×
29.05.2019
219.017.6594

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОДИСПЕРСНОГО ПОРОШКА АЛЬФА-ОКСИДА АЛЮМИНИЯ

Вид РИД

Изобретение

№ охранного документа
0002392226
Дата охранного документа
20.06.2010
Аннотация: Изобретение относится к области химии и может быть использовано при получении нанодисперсного порошок α-оксида алюминия. Проводят измельчение α-оксида алюминия в планетарной мельнице стальными шарами размером не более 5 мм при ускорении 20-40 g в течение 20-40 мин. Измельченный α-оксид алюминия отмывают от примесей попеременно соляной кислотой с концентрацией не менее 10 вес.% и раствором щелочи с концентрацией не менее 5 вес.%, а затем вновь соляной кислотой. Предпочтительно измельчение проводят в инертной атмосфере, а отмывание примесей при нагревании до температуры не выше 90°С. Изобретение позволяет получать нанопорошок α-оксида алюминия с пониженным содержанием примесей. 2 з.п. ф-лы.

Изобретение относится к способам получения нанодисперсных порошков α-оксида алюминия, которые благодаря своей коррозионной и термической устойчивости, а также механическим свойствам имеют широкое практическое применение.

Керамические спеченные продукты на базе оксида алюминия и, в частности, корунда (α-Al2O3), могут использоваться при изготовлении режущих инструментов, износостойких частей сухих пар трения, а также подложек катализаторов и фильтрующих элементов.

Нанодисперсный порошок α-оксида алюминия является одним из потенциально наиболее широко востребованных. Серьезной проблемой получения данного нанопорошка является невозможность получения его альфа модификации обычными химическими методами, измельчение остается, по сути, единственной технологической возможностью.

Развиваемые сейчас методы введения затравок нанозерен в алюмогидроксидные гели, во-первых, требуют некоторого количества нанозерен для затравки, а, во-вторых, не позволяют пока опустить размер частиц ниже 100-150 нм.

В настоящее время в США и Германии ведутся интенсивные исследования по возможности производства нанопорошка α-оксида алюминия измельчением. Однако в силу принципиальных ограничений метода сухого измельчения, не позволяющего обычно получить частицы α-оксида алюминия размером менее 0.2-0.4 мкм, в указанных странах используется измельчение в жидких суспезиях, что дорого и крайне неблагоприятно с экологической точки зрения.

Известен способ получения суспензии нанопоршка α-оксида алюминия влажным измельчением в мельницах стесненного удара (1. F.Stenger, S.Mende, J.Schwedes, W.Peukert. Chemical Engineering Science 60 (2005) 4557-4565. - "Nanomilling in stirred media mills"). При измельчении в воде с электростатической стабилизацией суспензии путем изменения pH можно добиться среднего размера частиц в суспензии до 10 нм. Возможность получения сухого порошка для керамической промышленности не обсуждается.

Наиболее близким техническим решением, выбранным за прототип, является механохимический способ получения нанодисперсного α-оксида алюминия (2. G.R.Karagedov, N.Z.Lyakhov, KONA Powder and Particle, 21 (2003) 76-87. - "Mechanochemical grinding of Inoorganic Oxides"). В данном способе используют α-оксид алюминия, полученный из окиси алюминия реактивной, ч.д.а., прокаленной при 1150°С для 100%-ного перехода в альфа фазу. Полученный α-оксида алюминия измельчается в планетарной мельнице АГО-2М 10 мм стальными шарами с добавлением до 10 вес.% порошка металлического железа или алюминия (дезагрегирующие добавки), препятствующего слиянию наночастиц. Измельчение проводится при ускорении 40 g в течение 20-40 мин, а продукт затем отмывается соляной кислотой с концентрацией 15 вес.%. Данный способ позволяет получить кристаллиты α-оксида алюминия с размером частиц 20-25 нм, загрязненные 1,5% железа.

Задача, решаемая заявляемым техническим решением, заключается в получении нанопорошков α-оксида алюминия с пониженным содержанием примесей, что существенно повышает их технологические возможности.

Поставленная задача решается благодаря тому, что в заявляемом способе получения нанодисперсного порошка α-оксида алюминия, включающем измельчение α-оксида алюминия в планетарной мельнице шарами при ускорении 20-40 g в течение 20-40 мин с последующим удалением примесей соляной кислотой, измельчение проводят стальными шарами, размером не более 5 мм, отмывание примесей проводят попеременно соляной кислотой с концентрацией не менее 10 вес.% и раствором щелочи с концентрацией не менее 5 вес.%, а затем вновь соляной кислотой.

Предпочтительно, измельчение в планетарной мельнице проводят в инертной атмосфере.

Предпочтительно, отмывание примесей кислотой и щелочью проводят при нагревании до температуры не более 90°С.

Проведенный патентный поиск не позволил обнаружить аналогичных технических решений, что свидетельствует о новизне заявляемого технического решения.

Существенными признаками заявляемого технического решения является то, что:

- измельчение проводят стальными шарами, размером не более 5 мм;

- отмывание примесей проводят попеременно соляной кислотой с концентрацией не менее 10 вес.% и раствором щелочи с концентрацией не менее 5 вес.%, а затем вновь соляной кислотой.

В заявляемом способе в результате использования шаров диаметром не более 5 мм, т.е. имеющих меньшую энергию удара, но значительно большую поверхность, натирающийся с них при измельчении металл, с одной стороны, не внедряется в кристаллическую решетку α-Al2O3, а с другой, покрывает тонким слоем частицы оксида алюминия, препятствуя их слиянию и выполняя функцию дезагрегирующей добавки. Дополнительного введения дезагрегирующих добавок не требуется, количество необходимого для выполнения этой функции металла существенно меньше, чем в прототипе, а его последующее удаление с поверхности частиц кислотой не представляет затруднений, в то время как удаление внедренного в решетку металла, как это было в прототипе, практически не возможно. Как следствие, при достижении того же размера частиц (25 нм) содержание железа после отмывания снижается в 10 раз (0.15 вес.% вместо 1.5 вес.%).

Еще одним существенным отличием является отмывание примесей попеременно кислотой и щелочью, а не только кислотой. Поскольку натираемый с используемых стальных шаров металл содержит не растворимый в кислоте кремний, его накопление в межчастичном пространстве агрегата препятствует доступу кислоты к металлу и, в конечном итоге, останавливает растворение. Удаление кремния щелочью открывает доступ кислоты к металлу и снижает его остаточное содержание еще в 2-3 раза.

Совокупность этих существенных отличий позволяют решить поставленную задачу.

Проведение измельчения в инертной атмосфере аргона препятствует окислению натираемого металла и, следовательно, его внедрению в кристаллическую решетку Al2O3, что позволяет еще более снизить содержание примесного железа после отмывания до величины <0.02 вес.%.

Отмывание примесей кислотой и щелочью проводят при нагревании до температуры не более 90°С. При температуре более 90°С происходит изменение состояния примесного кремния, что затрудняет его удаление щелочью, а при более низкой заметно замедляется процесс растворения.

Примеры выполнения заявляемого способа:

1. 5 г порошка α-Al2O3, полученного прокалкой при 1150°С окиси алюминия ч.д.а., помещается в барабан из нержавеющей стали вместе с 200 г стальных 5 мм шаров марки ШХ15. Измельчение проводится на планетарной мельнице АГО2-М при ускорении 40 g в течение 20 минут. После измельчения шары отделяются на сите, а порошок заливается 150 мл. 15 вес.% соляной кислотой и нагревается до 90°С, после отстаивания жидкость сливается, а порошок заливается 100 мл 5 вес.%. NaOH и нагревается до 90°С. Затем щелочь сливается, а порошок снова заливается 200 мл 15 вес.% HCl на 1-2 часа. После отстаивания порошок промывается декантацией и сушится на воздухе. Полученный таким образом порошок имеет удельную поверхность 40-60 м2/г, размер кристаллитов по уширению профиля рентгеновских линий 25 нм и размер частиц в электронном микроскопе в диапазоне 20-25 нм, содержание примесного железа 0.06 вес.%.

2. 5 г порошка α-Al2O3, полученного прокалкой при 1150°С окиси алюминия ч.д.а., помещается в барабан из нержавеющей стали вместе с 200 г стальных 5 мм шаров марки ШХ15. Барабан заполняется аргоном или азотом и герметично закрывается. Измельчение проводится на планетарной мельнице АГО2-М при ускорении 40 g в течение 20 минут. После измельчения шары отделяются на сите, а порошок заливается 150 мл. 15 вес.% соляной кислотой и нагревается до 90°С, после отстаивания жидкость сливается, а порошок заливается 100 мл 5 вес.% NaOH и нагревается до 90°С. Затем щелочь сливается, а порошок снова заливается 200 мл 15 вес.% HCl на 1-2 часа. После отстаивания порошок промывается декантацией и сушится на воздухе. Полученный таким образом порошок имеет удельную поверхность 50-60 м2/г, размер кристаллитов по уширению профиля рентгеновских линий 25 нм и размер частиц в электронном микроскопе в диапазоне 20-25 нм, содержание примесного железа, 0.02 вес.%.

3. 5 г порошка α-Al2O3, полученного прокалкой при 1150°С окиси алюминия ч.д.а., помещается в барабан из нержавеющей стали вместе с 200 г стальных 9 мм шаров марки ШХ15. Барабан заполняется азотом и герметично закрывается. Измельчение проводится на планетарной мельнице АГО2-М при ускорении 40 g в течение 20 минут. После измельчения шары отделяются на сите, а порошок заливается 150 мл 15 вес.% соляной кислотой и нагревается до 90°С, после отстаивания жидкость сливается, а порошок заливается 100 мл 5 вес.% NaOH и нагревается до 90°С. Затем щелочь сливается, а порошок снова заливается 200 мл 15 вес.% HCl на 1-2 часа. После отстаивания порошок промывается декантацией и сушится на воздухе. Полученный таким образом порошок имеет удельную поверхность 40-45 м2/г, размер кристаллитов по уширению профиля рентгеновских линий 20 нм и размер частиц в электронном микроскопе в диапазоне 20-25 нм, содержание примесного железа 0.35 вес.%.

4. 5 г порошка α-Al2O3, полученного прокалкой при 1150°С окиси алюминия ч.д.а., помещается в барабан из нержавеющей стали вместе с 200 г стальных 5 мм шаров марки ШХ15. Измельчение проводится на планетарной мельнице АГО2-М при ускорении 20 g в течение 40 минут. После измельчения шары отделяются на сите, а порошок заливается 150 мл 15 вес.% соляной кислотой и нагревается до 90°С, после отстаивания жидкость сливается, а порошок заливается 100 мл 5 вес.% NaOH и нагревается до 90°С. Затем щелочь сливается, а порошок снова заливается 200 мл 15 вес.% HCl на 1-2 часа. После отстаивания порошок промывается декантацией и сушится на воздухе. Полученный таким образом порошок имеет удельную поверхность 30-40 м2/г, размер кристаллитов по уширению профиля рентгеновских линий 50 нм и размер частиц в электронном микроскопе в диапазоне 50-60 нм, содержание примесного железа 0.07 вес.%.

Как видно из приведенных примеров, заявляемый способ по сравнению с прототипом позволяет получить нанодисперсный порошок α-оксида алюминия достаточно высокой чистоты.

Источник поступления информации: Роспатент

Показаны записи 1-2 из 2.
10.01.2015
№216.013.17ad

Способ получения нитрида алюминия

Изобретение относится к порошковой технологии, в частности к получению мелкодисперсного порошка нитрида алюминия, имеющего широкое применение в радиотехнической и электронной промышленности в качестве основного компонента теплопроводящих паст и материала для изготовления керамических подложек...
Тип: Изобретение
Номер охранного документа: 0002537489
Дата охранного документа: 10.01.2015
24.05.2019
№219.017.6065

Способ получения нанопорошка альфа-оксида алюминия с узким распределением частиц по размерам

Изобретение относится к области химии и используется для получения оксида алюминия. Соль - предшественник оксида алюминия вместе с затравочными частицами альфа-оксида алюминия размером не более 25 нм подвергают механохимической обработке в мельнице, полученную смесь добавляют в водный раствор...
Тип: Изобретение
Номер охранного документа: 0002409519
Дата охранного документа: 20.01.2011
Показаны записи 11-20 из 24.
10.02.2016
№216.014.cf4d

Способ получения ацетилена из метана

Изобретение относится к способу получения ацетилена окислительным пиролизом метана в присутствии кислородсодержащего газа и катализатора, нагреваемого до температуры 750-1200°C путем пропускания через него электрического тока. Способ характеризуется тем, что в качестве катализатора используют...
Тип: Изобретение
Номер охранного документа: 0002575007
Дата охранного документа: 10.02.2016
13.01.2017
№217.015.6b9f

Газохимический мембранный реактор

Изобретение относится к области мембранных технологий и касается устройств, осуществляющих выделение кислорода из смеси газов на керамических мембранах со смешанной ионно-электронной проводимостью. Газохимический мембранный реактор включает модуль из кислородпроницаемых мембран (2), собранный...
Тип: Изобретение
Номер охранного документа: 0002592627
Дата охранного документа: 27.07.2016
25.08.2017
№217.015.ac2e

Пептид-иммуноген, используемый в терапевтической вакцине для лечения метастатического рака молочной железы у кошек и собак

Изобретение относится к медицине, а именно к ветеринарии, и может быть использовано для лечения метастатического рака молочной железы у кошек и собак. Для этого используют пептид-иммуноген, характеризующийся следующей аминокислотной последовательностью CKGPIVLDGVIKTQPHAAEK (SEQ ID NO:1),...
Тип: Изобретение
Номер охранного документа: 0002612015
Дата охранного документа: 01.03.2017
26.08.2017
№217.015.ddcf

Пептид-иммуноген, используемый в терапевтической вакцине для лечения метастатического рака молочной железы

Изобретение относится к медицине, а именно к иммунологии, и может быть использовано для получения пептида, используемого в вакцине для лечения метастатического рака молочной железы человека. Пептид-иммуноген характеризуется аминокислотной последовательностью CKGPIVLDGVIKTQPHAAEK (SEQ ID NO:...
Тип: Изобретение
Номер охранного документа: 0002624862
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.dfd8

Способ получения субмикронного порошка альфа-оксида алюминия

Изобретение может быть использовано в неорганической химии. Способ получения субмикронного порошка альфа-оксида алюминия включает обработку гидроксида алюминия, полученного способом Байера, в мельнице с затравочными частицами, сушку, прокаливание и дезагрегацию полученного порошка путем помола...
Тип: Изобретение
Номер охранного документа: 0002625104
Дата охранного документа: 11.07.2017
20.01.2018
№218.016.1ae2

Пептиды-иммуногены и вакцина "эпивакэбола" против лихорадки эбола с использованием указанных пептидов

Группа изобретений относится к медицине, а именно к иммунологии, и может быть использована для получения вакцины против лихорадки Эбола. Получен пептид-иммуноген, используемый в качестве компонента вакцины против лихорадки Эбола, характеризующийся аминокислотной последовательностью...
Тип: Изобретение
Номер охранного документа: 0002635998
Дата охранного документа: 17.11.2017
23.02.2019
№219.016.c739

Состав для плит из рисовой шелухи

Изобретение относится к композициям, применяемым для изготовления древесно-стружечных плит. Описан состав для плит, включающий в качестве наполнителя рисовую шелуху или смесь рисовой шелухи и древесных опилок, жидкое натриевое стекло с модулем 2,4-3,6, диоксид кремния, в качестве которого...
Тип: Изобретение
Номер охранного документа: 0002291051
Дата охранного документа: 10.01.2007
01.03.2019
№219.016.ccff

Система регулирования давления воздуха в шинах транспортного средства (варианты)

Система содержит головку подвода воздуха к шинам, связанную воздушными трубопроводами с источником рабочей среды и полостью шины соответственно и установленную на приводе колеса, содержащем карданный вал. По первому варианту головка подвода воздуха к шинам соединена с полостью шины через...
Тип: Изобретение
Номер охранного документа: 0002333843
Дата охранного документа: 20.09.2008
14.03.2019
№219.016.df70

Композиция на основе празиквантеля для лечения описторхоза

Изобретение относится к фармацевтической промышленности, а именно к композиции для лечения описторхоза. Композиция на основе празиквантеля для лечения описторхоза, включающая комплекс празиквантеля и натриевой соли растительного сапонина - глицирризиновой кислоты при массовых соотношениях...
Тип: Изобретение
Номер охранного документа: 0002681649
Дата охранного документа: 12.03.2019
29.04.2019
№219.017.456c

Биоцид для противообрастающего покрытия

Изобретение относится к составам биоцидов для термопластических противообрастающих покрытий - красок (ТПК), используемых для защиты корпусов морских судов, гидротехнических и иных сооружений от обрастания и биоповреждений в морской или иных биоагрессивных средах. Биоцид для противообрастающего...
Тип: Изобретение
Номер охранного документа: 0002433154
Дата охранного документа: 10.11.2011
+ добавить свой РИД