×
24.05.2019
219.017.5e33

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ КОАКСИАЛЬНОГО ЭЛЕКТРОГИДРОДИНАМИЧЕСКОГО ФОРМОВАНИЯ ПОЛИМЕРНЫХ МИКРО- ИЛИ СУБМИКРОННЫХ СТРУКТУР

Вид РИД

Изобретение

Аннотация: Изобретение относится к устройствам коаксиального электроформования полимерных капсул или тонких волокон микро- и субмикронного размера. Техническим результатом является обеспечение возможности формирования микро- и субмикронных структур определенной геометрической формы из полимерных растворов низкой вязкости и улучшение качества покрытий микро- и субмикронных структур за счет равномерного распыления полимерного раствора. Технический результат достигается устройством для коаксиального электрогидродинамического формования полимерных микро- или субмикронных структур, содержащим коаксиально расположенные внешний капилляр для подачи полимерного раствора и внутренний капилляр для подачи инкапсулируемого вещества, закрепленные в корпусе и соединённые с первым источником высокого напряжения, осадительный электрод. При этом устройство дополнительно содержит расположенный между корпусом и заземленным осадительным электродом конфузор с каналами для подачи газа в пространство между конфузором и заземленным осадительным электродом, а также второй источник высокого напряжения, соединенный с осадительным электродом. 6 з.п. ф-лы, 6 ил.

Изобретение относится к устройствам коаксиального электроформования полимерных капсул или тонких волокон, микро- и субмикронного размера, и инкапсуляции в них терапевтических препаратов, биологически активных и других веществ и может быть использована в химической, фармацевтической, текстильной, пищевой и других видах промышленности.

Известно устройство для получения полимерных частиц микро- или субмикронного размера методом коаксиального электроформования растворов полимеров (см. патент ЕР 2529761, МПК A61L 27/00, A61L 29/00, A61L 31/00). Устройство состоит из коаксиально расположенных внешнего капилляра для воздуха и внутреннего -для полимера, закрепленных в корпусе и соединенных с источником высокого электрического напряжения, узла подачи полимерного раствора, узла подачи воздуха и осадительного электрода, имеющего кольцевидную геометрическую форму.

Однако устройство не позволяет инкапсулировать терапевтические, биологически активные и другие вещества в полимерную оболочку капсул.

Известно устройство получения многослойных частиц, волокон и спреев (см. патент ЕР 2724718, МПК А61К 47/48, А61К 49/00). Устройство состоит из узла подачи полимерного раствора и узла подачи инкапсулируемого вещества во внешний и внутренний капилляр соответственно, закрепленные в корпусе, и соединенные с источником высокого напряжения, и осадительного электрода, выполненного в виде металлической пластины.

Недостатком известного устройства является неравномерное распределение полимерного раствора при формировании полимерной оболочки вокруг инкапсулируемого вещества, что не позволяет регулировать геометрическую форму формируемых многослойных частиц, волокон и спреев.

Наиболее близким к заявленному решению является устройство коаксиального электроформования полимерных капсул или тонких волокон, микро- или субмикронного размера (см. патент ЕР 1364718, МПК A23L 01/00, A23L 01/22). Устройство состоит из осадительного электрода, имеющего кольцевидную геометрическую форму, внутреннего капилляра для инкапсулированного вещества и внешнего - для полимерного раствора, закрепленных в корпусе, соединенных с источником высокого электрического напряжения.

Недостатком прототипа является неравномерное распыление полимерного раствора с содержанием инкапсулируемого вещества с концов, коаксиально расположенных внешнего и внутреннего капилляров, а также отсутствие возможности формирования капсул или тонких волокон, микро- и субмикронного размера из полимерных растворов низкой вязкости, и создания определенной геометрической формы с дополнительной модификацией поверхности уже сформированных структур.

Техническая проблема заключается в разработке устройства, обеспечивающего возможность формирования микро- или субмикронных структур определенной геометрической формы (капсул или тонких волокон), из полимерных растворов низкой вязкости.

Технический результат заключается в улучшении качества покрытий микро- или субмикронных структур за счет равномерного распыления полимерного раствора.

Кроме того, устройство позволяет модифицировать поверхность сформированных микро- или субмикронных структур.

Указанный технический результат достигается тем, что устройство для коаксиального электрогидродинамического формования полимерных микро- или субмикронных структур, содержащее коаксиально расположенные внешний капилляр для подачи полимерного раствора и внутренний капилляр для подачи инкапсулируемого вещества, закрепленные в корпусе и соединенные с первым источником высокого напряжения, осадительный электрод, согласно решению дополнительно содержит расположенный между корпусом и заземленным осадительным электродом конфузор с каналами для подачи газа в пространство между конфузором и заземленным осадительным электродом, а также второй источник высокого напряжения, соединенный с осадительным электродом.

Осадительный электрод представляет собой металлическую пластину с керамическим покрытием.

Корпус для внешнего и внутреннего капилляров, изготовлен из акрилонитрилбутадиенстирола методом 3-Д печати, а конфузор изготовлен из нейлона методом 3-Д печати.

Корпус в нижней части снабжен кольцевым электродом для подключения внешнего капилляра к первому источнику высокого напряжения.

Внешний и внутренний капилляры изготовлены из стали 12Х18М10 с тефлоновым покрытием.

Устройство выполнено с возможностью изменения расстояния между корпусом и конфузором.

Каналы для подачи газа выполнены с возможностью подачи модифицирующего агента в виде нанодисперсных частиц на поверхность формируемых структур.

Изобретение поясняется чертежами.

На фиг. 1 - представлена схема заявляемого устройства.

На фиг. 2 - представлено изображение полимерных капсул без модифицирующего их покрытия, полученное с помощью сканирующего электронного микроскопа MIRA II (TESCAN, Чехия).

На фиг. 3 - представлено изображение полимерных капсул без модифицирующего их покрытия, полученное с помощью инвертированного микроскопа Olympus IX73 (Olympus, Япония).

На фиг. 4 - представлено изображение полимерных капсул с модифицирующим их покрытием, полученное с помощью сканирующего электронного микроскопа MIRA II (TESCAN, Чехия).

На фиг. 5 - представлено изображение полимерных микроволокон без модифицирующего их покрытия, полученное с помощью инвертированного микроскопа Olympus IX73 (Olympus, Япония).

На фиг. 6 - представлено изображение полимерных микроволокон без модифицирующего их покрытия, полученное с помощью сканирующего электронного микроскопа MIRA II (TESCAN, Чехия).

Позициями на чертеже обозначены:

1 - корпус;

2 - внешний капилляр для подачи полимерного материала;

3 - внутренний капилляр для подачи инкапсулируемого вещества;

4 - кольцевой электрод;

5 - первый источник высокого напряжения;

6 - конфузор;

7 - входные каналы конфузора;

8 - заземленный осадительный электрод;

9 - второй источник высокого напряжения.

Устройство для коаксиального электрогидродинамического формования полимерных микро-или субмикронных структур содержит коаксиально расположенные внешний 1 и внутренний 2 капилляры, закрепленные в корпусе 3. Капилляры имеют выступающие за пределы корпуса части для подключения к первому источнику высокого напряжения. Корпус 3 соединен с торцом кольцевого электрода 4. При этом внешний капилляр 2 соединен с первым источником высокого напряжения 5 через кольцевой электрод 4. Устройство дополнительно содержит конфузор 6 с входными каналами 7 для подачи газа (воздуха), в том числе с модифицирующими агентами в пространство между конфузором и заземленным осадительным электродом 8, соединенным со вторым источником высокого напряжения 9. Капилляры и осадительный электрод подключены к источникам высокого напряжения разной полярности.

Осадительный электрод 8 представляет собой заземленную металлическую пластину с керамическим покрытием.

Корпус 1 изготовлен из АБС-пластика (Акрилонитрилбутадиенстирол) методом 3-Д печати. Внешний 2 и внутренний 3 капилляры изготовлены из металлических трубок (сталь 12Х18М10) с тефлоновым покрытием, внешний диаметр которых составляет от 0,5 до 2 мм.

Конфузор 6 представляет собой трубу с плавным переходом от большего сечения в меньшее (сверху вниз) и имеет два параллельно расположенных канала для дополнительного подвода газа (воздуха), в том числе с модифицирующим агентом.

Конфузор изготовлен из нейлона (синтетического полиамида) методом 3-Д печати. При этом материал для изготовления конфузора может изменяться, в соответствии с применением устройства.

Устройство обеспечивает возможность варьирования (регулирования) размеров частиц путем изменения расстояния между капиллярами и конфузором или между конфузором и осадительным электродом.

Формируемые структуры представляют собой капсулы или тонкие волокна, микро- и субмикронного размера, содержащие инкапсулированное вещество, покрытое полимерной оболочкой.

Заявляемое устройство работает следующим образом.

Полимерный раствор на основе биополимеров синтетического происхождения, например, Полилактид (ПЛА) и Поликапролактон (ПКЛ), растворенные в смеси растворителей Хлороформ - Дихлорэтан подают во внешний капилляр 2 из первого узла подачи (на фиг. не показан), а предназначенное для инкапсуляции вещество, например, водный раствор Флуоресцеина (ВРФ), во внутренний капилляр 3 под избыточным давлением из второго узла подачи (на фиг. не показан). Полимерный раствор ПЛА-ПКЛ и ВРФ, на выходе из коаксиально расположенных внешнего 2 и внутреннего 3 капилляров, образуют коаксиальный поток, который за счет электростатического взаимодействия между внутренним капилляром 3, кольцевым электродом 4 и осадительным электродом 8, расщепляется на высокодисперсные капли или волокнистые структуры. Поток дрейфует под действием собственных электростатических сил сквозь выходное отверстие конфузора 6. В конфузор, через входные каналы 7 подают под избыточным давлением воздух или воздух с модифицирующим агентом (например, нанодисперсными частицами серебра, стабилизированными Поливинилпироллидоном). Частицы адсорбируются на поверхность капсул или тонких волокон, микро- или субмикронного размера и осаждаются на заземленный осадительный электрод 8. Для изменения размеров получаемых микро- или субмикронных структур регулируют электростатическое взаимодействие между внутренним капилляром 3, кольцевым электродом 4 и осадительным электродом 8 за счет величины подаваемого высокого напряжения.

За счет дополнительного подвода газа (воздуха) через боковые каналы увеличивается динамическое давление в направлении движения потока газа (воздуха), проходящего сквозь конфузор, что обеспечивает равномерное распыление структур. Дополнительно, в конфузор может подаваться газ (воздух) с модифицирующим агентом, что способствует его адсорбции на поверхность структур и изменению их свойств.

Варьируя геометрические параметры конфузора и расстояние между корпусом и конфузором, можно регулировать толщину модифицирующего слоя на поверхности структур, а также управлять процессом распыления, добиваясь равномерности получаемых структур.

Введение второго независимого источника высокого напряжения обеспечивает подачу напряжения противоположной полярности, что позволяет независимо от первого источника дополнительно управлять процессом распыления и регулировать размер получаемых структур.

В примерах конкретного выполнения для формирования капсул или тонких волокон, микро- и субмикронного размера методом коаксиального электрогидродинамического формования (электроформования) использовали ПЛА и ПКЛ, смешанные в соотношении 20/80 по массе, и растворенные в смеси органических растворителей Хлороформ-Дихлорэтан, смешанных в объемном соотношении 70/30. Концентрация смеси полимеров в растворителе - 1,5 мг/мл (для микрокапсул) и 4,5 мг/мл (для микроволокон). Вещество для инкапсуляции - водный раствор Флуоресцеина, концентрацией - 0,025 мг/мл. Полимеры, концентрации и вещество для инкапсуляции могут варьироваться в зависимости от предназначения конечного продукта.

Для адсорбции (модификации) на поверхность капсул использовали коллоидный раствор наночастиц серебра в этиленгликоле, стабилизированного Поливинилпироллидоном. Концентрация наночастиц серебра - 0,5 мг/мл. Концентрация Поливинилпиролидона - 1 мг/мл.

Вещество для адсорбции на поверхность капсул или тонких волокон, микро- и субмикронного размера можно изменять в зависимости от предназначения конечного продукта.

Величина подаваемого высокого напряжения на внутренний капилляр и кольцевой электрод составляет - 15 кВ. Величина подаваемого высокого напряжения на заземленный осадительный электрод - 5 кВ. Данные величины соответствуют рабочему расстоянию между двумя электродами - 25 см, и могут варьироваться в зависимости от увеличения расстояния или уменьшения.

Размер полученных капсул - от 10 до 25 мкм. Размер полученных тонких волокон - от 2 до 5 мкм.

Устройство позволяет формировать оболочку микро-или субмикронных структур из полимерного раствора низкой вязкости.

Итак, заявляемое устройство позволяет равномерно распылять полимерный раствор с веществом для инкапсуляции, при одновременной возможности регулировать форму и размер сформированных микро- или субмикронных структур, и осуществлять модификацию их поверхности в процессе осаждения на осадительный электрод.

Равномерное распыление обеспечивается за счет образования равномерного вихревого потока в конфузоре, обусловленного его геометрическими размерами.

Источник поступления информации: Роспатент

Показаны записи 41-50 из 90.
16.10.2018
№218.016.92a9

Способ измерения угла косоглазия

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для измерения угла косоглазия. Получают снимок косящего глаза при съемке камерой в анфас и освещении точечным источником света, расположенным за камерой. Измеряют на снимке расстояние между центром зрачка и...
Тип: Изобретение
Номер охранного документа: 0002669734
Дата охранного документа: 15.10.2018
19.10.2018
№218.016.9383

Композиция для получения биоразлагаемого полимерного материала и биоразлагаемый полимерный материал на её основе

Изобретение относится к получению биоразлагаемых полимерных материалов, содержащих смесь крахмала с поливиниловым спиртом, применяемых в производстве упаковочных термоформованных изделий и пленок, способных к биодеструкции под действием климатических факторов и микроорганизмов. Композиция для...
Тип: Изобретение
Номер охранного документа: 0002669865
Дата охранного документа: 16.10.2018
14.12.2018
№218.016.a6b3

Способ диагностики шизофрении

Изобретение относится к медицине, а именно к области психиатрии, и может быть использовано для диагностики шизофрении. Способ включает в себя определение временной зависимости положения зрачка A(t) при слежении за перемещающимся на экране компьютера по горизонтали по гармоническому закону B(t)...
Тип: Изобретение
Номер охранного документа: 0002674946
Дата охранного документа: 13.12.2018
14.12.2018
№218.016.a70e

Материал для изготовления многоострийного автоэмиссионного катода

Изобретение относится к области электронной техники и может быть использовано при изготовлении изделий светоиндикаторной техники и эмиссионной электроники на основе автоэлектронной эмиссии многоострийных углеродных структур. Материал для изготовления многоострийного автоэмиссионного катода...
Тип: Изобретение
Номер охранного документа: 0002674752
Дата охранного документа: 13.12.2018
15.12.2018
№218.016.a7cb

Способ дистанционного измерения внутриглазного давления

Изобретение относится к области медицинской техники и может быть использовано в офтальмологии для дистанционного измерения внутриглазного давления. Техническая проблема заключается в повышении эффективности бесконтактного метода измерений внутриглазного давления за счёт повышения точности и...
Тип: Изобретение
Номер охранного документа: 0002675020
Дата охранного документа: 14.12.2018
03.02.2019
№219.016.b6b5

Способ моделирования развития мозговых геморрагий у гипертензивных мышей

Изобретение относится к области медицины, в частности к экспериментальной медицине. В качестве стрессорного фактора используют создание условий социального стресса в виде перенаселения мышей в течение не менее 4-х месяцев и при достижении гипертензивных уровней артериального давления и частоты...
Тип: Изобретение
Номер охранного документа: 0002678798
Дата охранного документа: 01.02.2019
13.02.2019
№219.016.b951

Способ закрытия капилляров фотонно-кристаллических волноводов с полой сердцевиной

Изобретение относится к фотонно-кристаллическим волноводам с большим периодом решётки с селективно закрытыми капиллярами внешних оболочек и открытой полой сердцевиной. Способ закрытия капилляров фотонно-кристаллического волновода с полой сердцевиной заключаюется в заполнении капилляров на...
Тип: Изобретение
Номер охранного документа: 0002679460
Дата охранного документа: 11.02.2019
13.02.2019
№219.016.b9c2

Газовый свч-сенсор

Использование: для детектирования малых концентраций различных газов и летучих соединений. Сущность изобретения заключается в том, что газовый СВЧ-сенсор содержит микрополосковую линию с заземляющим металлическим слоем и резонатор со слоем газоактивного материала на его поверхности, резонатор...
Тип: Изобретение
Номер охранного документа: 0002679458
Дата охранного документа: 11.02.2019
13.02.2019
№219.016.b9ca

Способ определения параметров магнитной жидкости

Изобретение относится к измерительной технике и может найти применение в различных отраслях промышленности. Cпособ определения параметров магнитной жидкости заключается в воздействии СВЧ-излучения и магнитного поля на магнитную жидкость, помещённую в волновод, измерении коэффициента отражения...
Тип: Изобретение
Номер охранного документа: 0002679457
Дата охранного документа: 11.02.2019
13.02.2019
№219.016.b9ce

Неразрушающий способ измерения подвижности носителей заряда в полупроводниковой структуре

Изобретение относится к измерительной технике, может быть использовано для определения локальной подвижности носителей заряда в локальной области полупроводниковых структур в процессе изготовления и испытания полупроводниковых приборов. Изобретение обеспечивает расширение функциональных...
Тип: Изобретение
Номер охранного документа: 0002679463
Дата охранного документа: 11.02.2019
Показаны записи 1-8 из 8.
10.12.2015
№216.013.992a

Способ выделения и очистки квантовых точек, заключенных в оболочки оксида кремния

Использование: для получения стабильных водных растворов полупроводниковых квантовых точек (КТ), покрытых оболочками оксида кремния, полученных на основе кремнийорганических соединений различного строения. Сущность изобретения заключается в том, что способ выделения и очистки квантовых точек,...
Тип: Изобретение
Номер охранного документа: 0002570830
Дата охранного документа: 10.12.2015
13.01.2017
№217.015.8620

Оптоакустический объектив

Изобретение относится к области спектроскопии конденсированных сред и фотоакустического анализа материалов. Оптоакустический объектив содержит звукопровод с кольцевым пьезоэлектрическим преобразователем на одном его торце, акустической линзой на другом его торце и сквозным цилиндрическим...
Тип: Изобретение
Номер охранного документа: 0002603819
Дата охранного документа: 27.11.2016
19.01.2018
№218.015.ff9a

Противоопухолевый химиопрепарат

Изобретение относится к фармацевтической промышленности, а именно к противоопухолевому химиопрепарату, представляющему собой стабильные наночастицы в виде сферических глобул размером 250-400 нм. Химиопрепарат содержит в качестве цитостатика доксорубицин в количестве 20,5-25,3 мас.% и в качестве...
Тип: Изобретение
Номер охранного документа: 0002629608
Дата охранного документа: 30.08.2017
20.01.2018
№218.016.10f7

Способ трансдермальной доставки биологически активных веществ

Изобретение относится к медицине и может быть использовано для трансдермальной доставки биологически активных веществ (БАВ). Для этого осуществляют аппликацию контейнеров с иммобилизованным БАВ на поверхность кожи с последующей транспортировкой через придатки кожи. В качестве контейнеров...
Тип: Изобретение
Номер охранного документа: 0002633928
Дата охранного документа: 19.10.2017
01.03.2019
№219.016.cf6d

Способ селективного разрушения раковых клеток с помощью магнитных микроконтейнеров с фотодинамическими или фототермическими красителями

Изобретение относится к медицине, онкологии, и может быть использовано для селективного разрушения опухолей. Для этого фотосенсибилизатор капсулируют в полимерные микроконтейнеры, оболочка которых содержит наночастицы магнетита (FеO) и вводят в окружающую опухоль биоткань. В объеме опухоли...
Тип: Изобретение
Номер охранного документа: 0002405600
Дата охранного документа: 10.12.2010
29.03.2019
№219.016.edce

Способ формирования многослойного покрытия на частицах и устройство для его реализации (варианты)

Группа изобретений относится к области химии, в частности к оборудованию для химических или физических лабораторий и способу их применения, и может быть использована для формирования многослойных композитных покрытий на субмикро- или микрочастицах методом послойной адсорбции. Способ...
Тип: Изобретение
Номер охранного документа: 0002683115
Дата охранного документа: 26.03.2019
29.05.2019
№219.017.62d5

Способ синтеза белка в культуре бактериальных клеток

Изобретение относится к области биотехнологии, в частности к способу синтеза белка в культурах бактериальных клеток. Способ включает модификацию поверхности клеток методом послойной адсорбции противоположно заряжённых полимеров и последующее термостатирование культуры клеток. Культуру клеток...
Тип: Изобретение
Номер охранного документа: 0002688383
Дата охранного документа: 21.05.2019
02.09.2019
№219.017.c5f5

Способ фотохимиотерапии витилиго

Изобретение относится к медицине, а именно к дерматологии, и может быть использовано для фотохимиотерапии витилиго. Для этого осуществляют аппликацию на поверхность кожи фотосенсибилизирующего средства выбирают средство на основе субмикронных пористых частиц карбоната кальция размером менее 1.5...
Тип: Изобретение
Номер охранного документа: 0002698871
Дата охранного документа: 30.08.2019
+ добавить свой РИД