×
24.05.2019
219.017.5e7a

Результат интеллектуальной деятельности: Способ определения распределения по размерам и концентрации включений в частично прозрачных сильно рассеивающих материалах

Вид РИД

Изобретение

№ охранного документа
0002688587
Дата охранного документа
21.05.2019
Аннотация: Изобретение относится к области контрольно-измерительной техники и касается способа определения распределения по размерам и концентрации включений в частично прозрачных сильно рассеивающих материалах. Способ включает в себя получение в качестве экспериментальных данных спектральных коэффициентов диффузного отражения или пропускания слоев материала известных толщин. Распределение включений по размерам задается в параметрической форме, а параметры распределений рассчитываются минимизацией функции невязки между спектральным показателем рассеяния, рассчитываемым по теории Ми, и спектральным показателем рассеяния, определяемым путем решения обратной задачи переноса излучения. Результат решения обратной задачи получается путем минимизации функции невязки между экспериментально измеренным коэффициентом диффузного отражения или пропускания и рассчитанным по асимптотическим формулам при помощи теории переноса излучения для коэффициента отражения или пропускания. Технический результат заключается в повышении информативности и точности исследований. 4 ил.

Изобретение относится к области контрольно- измерительной техники, в частности к измерению структурных свойств многофазных сильно рассеивающих и слабо поглощающих сред оптическими методами, может быть использовано для исследования размеров пор и прочих включений в керамике, стекле и других дисперсных системах. Изобретение может найти применение в медицине, коллоидной химии, для контроля загрязнений окружающей среды и других отраслях, где необходимо вести быстрый контроль размеров или содержания включений дисперсных систем.

Известны способы определения размеров включений, основанные на рассеянии излучения, где в качестве экспериментальных данных используются спектры направленного пропускания при небольших концентрациях рассеивающих примесей [1-6].

Возможности этих методов ограничены плотной керамикой с небольшой объемной долей включений или сильно разбавленными растворами.

Наиболее близким техническим решением (прототипом) является способ, который основан на расчете коэффициентов экстинкции при помощи теории Ми и решении обратной задачи переноса излучения в трехпотоковом приближении для непоглощающего материала [7]. При решении обратной задачи определяется эффективная оптическая толщина, зависящая как от показателей рассеяния, так и от индикатрисы рассеяния, а в качестве экспериментальных данных используются спектры диффузного пропускания.

Недостатком прототипа является возможность анализировать только непоглощающие материалы и двухфазные системы.

Задачей, на решение которой направлено предлагаемое изобретение, является повышение достоверности получаемых данных и расширение области применимости оптических методов анализа структуры частично прозрачных рассеивающих материалов.

Техническим результатом изобретения является повышение информативности и точности исследований структурных свойств дисперсных систем в области их частичной прозрачности, возможность получения данных о структурных свойствах (распределение пор и включений по размерам) на натурном изделии.

Технический результат изобретения достигается путем оптимизации параметров распределения пор или включений по размерам и их объемной доли таким образом, чтобы спектральный показатель рассеяния, определяемый расчетом по теории Ми, совпал с результатом решения обратной задачи переноса излучения.

Входными данным для процесса оптимизации служат: стартовые параметры распределений по размерам, стартовое значение объемных долей включений для каждой из фаз, действительная и мнимая часть показателей преломления материала включений для каждой из фаз и материала среды, спектральные коэффициенты диффузного отражения или пропускания слоев различных толщин, измеренные в диапазоне длин волн частичной прозрачности материала.

Способ определения распределения по размерам и концентрации включений в частично прозрачных сильно рассеивающих материалах, отличающийся тем, что в качестве экспериментальных данных используют спектральные коэффициенты диффузного отражения или пропускания слоев материала известных толщин, распределение включений по размерам задаются в параметрической форме, а параметры распределений рассчитываются минимизацией функции невязки между спектральным показателем рассеяния , рассчитываемым по теории Ми и спектральным показателем рассеяния , определяемым путем решения обратной задачи переноса излучения:

Спектральный показатель рассеяния по теории Ми, рассчитывается:

Результат решения обратной задачи получается путем минимизации функции невязки:

между экспериментально измеренным коэффициентом диффузного отражения или пропускания , и рассчитанным по асимптотическим формулам при помощи теории переноса излучения для коэффициента отражения:

или пропускания:

где

- параметр, связанный с формой индикатрисы рассеяния;

- параметр, учитывающий направление падения излучения;

μ0 - косинус угла падения параллельного пучка на поверхность рассеивающего слоя при измерении коэффициента отражения;

- альбедо однократного рассеяния;

- оптическая толщина слоя;

- объемная доля включений ν-й фазы;

- набор параметров, определяющих распределение включений по размерам;

- индексы суммирования по длинам волн, фазам, диаметрам и толщинам, соответственно;

Ω, Е, N, М - общее число точек длин волн, фаз включений, дискретов по диаметру и геометрических толщин, соответственно;

- длина волны;

- спектральный показатель рассеяния, рассчитываемый по теории Ми;

- эффективность рассеяния шаром диаметром Di из материала ν-й фазы;

- спектральный показатель рассеяния, определяемый путем решения обратной задачи переноса излучения;

- показатель поглощения;

- измеренный спектральный коэффициент диффузного отражения или пропускания для слоя толщиной hj;

- коэффициент диффузного отражения или пропускания для слоя толщиной hj, рассчитанный по теории переноса излучения;

hj - геометрическая толщина j-го слоя;

А1 и А2 - коэффициенты отражения освещаемой внешним источником (верхней) и тыльной (нижней) границ слоя при диффузном падении излучения изнутри слоя;

- объемное распределение частиц ν-й фазы диаметром Di (нормированное на единицу для каждой из фаз).

На фиг. 1 представлена иллюстрация принципов, лежащих в основе предлагаемого способа.

Расчет спектрального показателя рассеяния производится по формуле:

--L

где - объемная доля включений ν-й фазы;

- спектральная эффективность рассеяния для шара диаметром Di с оптическими свойствами ν-й фазы, рассчитываемая по теории Ми;

- относительная объемная доля включений ν-й фазы диаметром Di среди суммарного объема включений ν-й фазы;

N - число дискретов по диаметрам рассеивателей;

Σ - число фаз.

Для расчета среднего косинуса угла рассеяния шаром диаметром Di используется известное выражение теории Ми:

где - коэффициенты, рассчитываемые по теории Ми и зависящие от относительного комплексного показателя преломления материала включений ν-й фазы и среды, и дифракционного параметра xim, равного ; - целые числа.

Средний косинус угла рассеяния совокупности включений рассчитывается по формуле:

Распределение включений по размерам задается в параметрической форме в виде суммы пиков, нормированных на единицу:

где L - число пиков распределения включений по размерам;

k - индекс, задающий номер пика;

- постоянные коэффициенты;

- любое распределение, задаваемое парамерами и , например, логнормальное или гауссово.

Распределение включений всех фаз по размерам полностью определяется совокупностью параметров: .

Обратная задача для определения спектрального показателя рассеяния строится на основе асимптотических формул для спектрального коэффициента отражения:

или пропускания

где

где - показатель поглощения;

hj - геометрическая толщина j-го слоя;

μ0 - косинус угла падения параллельного пучка на поверхность рассеивающего слоя;

и - коэффициенты отражения освещаемой внешним источником (верхней) и тыльной (нижней) границ слоя при диффузном падении излучения изнутри слоя, рассчитываемые путем усреднения формул Френеля для угловой зависимости коэффициента зеркального отражения [8].

Обратная задача решается путем минимизации функции невязки между измеренными и рассчитанными коэффициентами диффузного отражения или пропускания для слоев материала нескольких толщин по параметрам и :

где М - число слоев различной толщины.

При известной зависимости показателя поглощения материала среды от длины волны минимизация функции невязки может производиться только по параметру . В этом случае для решения обратной задачи будет достаточно измерить спектральный коэффициент отражения или пропускания слоя одной толщины (М=1).

Следующим шагом является построение функции невязки показателей рассеяния и ее минимизация:

где Ω - число точек в спектре.

Минимизация производится в пространстве параметров, задающих распределение по размерам , или их объемную долю .

На каждом шаге цикла оптимизации производится пересчет и в соответствии с приведенными формулами.

Минимизация функции может производиться, как по нескольким или одному из параметров распределения, так и по всей совокупности.

Предложенный способ отличается быстротой получения результата, так как он не требует сложной подготовки и специального оборудования.

Решение обратной задачи строится на аналитических выражениях для коэффициентов отражения или пропускания, метод отличается быстротой численной обработки.

Изобретение поясняется конкретным примером выполнения способа определения распределения пор по размерам в кварцевой керамике. Кварцевая керамика является двухфазной дисперсной системой. Одной фазой в ней является кварцевое стекло, второй - поры, заполненные воздухом.

На фиг. 2 показаны результаты измерения спектров коэффициента диффузного отражения при помощи ИК-Фурье спектрометра is50 с интегрирующей сферой IntegratIR. По спектрам коэффициента отражения проводилось решение обратной задачи и оптимизация в соответствии с описанным способом.

На фиг. 3 приведены спектры показателя рассеяния, определенного путем решения обратной задачи и расчетом по теории Ми после окончания процесса оптимизации. Оптимизация позволила определить параметры распределения пор по размерам. Форма распределения задавалась логнормальной зависимостью.

На фиг. 4 приведено распределение пор по размерам, определенное предлагаемым оптическим способом в сравнении с измеренным методом ртутной порозиметрии.

Приведенные результаты показывают, что оптический способ позволяет определить распределение включений по размерам (в данном случае пор) и демонстрирует согласие с альтернативным методом ртутной порозиметрии.

Оптический способ имеет ряд преимуществ по сравнению с ртутной порозиметрией, способ позволяет анализировать закрытые поры, анализ занимает не более 1 минуты при нескольких часах для ртутной порозиметрии и позволяет анализировать больший объем материала.

Предлагаемый способ позволяет расширить допустимую область концентраций до 10-15 объемных процентов за счет учета многократного рассеяния при помощи теории переноса излучения и анализировать многокомпонентные дисперсные системы.

Способ строится на одновременном определении спектрального показателя рассеяния дисперсной системы путем решения обратной задачи переноса излучения и расчетом по теории Ми. Для решения обратной задачи переноса излучения используются формулы, описанные в [9]. Основы теории Ми описаны в литературе [10]. Теоретические основы способа описаны в работе [8].

Отличительной особенностью предлагаемого способа является то, что для решения используются асимптотические формулы, которые позволяют анализировать материалы с поглощением. Рассчитываемая по теории Ми индикатриса рассеяния является изменяемым в процессе оптимизации параметром, что повышает точность получаемых данных.

ЛИТЕРАТУРА

1 Jones A.R. Light scattering for particle characterization // Progress in Energy and Combustion Science. 1999. V. 25. P. 1-53.

2. Peelen J.G.J., Metselaar R. Light scattering by pores in polycrystalline materials: Transmission properties of alumina // J. Appl. Phys. 1974. V. 45. N 1. P. 216-220.

3. Chen, W.W., B. Dunn. Characterization of Pore Size Distribution by Infrared Scattering in Highly Dense ZnS // Journal of the American Ceramic Society. 1993. V 76/ N 8. P. 2086-2092.

4. Mei L., Somesfalean G., Svanberg S. Light propagation in porous ceramics: porosity and optical property studies using tunable diode laser spectroscopy. // Appl. Phys. A. 2014. V. 114. N 2. P. 393-400.

5. V.I. Bredikhin, E.M. Gavrishchuk, V.B. Ikonnikov, E.V. Karaksina, L.A. Ketkova, S.P. Kuznetsov, and O.A. Mal'shakova. Optical losses in polycrystalline CVD ZnS // Inorganic Materials. 2009. V. 45. N 3. P. 235-241.

6. Патент РФ №2441218, МПК G01N 15/02 Способ определения дисперсности и концентрации частиц в аэрозольном облаке / В.А. Архипов, А.А. Павленко, С.С. Титов, О.Б. Кудряшова, С.С. Бондарчук. №2010143653/28; заявл. 25.10.2010; опубл. 27.01.2012, Бюл. №3 - 12 с.

7. Manara J., Caps R., Raether F., Fricke J. Characterization of the pore structure of alumina ceramics by diffuse radiation propagation in the near infrared // Optics Communications. 1999. V.168. P. 237-250.

8. Э.П. Зеге и И.Л. Кацев. Определение оптических характеристик рассеивающей среды по отражению от полубесконечного слоя // Журнал прикладной спектроскопии. - 1980. - Т. 33. - №3. - С. 550-556.

9. Борен К., Хафмен Д. Поглощение и рассеяние света малыми частицами. М.: Мир, 1986. - 664 с.

10. Миронов Р.А., Забежайлов М.О., Георгиу И.Ф., Черепанов В.В., Русин М.Ю. Определение размеров пор в частично прозрачной керамике по спектрам коэффициента полного отражения // Оптика и спектроскопия. - 2018. - Т. 124. - №3. - С. 295-302.

Источник поступления информации: Роспатент

Показаны записи 71-80 из 136.
26.07.2018
№218.016.7538

Способ оценки предела прочности керамики при растяжении

Изобретение относится к методам определения механических характеристик керамики и может быть использовано для оценки предела прочности при растяжении керамических материалов, используемых в изделиях, требующих индивидуального контроля прочностных свойств. Сущность: осуществляют диаметральное...
Тип: Изобретение
Номер охранного документа: 0002662251
Дата охранного документа: 25.07.2018
26.07.2018
№218.016.7599

Антенный обтекатель

Изобретение относится к области авиационной и ракетной техники и может быть использовано при изготовлении антенных обтекателей высокоскоростных ракет различных классов с оболочками из жаростойких керамических материалов. Антенный обтекатель, включающий керамическую оболочку соединенную со...
Тип: Изобретение
Номер охранного документа: 0002662250
Дата охранного документа: 25.07.2018
01.09.2018
№218.016.81ac

Способ измерения диэлектрических свойств материала и устройство для его осуществления

Изобретение относится к измерению диэлектрической проницаемости и тангенса угла диэлектрических потерь материалов. В свободном пространстве образец материала располагают под углом Брюстера, в диапазоне частот измеряют мощность и фазу прошедшей волны и по изменению фазы прошедшей волны в полосе...
Тип: Изобретение
Номер охранного документа: 0002665593
Дата охранного документа: 31.08.2018
05.09.2018
№218.016.82c9

Способ получения композиционного материала

Изобретение относится к авиационной и машиностроительной промышленности и может быть использовано при создании деталей из конструкционных материалов, в частности для изготовления антенных обтекателей ракет, обладающих высокой прочностью в сочетании с хорошими диэлектрическими характеристиками...
Тип: Изобретение
Номер охранного документа: 0002665778
Дата охранного документа: 04.09.2018
05.09.2018
№218.016.82db

Образец для определения прочности сотового заполнителя при расслаивании

Изобретение относится к исследованиям прочностных свойств материалов и может применяться при аттестации сотовых структур при изготовлении трехслойных конструкций кораблестроения, авиастроения и космической техники. Образец содержит верхнюю и нижнюю зоны фиксации в захватах, рабочую зону образца...
Тип: Изобретение
Номер охранного документа: 0002665814
Дата охранного документа: 04.09.2018
22.09.2018
№218.016.898c

Способ имитации дефекта непроклея в многослойных конструкциях

Использование: для диагностики многослойных изделий из композиционных материалов. Сущность изобретения заключается в том, что для имитации дефекта непроклея в многослойных конструкциях, состоящих из сотового заполнителя и обшивок, выполняют занижение смежной грани или граней ячеек сотового...
Тип: Изобретение
Номер охранного документа: 0002667317
Дата охранного документа: 18.09.2018
26.10.2018
№218.016.9692

Способ теплового нагружения обтекателей летательных аппаратов из неметаллических материалов

Изобретение относится к способам воспроизведения аэродинамического теплового воздействия на обтекатель летательного аппарата в наземных условиях. Заявленный способ теплового нагружения обтекателей летательных аппаратов из неметаллических материалов включает нагрев наружной поверхности...
Тип: Изобретение
Номер охранного документа: 0002670725
Дата охранного документа: 24.10.2018
01.11.2018
№218.016.9933

Способ формования крупногабаритных керамических заготовок

Изобретение относится к технологии формования крупногабаритных керамических заготовок из водных шликеров в гипсовые формы. Предложен способ формования крупногабаритных керамических заготовок, включающий установку в высушенную влагопоглощающую матрицу, повторяющую наружный контур изделия,...
Тип: Изобретение
Номер охранного документа: 0002671380
Дата охранного документа: 30.10.2018
03.11.2018
№218.016.9a03

Приспособление для проведения испытаний по определению прочности при отслаивании гибких материалов от основы

Приспособление для проведения испытаний по определению прочности при отслаивании гибких материалов, например фольги, бумаги, поливинилхлорида, полиэтилена, фторопласта, от основы. Изобретение относится к испытательной технике, предназначено для определения прочности при отслаивании гибких...
Тип: Изобретение
Номер охранного документа: 0002671553
Дата охранного документа: 01.11.2018
29.12.2018
№218.016.aca0

Проволочный нагреватель для цилиндрической печи

Изобретение относится к области электротермии, в частности к конструкциям нагревателей для нагрева цилиндрических печей. Техническим результатом является повышение равномерности теплового потока и снижение тепловых потерь для достижения высоких температур нагрева при оптимальной токовой...
Тип: Изобретение
Номер охранного документа: 0002676293
Дата охранного документа: 27.12.2018
Показаны записи 71-80 из 152.
13.02.2019
№219.016.b9ad

Антенный обтекатель

Изобретение относится к области авиационно-ракетной техники, преимущественно к конструкциям носовых радиопрозрачных обтекателей, являющихся укрытием от аэродинамического воздействия антенных устройств головок самонаведения. Антенный обтекатель содержит керамическую оболочку, металлический...
Тип: Изобретение
Номер охранного документа: 0002679483
Дата охранного документа: 11.02.2019
20.02.2019
№219.016.bffc

Способ изготовления изделий из корундовой керамики

Изобретение относится к способу получения алюмооксидной керамики с повышенной прочностью, твердостью, предназначенной для длительной эксплуатации в условиях механических напряжений, истирающих нагрузок, воздействия агрессивных сред. Техническим результатом изобретения является повышение...
Тип: Изобретение
Номер охранного документа: 0002379257
Дата охранного документа: 20.01.2010
08.03.2019
№219.016.d4c8

Композиционный материал на основе диоксида кремния

Изобретение относится к авиационной и машиностроительной промышленности и может быть использовано при создании деталей из конструкционных материалов, в частности антенных обтекателей ракет, работающих кратковременно при температуре до 900°С без изменения радиотехнических характеристик....
Тип: Изобретение
Номер охранного документа: 0002318776
Дата охранного документа: 10.03.2008
15.03.2019
№219.016.e022

Сырьевая смесь для изготовления огнеупорных изделий

Изобретение относится к области производства огнеупоров и может быть использовано для изготовления керамических узлов высокотемпературных агрегатов, огнеприпасов, работающих при температурах до 1800С. Сырьевая смесь для изготовления огнеупорных изделий, включающая электрокорунд фракции менее...
Тип: Изобретение
Номер охранного документа: 0002267469
Дата охранного документа: 10.01.2006
20.03.2019
№219.016.e70e

Способ получения неорганического материала на основе кварцевого стекла с регулируемой плотностью

Изобретение относится к технологии получения неорганических волокнистых и керамических материалов на основе кварцевого стекла с регулируемой плотностью, пористостью, диэлектрической проницаемостью и других свойств. Техническим результатом изобретения является разработка способа получения...
Тип: Изобретение
Номер охранного документа: 0002365563
Дата охранного документа: 27.08.2009
20.03.2019
№219.016.e71e

Способ термообработки стеклокерамических изделий

Изобретение относится к производству изделий из стеклокерамики литийалюмосиликатного состава и может быть использовано в керамической и авиационной промышленности, в частности для изготовления крупногабаритных, сложнопрофильных керамических изделий типа носовых диэлектрических конусов...
Тип: Изобретение
Номер охранного документа: 0002363683
Дата охранного документа: 10.08.2009
20.03.2019
№219.016.e8d8

Антенный обтекатель и способ изготовления антенного обтекателя

Изобретение предназначено для использования в конструкциях антенных обтекателей для ракет класса «воздух-поверхность». Техническим результатом является увеличение прочности соединения колпака с наконечником, повышение несущей способности, улучшение радиотехнических характеристик при повышенных...
Тип: Изобретение
Номер охранного документа: 0002433512
Дата охранного документа: 10.11.2011
10.04.2019
№219.017.07b0

Антенный обтекатель

Изобретение относится к области создания конструкций антенных обтекателей высокоскоростных ракет с оболочками из жаростойких керамических материалов. Антенный обтекатель содержит керамическую оболочку, металлический стыковой шпангоут и расположенный между ними теплоизоляционный слой,...
Тип: Изобретение
Номер охранного документа: 0002451372
Дата охранного документа: 20.05.2012
19.04.2019
№219.017.2f06

Способ получения керамических изделий на основе волластонита

Изобретение относится к керамической промышленности, а именно к изготовлению футеровки агрегатов и литейной оснастки для металлургии алюминиевых сплавов. Техническим результатом изобретения является утилизация производственных отходов материалов на основе волластонита, повышение термостойкости...
Тип: Изобретение
Номер охранного документа: 0002385849
Дата охранного документа: 10.04.2010
01.05.2019
№219.017.47cb

Способ теплового нагружения неметаллических элементов конструкций летательных аппаратов

Изобретение относится к области машиностроения, авиационной и ракетно-космической отраслям промышленности и может быть использовано на этапе наземной лабораторно-стендовой отработки конструкций летательных аппаратов (ЛА) и их элементов (головных обтекателей, радиопрозрачных вставок, окон и...
Тип: Изобретение
Номер охранного документа: 0002686528
Дата охранного документа: 29.04.2019
+ добавить свой РИД