×
24.05.2019
219.017.5e7b

Результат интеллектуальной деятельности: СПОСОБ ЭКСПЛУАТАЦИИ ОСЕСИММЕТРИЧНОГО ПОВОРОТНОГО СОПЛА ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к авиационным турбореактивным двигателям, а именно к эксплуатации осесимметричного поворотного сопла, обеспечивающего у двигателя изменения тяги по направлению. Способ эксплуатации осесимметричного поворотного сопла турбореактивного двигателя, у которого ось поворота подвижного корпуса направлена поперек продольной оси неподвижного корпуса сопла, а на переднем фланце подвижного корпуса размещен кольцевой уплотнительный элемент, включает монтаж поворотного сопла на турбореактивный двигатель для его эксплуатации. После монтажа сопла на двигатель во время его эксплуатации периодически производят замер зазора между сферической поверхностью неподвижного корпуса и торцем сегментного вкладыша в зоне максимально удаленной от оси поворота сопла. По величине зазора судят о степени износа рабочих поверхностей графитовых вставок, и если значение зазора лежит в интервале минимальных значений, допустимых для обеспечения работоспособности уплотнительного элемента, сопло демонтируют с двигателя для ремонта. После демонтажа сопла с двигателя отворачивают болты крепления корпуса уплотнительного элемента к переднему фланцу поворотного корпуса из резьбовых отверстий переднего фланца. Поворачивают корпус уплотнительного элемента вокруг своей продольной оси на четверть оборота до совмещения осей отверстий в корпусе уплотнительного элемента с осями резьбовых отверстий в переднем фланце подвижного корпуса. Вворачивают болты крепления в резьбовые отверстия переднего фланца до прижатия торца корпуса уплотнительного элемента к торцу переднего фланца подвижного корпуса, после чего производят монтаж сопла на двигатель. Техническим результатом, достигаемым при использовании заявленного изобретения, является увеличение ресурса использования кольцевого уплотнительного элемента поворотного реактивного сопла. 3 ил.

Изобретение относится к авиационным турбореактивным двигателям, а именно, к эксплуатации осесимметричного поворотного сопла, обеспечивающего у двигателя изменения тяги по направлению.

Известен способ эксплуатации осесимметричного поворотного сопла турбореактивного двигателя, у которого ось поворота подвижного корпуса направлена поперек продольной оси неподвижного корпуса сопла а на переднем фланце подвижного корпуса размещен кольцевой уплотнительный элемент, отделяющий S-образную магистраль охлаждения сопла от внешней среды, с корпусом П-образной формы, внутри которого установлены и зафиксированы в окружном направлении сегментные вкладыши с закрепленными в них и выступающими за их торцы графитовыми вставками, подпружиненные в радиальном направлении в сторону контактирующей с ними сферической поверхности неподвижного корпуса, прижатый к переднему фланцу подвижного корпуса болтами крепления, проходящими через отверстия в корпусе уплотнительного элемента и ввернутыми в резьбовые отверстия в переднем фланце подвижного корпуса, включающий монтаж поворотного сопла на турбореактивный двигатель для его эксплуатации.

/ RU №2529283, МПК F02K 1/80, опубликовано: 27.09.2014 / - прототип.

Выполнение конструкции сопла в таком виде обеспечивает его надежную работу, благодаря минимальным потерям охлаждающего воздуха, подаваемого в магистраль охлаждения в течение всего ресурса его работы.

Однако, в процессе эксплуатации, при значительном количестве перекладок подвижного корпуса реактивного сопла относительно его неподвижной части происходит выработка графитовых вставок кольцевого уплотнительного элемента. Для надежной работы реактивного сопла необходимо избегать утечек воздуха из охлаждающей магистрали, поэтому в процессе эксплуатации двигателя требуется контролировать состояние графитовых вставок кольцевого уплотнительного элемента, их выработка сверх допустимых значений требует замены кольцевого уплотнительного элемента. Чтобы осуществить его замену требуется демонтировать большое количество элементов сопла, что возможно только при наличии специализированного оборудования, которое находится в цехах завода-изготовителя. В результате на проведение данной работы требуются большое количество времени и значительные финансовые затраты.

Задача изобретения продлить ресурс работы поворотного реактивного сопла без замены уплотнительного элемента.

Техническим результатом, достигаемым при использовании заявленного изобретения, является увеличение ресурса использования кольцевого уплотнительного элемента поворотного реактивного сопла.

Технический результат достигается тем, что в заявленном способе эксплуатации осесимметричного поворотного сопла турбореактивного двигателя, у которого ось поворота подвижного корпуса направлена поперек продольной оси неподвижного корпуса сопла, а на переднем фланце подвижного корпуса размещен кольцевой уплотнительный элемент, отделяющий S-образную магистраль охлаждения сопла от внешней среды, с корпусом П-образной формы, внутри которого установлены и зафиксированы в окружном направлении сегментные вкладыши с закрепленными в них и выступающими за их торцы графитовыми вставками, подпружиненные в радиальном направлении в сторону контактирующей с ними сферической поверхности неподвижного корпуса, прижатый к переднему фланцу подвижного корпуса болтами крепления, проходящими через отверстия в корпусе кольцевого уплотнительного элемента и ввернутыми в резьбовые отверстия в переднем фланце подвижного корпуса, включающий монтаж поворотного сопла на турбореактивный двигатель для его эксплуатации, согласно заявленному способу после монтажа сопла на двигатель во время его эксплуатации периодически производят замер зазора h между сферической поверхностью неподвижного корпуса и торцем сегментного вкладыша в зоне максимально удаленной от оси поворота сопла, по которому судят о степени износа рабочих поверхностей графитовых вставок, если значение зазора h лежит в интервале минимальных значений, допустимых для обеспечения работоспособности уплотнительного элемента, сопло демонтируют с двигателя для его ремонта, после демонтажа сопла с двигателя отворачивают болты крепления корпуса уплотнительного элемента к переднему фланцу поворотного корпуса из резьбовых отверстий переднего фланца, поворачивают корпус уплотнительного элемента вокруг своей продольной оси на четверть оборота до совмещения осей отверстий в корпусе уплотнительного элемента с осями резьбовых отверстий в переднем фланце подвижного корпуса, вворачивают болты крепления в резьбовые отверстия переднего фланца до прижатия торца корпуса уплотнительного элемента к торцу переднего фланца подвижного корпуса, после чего производят монтаж сопла на двигатель.

Периодический замер зазора h между сферической поверхностью неподвижного корпуса и торцом сегментного вкладыша в зоне максимально удаленной от оси поворота сопла позволяет контролировать зазор между уплотнительным элементом и сферической поверхностью неподвижного корпуса в местах наиболее подверженных износу, в результате большего перемещения пятна контакта графитовых вставок в зонах наиболее удаленных от оси поворота сопла, тем самым можно судить об остатке ресурса уплотнительного элемента. В случае, когда значение зазора h лежит в интервале минимальных значений, допустимых для обеспечения работоспособности уплотнительного элемента, и не выходит за его пределы, сопло демонтируют с двигателя для того, чтобы получить доступ к уплотнительному элементу и осуществить ремонтные работы. В процессе ремонта отворачивают и вынимают болты крепления корпуса уплотнительного элемента к переднему фланцу поворотного корпуса из резьбовых отверстий переднего фланца, тем самым обеспечивается возможность поворота уплотнительного элемента. Неравномерный износ графитовых вставок уплотнительного элемента, определяемый различными величинами перемещений, в зависимости от расстояния от оси поворота сопла, дает возможность использовать наименее изношенные графитовые вставки в местах наиболее подверженных износу и наоборот - наиболее изношенные графитовые вставки в местах наименее подверженных износу. Для этого уже отсоединенный уплотнительный элемент проворачивают вокруг своей продольной оси на четверть оборота до совмещения осей отверстий в корпусе уплотнительного элемента с осями резьбовых отверстий в переднем фланце подвижного корпуса, затем вворачивают болты крепления в резьбовые отверстия переднего фланца, обеспечивая фиксацию кольцевого уплотнительного элемента. Данная последовательность операций позволяет продлить ресурс уплотнительного элемента практически в два раза, тем самым увеличивая ресурс сопла турбореактивного двигателя.

Дополнительный технический результат заключается в том, что при продлении ресурса кольцевого уплотнительного элемента пропадает необходимость его замены на новое. Чтобы осуществить его замену требуется демонтировать большое количество элементов сопла, что возможно только при наличии специализированного оборудования, которое находится в цехах завода-изготовителя. Тем самым использование заявленного способа позволяет сэкономить значительное количество времени и финансовых затрат.

На фиг. 1 изображен продольный разрез осесимметричного поворотного сопла;

на фиг. 2 показано увеличенное место крепления кольцевого уплотнительного элемента;

на фиг. 3 показан вид Б-Б на уплотнительный элемент.

Реализация заявленного способа осуществляется на поворотном осесимметричном сопле турбореактивного двигателя, содержащем подвижный корпус (1), ось поворота (2) которого направлена поперек продольной оси (3) неподвижного корпуса (4). На переднем фланце (5) подвижного корпуса (1) размещен кольцевой уплотнительный элемент (6), отделяющий S-образную магистраль охлаждения сопла (7) от внешней среды, с корпусом П-образной формы (8), внутри которого установлены и зафиксированы в окружном направлении сегментные вкладыши (9) с закрепленными в них и выступающими за их торцы (10) графитовые вставки (11), подпружиненные в радиальном направлении в сторону контактирующей с ними сферической поверхности (12) неподвижного корпуса (4) с помощью плоских пружин (13), прижатый к переднему фланцу (5) подвижного корпуса (1) болтами крепления (14), проходящими через резьбовые отверстия (15) в переднем фланце (5) подвижного корпуса (1)

Способ эксплуатации сопла реализуют следующим образом.

После монтажа поворотного осесимметричного сопла (1) на турбореактивный двигатель, во время его эксплуатации периодически производят замер зазора h между сферической поверхностью (13) неподвижного корпуса (4) и торцом (10) сегментного вкладыша (9) в зоне максимально удаленной от оси поворота (2). В том случае, если значение зазора h лежит в интервале минимальных значений, допустимых для обеспечения работоспособности кольцевого уплотнительного элемента (6), и не выходит за его пределы, осесимметричное поворотное сопло демонтируют с двигателя для его ремонта. В процессе ремонта отворачивают и вынимают болты крепления (14) П-образного корпуса (8) кольцевого уплотнительного элемента (6) подвижного корпуса (1) из резьбовых отверстий (15) переднего фланца (4), поворачивают кольцевой уплотнительный элемент (5) на четверть оборота относительно продольной оси (3) до совмещения осей отверстий (16) в корпусе уплотнительного элемента с осями резьбовых отверстий (17) в переднем фланце (5) подвижного корпуса (1), затем вворачивают болты крепления (14) в резьбовые отверстия (17) переднего фланца (5), до прижатия П-образного корпуса (8) к переднему фланцу (5), после чего производят контровку болтов крепления (14). Окончательно собранное осесимметричное поворотное сопло далее передается для монтажа на двигатель.

Способ эксплуатации осесимметричного поворотного сопла турбореактивного двигателя, у которого ось поворота подвижного корпуса направлена поперек продольной оси неподвижного корпуса сопла, а на переднем фланце подвижного корпуса размещен кольцевой уплотнительный элемент, отделяющий S-образную магистраль охлаждения сопла от внешней среды, с корпусом П-образной формы, внутри которого установлены и зафиксированы в окружном направлении сегментные вкладыши с закрепленными в них и выступающими за их торцы графитовыми вставками, подпружиненные в радиальном направлении в сторону контактирующей с ними сферической поверхности неподвижного корпуса, прижатый к переднему фланцу подвижного корпуса болтами крепления, проходящими через отверстия в корпусе кольцевого уплотнительного элемента и ввернутыми в резьбовые отверстия в переднем фланце подвижного корпуса, включающий монтаж поворотного сопла на турбореактивный двигатель для его эксплуатации, отличающийся тем, что после монтажа сопла на двигатель во время его эксплуатации периодически производят замер зазора h между сферической поверхностью неподвижного корпуса и торцом сегментного вкладыша в зоне максимально удаленной от оси поворота сопла, по которому судят о степени износа рабочих поверхностей графитовых вставок, если значение зазора h лежит в интервале минимальных значений, допустимых для обеспечения работоспособности уплотнительного элемента, сопло демонтируют с двигателя для его ремонта, после демонтажа сопла с двигателя отворачивают болты крепления корпуса уплотнительного элемента к переднему фланцу поворотного корпуса из резьбовых отверстий переднего фланца, поворачивают корпус уплотнительного элемента вокруг своей продольной оси на четверть оборота до совмещения осей отверстий в корпусе уплотнительного элемента с осями резьбовых отверстий в переднем фланце подвижного корпуса, вворачивают болты крепления в резьбовые отверстия переднего фланца до прижатия торца корпуса уплотнительного элемента к торцу переднего фланца подвижного корпуса, после чего производят монтаж сопла на двигатель.
Источник поступления информации: Роспатент

Показаны записи 61-70 из 110.
24.05.2019
№219.017.5eb2

Реверсивное устройство турбореактивного двигателя

Реверсивное устройство турбореактивного двигателя, содержащее устройство для перекрытия газового потока в корпусе двигателя, размещенного в мотогондоле самолета, содержит выхлопные каналы, установленные по направлению движения газового потока, по окружности в кольцевой полости, клапаны...
Тип: Изобретение
Номер охранного документа: 0002688642
Дата охранного документа: 21.05.2019
24.05.2019
№219.017.5eca

Способ нанесения теплозащитного покрытия на лопатки турбин высоконагруженного двигателя

Изобретение относится к способу нанесения теплозащитного покрытия на лопатки турбин, работающих при высоких температурах в высоконагруженных двигателях. Наносят многослойное покрытие. В качестве сплава первого слоя жаростойкого покрытия используют сплав содержащий Ni-Co-Cr-Al-Y-Ta-W-Hf. Второй...
Тип: Изобретение
Номер охранного документа: 0002688417
Дата охранного документа: 22.05.2019
24.05.2019
№219.017.5ee0

Многорежимный газотурбинный двигатель твердого топлива

Многорежимный газотурбинный двигатель твердого топлива содержит твердотопливный заряд и корпус, образующий газовоздушный тракт двигателя. В газовоздушном тракте двигателя последовательно размещены компрессор, камера сгорания, турбина, выходное устройство. Твердотопливный заряд размещен вне...
Тип: Изобретение
Номер охранного документа: 0002688612
Дата охранного документа: 21.05.2019
13.06.2019
№219.017.80a8

Система управления турбокомпрессорной установкой

Изобретение относится к системам управления работой турбокомпрессорной установки и может быть использовано для управления процессом возникновения критических нестационарных автоколебаний компрессора нагнетателя при испытаниях преимущественно авиационных газотурбинных двигателей (ГТД) и...
Тип: Изобретение
Номер охранного документа: 0002691273
Дата охранного документа: 11.06.2019
13.06.2019
№219.017.80d8

Регулируемый входной направляющий аппарат компрессора газотурбинного двигателя

Изобретение относится к области конструирования газотурбинного двигателя (далее ГТД), а именно узлов ГТД, служащих для регулирования и управления изменениями газового потока, расположенных в части статора. В известном регулируемом ВНА компрессора ГТД, содержащем направляющие лопатки, каждая из...
Тип: Изобретение
Номер охранного документа: 0002691276
Дата охранного документа: 11.06.2019
13.06.2019
№219.017.8179

Сопловый аппарат турбины низкого давления (тнд) газотурбинного двигателя (гтд) (варианты) и лопатка соплового аппарата тнд (варианты)

Группа изобретений относится к области авиадвигателестроения. Сопловый аппарат ТНД двигателя содержит сопловые блоки, смонтированные между наружным и внутренним силовыми кольцами, соединенными полыми силовыми спицами. Каждый из сопловых блоков собран из трех жестко соединенных лопаток,...
Тип: Изобретение
Номер охранного документа: 0002691203
Дата охранного документа: 11.06.2019
13.06.2019
№219.017.818d

Способ охлаждения соплового аппарата турбины низкого давления (тнд) газотурбинного двигателя и сопловый аппарат тнд, охлаждаемый этим способом, способ охлаждения лопатки соплового аппарата тнд и лопатка соплового аппарата тнд, охлаждаемая этим способом

Группа изобретений относится к области авиадвигателестроения. Сопловый аппарат ТНД включает сопловый венец, образованный из сопловых блоков, собранный каждый не менее чем из трех сопловых лопаток, выполненных за одно целое с малой и большой. Сопловые блоки смонтированы между наружным и...
Тип: Изобретение
Номер охранного документа: 0002691202
Дата охранного документа: 11.06.2019
20.06.2019
№219.017.8d4a

Ротор турбины высокого давления газотурбинного двигателя (варианты)

Группа изобретений относится к области авиадвигателестроения. Ротор ТВД двигателя содержит рабочее колесо ТВД, включающее диск и лопаточный венец с системой рабочих лопаток. Лопатка ТВД включает каждая хвостовик и перо с выпукло-вогнутым профилем стенок. Диск рабочего колеса выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002691868
Дата охранного документа: 18.06.2019
20.06.2019
№219.017.8d57

Способ охлаждения лопатки ротора турбины низкого давления (тнд) газотурбинного двигателя и лопатка ротора тнд, охлаждаемая этим способом

Группа изобретений относится к области авиадвигателестроения. Лопатка рабочего колеса ротора ТНД включает хвостовик и перо с выпукло-вогнутым профилем. Полость лопатки выполнена на полную высоту пера лопатки Полость пера в средней наиболее теплонапряженной части, составляющей не менее трети...
Тип: Изобретение
Номер охранного документа: 0002691867
Дата охранного документа: 18.06.2019
09.08.2019
№219.017.bd1d

Способ эксплуатации авиационного газотурбинного двигателя по его техническому состоянию

Изобретение относится к области диагностирования технического состояния авиационных газотурбинных двигателей с учетом конкретных условий эксплуатации. Техническим результатом, достигаемым при использовании заявленного способа, является более полное использование потенциальных возможностей...
Тип: Изобретение
Номер охранного документа: 0002696523
Дата охранного документа: 02.08.2019
Показаны записи 61-70 из 299.
20.05.2015
№216.013.4c23

Турбореактивный двигатель

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Турбореактивный двигатель выполнен двухконтурным, двухвальным. Ось вращения поворотного устройства относительно горизонтальной оси повернута на угол не менее 30° по часовой стрелке для...
Тип: Изобретение
Номер охранного документа: 0002551005
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4c25

Способ доводки опытного газотурбинного двигателя

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Доводке подвергают опытный ГТД, выполненный двухконтурным, двухвальным. Доводку ГТД производят поэтапно. На каждом этапе подвергают испытаниям на соответствие заданным параметрам от одного до...
Тип: Изобретение
Номер охранного документа: 0002551007
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4c2b

Способ серийного производства газотурбинного двигателя и газотурбинный двигатель, выполненный этим способом

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. В способе серийного производства газотурбинного двигателя изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не...
Тип: Изобретение
Номер охранного документа: 0002551013
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4c2d

Способ доводки опытного турбореактивного двигателя

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Доводке подвергают опытный ТРД, выполненный двухконтурным, двухвальным. Доводку ТРД производят поэтапно. На каждом этапе подвергают испытаниям на соответствие заданным параметрам от одного...
Тип: Изобретение
Номер охранного документа: 0002551015
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4c31

Способ доводки опытного турбореактивного двигателя

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Доводке подвергают опытный ТРД, выполненный двухконтурным, двухвальным. На стадии доводки опытный ТРД подвергают испытанию по многоцикловой программе. При выполнении этапов испытания...
Тип: Изобретение
Номер охранного документа: 0002551019
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4cac

Способ серийного производства газотурбинного двигателя и газотурбинный двигатель, выполненный этим способом

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. В способе серийного производства ГТД изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. После сборки производят испытания двигателя на влияние...
Тип: Изобретение
Номер охранного документа: 0002551142
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d13

Способ эксплуатации турбореактивного двигателя и турбореактивный двигатель, эксплуатируемый этим способом

Изобретение относится к области авиадвигателестроения. В способе эксплуатации ТРД перед каждым запуском двигателя осуществляют проверку готовности двигателя к работе, производят запуск, прогрев и вывод двигателя на рабочие режимы, предусмотренные регламентом, останов двигателя, периодически...
Тип: Изобретение
Номер охранного документа: 0002551245
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d14

Способ доводки опытного газотурбинного двигателя

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Доводке подвергают опытный ГТД, выполненный двухконтурным, двухвальным. Доводку ГТД производят поэтапно. На каждом этапе подвергают испытаниям на соответствие заданным параметрам от одного до...
Тип: Изобретение
Номер охранного документа: 0002551246
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d15

Турбореактивный двигатель

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Турбореактивный двигатель выполнен двухконтурным, двухвальным. Двигатель испытан по многоцикловой программе. При выполнении этапов испытания проводят чередование режимов, которые по...
Тип: Изобретение
Номер охранного документа: 0002551247
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d16

Способ доводки опытного турбореактивного двигателя

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Доводке подвергают опытный ТРД, выполненный двухконтурным, двухвальным. Доводку ТРД производят поэтапно. На каждом этапе подвергают испытаниям на соответствие заданным параметрам от одного...
Тип: Изобретение
Номер охранного документа: 0002551248
Дата охранного документа: 20.05.2015
+ добавить свой РИД