документа: 0002474914
Дата охранного документа: 10.02.2013
27.02.2013
№216.012.2a22

Способ изготовления углеродотрубобетонной конструкции

Изобретение относится к области строительства, а именно к способам изготовления углеродотрубобетонных конструкций. Способ изготовления углеродотрубобетонной конструкции включает изготовление двухслойной замкнутой по продольным краям заготовки из углеродного волокна с открытыми поперечными...
Тип: Изобретение
Номер охранного документа: 0002476313
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2a74

Комплексный органоминеральный модификатор для бетонных смесей и строительных растворов

Изобретение относится к области строительства и может быть использовано при производстве различных быстротвердеющих бетонных и железобетонных изделий и конструкций из тяжелого и легкого бетона на предприятиях стройиндустрии без применения тепловой обработки, а также при ведении монолитного...
Тип: Изобретение
Номер охранного документа: 0002476395
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2be0

Система снабжения сжиженным углеводородным газом

Изобретение может быть использовано на объектах газоснабжения при подаче газа к использованию конечным потребителем. Система содержит подземный резервуар с сжиженным углеводородным газом 1, крышку резервуара 2, угловой клапан 3, входной фланец которого смонтирован непосредственно на крышке...
Тип: Изобретение
Номер охранного документа: 0002476759
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2ca0

Микропрофиль структуры вакуумной интегральной свч-схемы и способ его получения

Изобретение относится к электронной технике и может быть использовано в производстве электровакуумных микроблоков с вакуумными интегральными схемами (ИС), когда существует необходимость передачи электромагнитной энергии с одного слоя 3D схемы на другой и наоборот. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002476951
Дата охранного документа: 27.02.2013
20.05.2013
№216.012.3fe1

Способ растачивания цилиндрических отверстий деталей

Изобретение относится к области механической обработки металлов и предназначено для использования при растачивании цилиндрических отверстий деталей на станках токарной группы. Способ растачивания цилиндрических отверстий деталей включает сообщение детали вращения вокруг оси обрабатываемого...
Тип: Изобретение
Номер охранного документа: 0002481923
Дата охранного документа: 20.05.2013
20.08.2013
№216.012.6225

Дискретный проходной фазовращатель

Изобретение относится к области электроники сверхвысоких частот, а именно к дискретным фазовращателям проходного типа, и может быть использовано в качестве электронно-управляемых устройств в проходной фазированной антенной решетке. Техническим результатом является уменьшение поперечного размера...
Тип: Изобретение
Номер охранного документа: 0002490757
Дата охранного документа: 20.08.2013
20.02.2019
№219.016.c267

Свч генератор с матричным автоэмиссионным катодом с отражением электронного потока

Изобретение относится к области электронной техники, в частности к СВЧ электровакуумным генераторам. Технический результат: увеличение КПД и выходной мощности генератора с отражением электронного потока. СВЧ генератор содержит систему матричных автоэмиссионных катодов, объемный резонатор с...
Тип: Изобретение
Номер охранного документа: 0002457572
Дата охранного документа: 27.07.2012
01.03.2019
№219.016.cf44

Способ получения полимерных нанокомпозитных толстых пленок и устройство для его осуществления

Изобретение относится к способам и устройствам получения полимерных нанокомпозитных материалов в виде толстых пленок и может быть использовано в оптоэлектронике и радиоэлектронике при изготовлении функциональных электрических и токопроводящих структур устройств. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002404915
Дата охранного документа: 27.11.2010
01.03.2019
№219.016.cfeb

Акустооптический модулятор света

Изобретение относится к акустооптическим модуляторам света (АОМ) на стоячих упругих волнах, предназначенным для осуществления амплитудной модуляции непрерывного когерентного оптического излучения, и может быть использовано для синхронизации мод лазеров, модуляции добротности. Техническим...
Тип: Изобретение
Номер охранного документа: 0002448353
Дата охранного документа: 20.04.2012
Показаны записи 1-10 из 12.
27.02.2013
№216.012.2ca0

Микропрофиль структуры вакуумной интегральной свч-схемы и способ его получения

Изобретение относится к электронной технике и может быть использовано в производстве электровакуумных микроблоков с вакуумными интегральными схемами (ИС), когда существует необходимость передачи электромагнитной энергии с одного слоя 3D схемы на другой и наоборот. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002476951
Дата охранного документа: 27.02.2013
10.01.2014
№216.012.942f

Способ получения стекла с антиотражающим мезопористым покрытием на основе наночастиц sio

Изобретение относится к тонкопленочным просветляющим покрытиям на стекле и может быть использовано в стекольной промышленности и в электронике. Техническим результатом изобретения является получение антиотражающих покрытий на основе наночастиц SiO, имеющих высокую адгезию к поверхности стекла....
Тип: Изобретение
Номер охранного документа: 0002503629
Дата охранного документа: 10.01.2014
20.02.2014
№216.012.a3ec

Объемный микроблок вакуумных интегральных схем логических свч-систем обратной волны

Изобретение относится к электронной технике и может быть использовано в производстве электровакуумных СВЧ-микроблоков с вакуумными интегральными схемами (ИС) и другими схемами. Технический результат - возможность миниатюризации полной системы логических элементов с уменьшением потерь...
Тип: Изобретение
Номер охранного документа: 0002507679
Дата охранного документа: 20.02.2014
27.09.2014
№216.012.f702

Способ получения силикатного стекла с упрочняющим покрытием на основе аморфного диоксида кремния

Изобретение относится к упрочняющим и защитным покрытиям для силикатного стекла и может быть использовано в стекольной промышленности. Техническим результатом изобретения является разработка способа получения стекла с упрочняющим покрытием на основе аморфного диоксида кремния. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002529071
Дата охранного документа: 27.09.2014
27.04.2015
№216.013.4706

Фотоэлектрический преобразователь с наноструктурными покрытиями

Использование: для преобразования солнечной энергии в электричество. Сущность изобретения заключается в том, что фотоэлектрический преобразователь содержит воронкообразные сквозные отверстия с просветляющим покрытием и толстопленочное покрытие (с обратной стороны), содержащее сферические...
Тип: Изобретение
Номер охранного документа: 0002549686
Дата охранного документа: 27.04.2015
27.06.2015
№216.013.5a1b

Способ получения просветляющего покрытия

Изобретение относится к области получения просветляющих покрытий для различных оптических объектов. Техническим результатом изобретения является упрощение технологии, уменьшение агрегирующих воздействий на дисперсную фазу суспензии, повышение адгезии покрытий. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002554608
Дата охранного документа: 27.06.2015
25.08.2017
№217.015.c049

Способ маскировки движущихся и неподвижных тел произвольной формы и состава на основе покрытия из наноструктурного композитного материала с квазинулевым показателем преломления

Изобретение относится к области нанотехнологий, в частности к способу маскировки тел с помощью эффекта огибания светом границы среды с квазинулевым показателем преломления. Способ получения маскировочного покрытия на поверхности маскируемого объекта пневматическим распылением включает нанесение...
Тип: Изобретение
Номер охранного документа: 0002616688
Дата охранного документа: 18.04.2017
16.01.2019
№219.016.b05e

Способ изготовления хеморезистора на основе наноструктур оксида кобальта электрохимическим методом

Изобретение относится к области сенсорной техники и нанотехнологий, в частности к разработке газовых сенсоров хеморезистивного типа, используемых для детектирования газов. Способ изготовления хеморезистора на основе наноструктур оксида кобальта электрохимическим методом характеризуется тем, что...
Тип: Изобретение
Номер охранного документа: 0002677093
Дата охранного документа: 15.01.2019
01.03.2019
№219.016.cf44

Способ получения полимерных нанокомпозитных толстых пленок и устройство для его осуществления

Изобретение относится к способам и устройствам получения полимерных нанокомпозитных материалов в виде толстых пленок и может быть использовано в оптоэлектронике и радиоэлектронике при изготовлении функциональных электрических и токопроводящих структур устройств. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002404915
Дата охранного документа: 27.11.2010
11.04.2019
№219.017.0b42

Мультиоксидный газоаналитический чип и способ его изготовления электрохимическим методом

Группа изобретений относится к области газового анализа, а именно к устройствам распознавания состава многокомпонентных газовых смесей и способам их изготовления. Мультиоксидный газоаналитический чип состоит из диэлектрической подложки, на фронтальную сторону которой нанесен набор компланарных...
Тип: Изобретение
Номер охранного документа: 0002684426
Дата охранного документа: 09.04.2019
+ добавить свой РИД