×
24.05.2019
219.017.5df9

Результат интеллектуальной деятельности: Способ переработки нефтезаводских газов

Вид РИД

Изобретение

Аннотация: Настоящее изобретение относится к способу переработки нефтезаводских газов в ценные химические продукты и компоненты моторных топлив. Способ заключается в том, что на первой стадии проводят мембранно-абсорбционное выделение этилена из нефтезаводского газа с применением водных растворов солей переходных металлов, оставшуюся смесь направляют на вторую стадию окислительной конверсии кислородом или воздухом, которая проводится в струевом проточном реакторе при температурах 700-800°С, давлениях 1-3 атм и времени пребывания 1-2 с, затем продукты первой и второй стадий объединяют и подвергают гидроформилированию или карбонилированию с использованием катализаторов на основе Rh и Pd, при этом продукты гидроформилирования или карбонилирования полностью или частично подвергают конденсации с последующим гидрированием с получением высших спиртов. Предлагаемое изобретение позволяет получить ценные продукты с использованием простой технологии. 1 ил., 3 табл., 3 пр.

Изобретение относится к нефтяной и газовой промышленности, в частности, к процессам использования и переработки нефтезаводских газов с повышенным содержанием гомологов метана («жирных» газов) в химические продукты. Эти газы являются ценным углеводородным сырьем, однако во многих случаях не находят практического применения и сжигаются на факелах. В нефтепереработке на сухие газы крекинга и других вторичных процессов приходится от 5 до 20% сырья. Нефтезаводские газы образуются в термических и каталитических процессах переработки нефтяного сырья и содержат широкий набор газов, в том числе водород, метан, оксид углерода, непредельные углеводороды (от этилена до бутиленов), а также диоксид углерода, кислород, азот.

В настоящее время в большинстве случаев эти газы используются в качестве топлива. Сами предприятия нефтепереработки ориентированы на использование процессов олигомеризации пропилена и изобутиленов для получения компонентов бензинов, этилен и насыщенные С2+ углеводороды выпадают из переработки и в лучшем случае сжигаются для производства электроэнергии или тепла (с учетом состава газов КПД их использования даже таким путем оказывается низким). Такое неквалифицированное использование ценнейшего углеводородного сырья, уже прошедшего сложные процессы предварительной подготовки (осушка, обессеривание и др.), а для многих нефтеперерабатывающих заводов (НПЗ) содержащего большую концентрацию ценных непредельных соединений, вряд ли можно считать рациональным. Их переработка в нефтехимические продукты с высокой добавленной стоимостью, высококтановые или высокоцетановые добавки значительно повысила бы экономические показатели нефтехимического производства, глубину использования сырья и позволила бы снизить выброс экологически вредных продуктов нефтеперерабатывающими предприятиями. Следует отметить, что часть продуктов, которые могут быть получены в этом случае могут стать заменой высококтановым добавкам, таким как трет-бутилметиловый эфир (МТБЭ) (например, пропиловый и изопропиловый спирты имеют ИОЧ 105-115) или использоваться как высокоцетановые компоненты дизельных топлив (цетановые числа простых эфиров длинноцепочечных спиртов (но основе тримеров пропаналя) могут достигать 90-100, получаемых из них углеводороды обладают не только цетановыми числами, но и приемлемыми низкотемпературными свойствами.

Известны способы переработки «жирных» газов с использованием физических методов разделения - абсорбции, компримирования и сепарации, дистилляции и др.

Так, из уровня техники известен способ выделения углеводородов С3+ из попутных нефтяных газов путем противоточной абсорбции абсорбентом с последующей десорбцией абсорбированной фракции С3+, и возвратом регенерированного после десорбции абсорбента в абсорбер, характеризующийся тем, что используют попутные нефтяные газы с давлением 8-20 атм, и абсорбцию проводят при температуре 8-40°С, при этом выходящий из абсорбера насыщенный абсорбент нагревают до 280-350°С и подают на десорбцию, которую проводят при давлении 15-19 атм, а в качестве абсорбента используют тяжелые компоненты исходных попутных газов [патент RU 2338734 С1, опубл. 20.11.2008].

Недостатками указанного способа являются сложность процесса, высокая стоимость оборудования и необходимость дополнительных затрат энергии на регенерацию абсорбента.

Из уровня техники также известен способ подготовки «жирных» природных газов для использования в поршневых двигателях внутреннего сгорания [RU 2385897 С1, опубл. 10.04.2010], который состоит в том, что подготавливаемый газ в смеси с кислородсодержащим газом, например, с воздухом, подвергают термообработке при температуре 450-1100°С в течение 0,01-50 с при содержании свободного кислорода в смеси 0,5-5%. Термообработка может быть проведена также и в присутствии катализаторов окислительной конденсации метана, паровой, углекислотной конверсии метана, окислительного дегидрирования низших алканов или их комбинации. В качестве промоторов реакции могут выступать оксиды азота, пероксид водорода, соединения галогенов, непредельные или кислородсодержащие углеводороды или снижающие вероятность сажеобразования (пары воды). В результате при указанных условиях практически не наблюдается конверсия более легких углеводородов С14, в то время как конверсия углеводородов С5+, имеющих очень низкие метановые числа, превышает 95%. Основными продуктами превращения С5+ углеводородов при такой термообработке попутных нефтяных газов являются (в порядке убывания выхода) этилен, метан, этан и монооксид углерода. Таким образом, обеспечивается селективная конверсия соединений, имеющих низкую детонационную стойкость и повышающих вероятность смоло- и сажеобразования, и происходит увеличение метанового числа поучаемого газа.

Недостатком такого способа является то, что образующиеся ценные компоненты, в основном этилен, пропилен, водород и СО сжигаются при выработке энергии. Кроме того, для собственного энергопотребления промыслов может быть использована лишь небольшая часть добываемого попутного газа (менее 20%).

Наиболее близким к настоящему изобретению по совокупности признаков является способ переработки углеводородных газов с повышенным содержанием гомологов метана [патент RU 2551678 C1, опубл. 27.05.2015], состоящий в том, что селективное парциальное окисление тяжелых компонентов углеводородного газа, содержащего метан и его более тяжелые гомологи, кислородом или кислородсодержащим газом проводят при атмосферном или близком к атмосферному давлении и мольном соотношении углерод тяжелых компонентов : кислород - 5÷0,2:1, температуре 500-800°С и времени реакции 0,1-10 с. Полученную реакционную смесь, содержащую указанные продукты, непрореагировавший метан и дополнительное количество метана, образовавшегося при окислительном крекинге тяжелых компонентов газа, далее подвергают дополнительной обработке в присутствии катализаторов карбонилирования с получением жидких продуктов из ряда альдегиды, карбоновые кислоты, диэтилкетон, поликетоны и обогащенный метаном очищенный от тяжелых компонентов топливный газ для энергоустановок. Карбонилирование проводят известными приемами в паровой или жидкой фазе с предварительным выделением этилена или без такого выделения.

Однако использование вышеуказанного способа для переработки нефтезаводских газов является неэффективным, поскольку при условиях, указанных в данном способе, содержащийся в нефтезаводских газах этилен, количество которого в таких газах может достигать 25-30% и более, будет подвергаться окислению и термическому воздействию.

Задача предлагаемого изобретения состояла в создании простого и экономичного способа переработки нефтезаводских газов с повышенным содержанием гомологов метана, в том числе сухих газов крекинга, имеющих давление, близкое к атмосферному.

При этом технический результат, достигаемый настоящим изобретением, заключается в том, что осуществление предлагаемого способа обеспечивает получение ценных нефтехимических продуктов из ряда альдегидов, спиртов и карбоновых кислот, а также продуктов их конденсации, имеющих ценность в качестве компонентов моторных топлив.

Указанный технический результат достигается способом переработки нефтезаводских газов в ценные химические продукты и компоненты моторных топлив, заключающимся в том, что на первой стадии проводят мембранно-абсорбционное отделение этилена из нефтезаводского газа с применением водных растворов солей переходных металлов, оставшуюся смесь направляют на вторую стадию окислительной конверсии кислородом или воздухом, которая проводится в струевом проточном реакторе при температурах 700-800°С, давлениях 1-3 атм и времени пребывания 1-2 с, затем продукты первой и второй стадий объединяют и подвергают гидроформилированию или карбонилированию с использованием катализаторов на основе Rh и Pd, при этом продукты гидроформилирования или карбонилирования полностью или частично подвергают конденсации с последующим гидрированием с получением высших спиртов.

Более подробно, предлагаемый в настоящем изобретении способ переработки нефтезаводских газов осуществляется по схеме, представленной на фиг. 1, включающей следующие последовательные стадии:

1. Мембранно-абсорбционное выделение этилена водными растворами солей переходных металлов из нефтезаводского газа (поток I) в абсорбере (1), получение потока этилена (поток II) в десорбере (2) и углеводородсодержащего газа (поток III).

2. Дополнительный синтез этилена, а также СО и водорода из углеводородсодержащего газа (поток III) путем некаталитической окислительной конверсии С3+ компонентов кислородом или воздухом (поток IV), которая проводится в струевом проточном реакторе окислительной конверсии (3) при температурах 700-800°С, давлениях 1-3 атм и времени пребывания 1-2 с. Конверсия алканов С3+ составляет 60-99%. Продуктовый газ (поток V) направляется на охлаждение в холодильник (4) и сепаратор (5) для выделения жидких продуктов (поток VI). Для типичных составов нефтезаводских газов содержание СО в продуктовом газе после сепарации (поток VII) составит 10-30% объемн.

3. В реакторе (6) проводится каталитическое гидроформилирование или карбонилирование продуктов стадий 1 и 2 (поток VIII), с использованием катализаторов на основе Rh и Pd с получением потока, содержащего пропаналь, пропиловый спирт и другие химические продукты, которые могут быть выделены в качестве целевых ценных химических продуктов (поток IX) или направлены полностью или частично на последующую переработку на стадии 4 (поток X).

4. В реакторе (7) проводится конденсация компонентов потока X путем взаимодействия с кислотным катализатором и последующее гидрирование продуктов с получением высших спиртов - высокоцетановых компонентов моторных топлив (поток XI).

Изобретение иллюстрируется следующими примерами.

Пример 1.

Нефтезаводской газ (НЗГ), расходом 5 м3/час, состав которого указан в табл. 1 (поток I, см. фиг. 1), подается на стадию мембранно-абсорбционного выделения этилена (поток II, см. фиг. 1). Оставшейся газовый поток подается в реактор оксикрекинга, в котором смешивается с окислителем (поток IV, см. фиг. 1) и протекает его конверсия. После отделения воды, продуктовый поток оксикрекинга (поток VII, см. фиг. 1) смешивается с потоком этилена с первой стадии и подается на стадию гидроформилирования или карбонилирования (поток VIII, см. фиг. 1). Часть продуктов процесса гидроформилирования или карбонилирования выводится из системы как целевые (поток IX, см. фиг. 1), другая часть вместе с остальным газом подается на стадию конденсации и гидрирования.

Конверсия Х(С3Н8)=97,5%, Х(н-С4Н10)=98,9%, X(н-C5H12)=100,0%.

Пример 2.

Нефтезаводской газ (НЗГ), расходом 5 м3/час, состав которого указан в табл. 2 (поток I, см. фиг. 1), подается на стадию мембранно-абсорбционного выделения этилена (поток II, см. фиг. 1). Оставшейся газовый поток подается в реактор оксикрекинга, в котором смешивается с окислителем (поток IV, см. фиг. 1) и протекает его конверсия. После отделения воды, продуктовый поток оксикрекинга (поток VII, см. фиг. 1) смешивается с потоком этилена с первой стадии и подается на стадию гидроформилирования или карбонилирования (поток VIII, см. фиг. 1). Часть продуктов процесса гидроформилирования или карбонилирования выводится из системы как целевые (поток IX, см. фиг. 1), другая часть вместе с остальным газом подается на стадию конденсации и гидрирования.

Конверсия Х(С3Н8)=94,6%, Х(н-С4Н10)=96,0%, X(н-C5H12)=100,0%.

Пример 3.

Нефтезаводской газ (НЗГ), расходом 5 м.куб/час, состав которого указан в табл. 3 (поток I, см. фиг. 1), подается на стадию мембранно-абсорбционного выделения этилена (поток II, см. фиг. 1). Оставшейся газовый поток подается в реактор оксикрекинга, в котором смешивается с окислителем (поток IV, см. фиг. 1) и протекает его конверсия. После отделения воды, продуктовый поток оксикрекинга (поток VII, см. фиг. 1) смешивается с потоком этилена с первой стадии и подается на стадию гидроформилирования или карбонилирования (поток VIII, см. фиг. 1). Часть продуктов процесса гидроформилирования или карбонилирования выводится из системы как целевые (поток IX, см. фиг. 1), другая часть вместе с остальным газом подается на стадию конденсации и гидрирования.

Конверсия Х(С3Н8)=85,0%, Х(н-С4Н10)=90,0%, Х(н-С5Н12)=99,4%.

Способ переработки нефтезаводских газов в ценные химические продукты и компоненты моторных топлив, заключающийся в том, что на первой стадии проводят мембранно-абсорбционное выделение этилена из нефтезаводского газа с применением водных растворов солей переходных металлов, оставшуюся смесь направляют на вторую стадию окислительной конверсии кислородом или воздухом, которая проводится в струевом проточном реакторе при температурах 700-800°С, давлениях 1-3 атм и времени пребывания 1-2 с, затем продукты первой и второй стадий объединяют и подвергают гидроформилированию или карбонилированию с использованием катализаторов на основе Rh и Pd, при этом продукты гидроформилирования или карбонилирования полностью или частично подвергают конденсации с последующим гидрированием с получением высших спиртов.
Способ переработки нефтезаводских газов
Источник поступления информации: Роспатент

Показаны записи 31-33 из 33.
22.01.2020
№220.017.f850

Родийсодержащие гетерогенные катализаторы для процессов получения пропаналя и диэтилкетона гидроформилированием этилена

Группа изобретений относится к области получения гетерогенных родийсодержащих катализаторов для процесса гидроформилирования непредельных соединений, а именно к получению закрепленных родиевых комплексов на поверхности гибридных материалов, имеющих свободные аминогруппы, также группа...
Тип: Изобретение
Номер охранного документа: 0002711579
Дата охранного документа: 17.01.2020
14.03.2020
№220.018.0bcd

Способ получения пленочных медьсодержащих нанокомпозиционных материалов для защиты металлопродукции от коррозии

Использование: для получения пленочных нанокомпозиционных материалов. Сущность изобретения заключается в том, что способ получения полимерного медьсодержащего нанокомпозиционного материала, включающий образование наночастицы металла при термическом разложении предшественника в момент его...
Тип: Изобретение
Номер охранного документа: 0002716464
Дата охранного документа: 11.03.2020
16.05.2023
№223.018.622f

Сопряженный полимер на основе замещенного бензодитиофена, 5,6-дифторбензо[с][1,2,5]тиадиазола и тиофена и его применение в перовскитных солнечных батареях

Изобретение может быть использовано при изготовлении солнечных батарей. Сопряженный полимер на основе замещенного бензодитиофена, 5,6-дифторбензо[с][1,2,5]тиадиазола и тиофена имеет следующее строение: где n=5-200. Предложено также применение сопряженного полимера в качестве...
Тип: Изобретение
Номер охранного документа: 0002789132
Дата охранного документа: 30.01.2023
Показаны записи 81-90 из 99.
29.07.2020
№220.018.38ba

Способ переработки полиимидных материалов

Изобретение относится к способу переработки полимерных материалов, получаемых по реакции поликонденсации диангидридов тетракарбоновых кислот с диаминами. Предложен способ переработки полиимидных материалов, содержащих в своей молекулярной структуре пятичленные имидные циклы, отличающийся тем,...
Тип: Изобретение
Номер охранного документа: 0002727921
Дата охранного документа: 27.07.2020
29.07.2020
№220.018.38c0

Способ оценки активности цеолитного катализатора алкилирования изобутана бутиленами

Изобретение относится к области физико-химического анализа и может применяться для выбора катализатора алкилирования изобутана бутиленами. Предложен cпособ оценки активности цеолитного катализатора алкилирования изобутана бутиленами, включающий определение его текстурных характеристик методом...
Тип: Изобретение
Номер охранного документа: 0002727937
Дата охранного документа: 27.07.2020
02.08.2020
№220.018.3ba0

Устройство для обработки цеолита путем ионного обмена и способ получения катализатора с применением этого устройства

Изобретение относится к области получения цеолитных катализаторов и может быть использовано в катализе, в частности катализе процессов алкилирования изобутана бутиленами. Предложено устройство для обработки цеолита путем ионного обмена, включающее автоклав, выполненный в виде цилиндрического...
Тип: Изобретение
Номер охранного документа: 0002728554
Дата охранного документа: 30.07.2020
12.04.2023
№223.018.442a

Способ получения алюмосиликатного цеолита со структурой mtw (типа zsm-12)

Изобретение относится к способу получения алюмосиликатного цеолита со структурой MTW типа ZSM-12. Способ включает смешивание растворов, содержащих соединение алюминия, соединение кремния, темплат, выбранный из солей N1,N4-бис(2-гидроксиэтил)-N1,N1,N4,N4-тетраметилбутан-1,4-диаммония,...
Тип: Изобретение
Номер охранного документа: 0002735849
Дата охранного документа: 09.11.2020
12.04.2023
№223.018.45dd

Способ получения титано-алюмо-силикатного цеолита типа zsm-12

Изобретение относится к способу получения титано-алюмо-силикатного цеолита типа (Ti/Al)-ZSM-12, который характеризуется тем, что смешивают водный раствор с рН = 8,5-9,5, содержащий соединение алюминия, соединение титана и темплат, который доводят сухой щелочью или водным раствором щелочи до рН...
Тип: Изобретение
Номер охранного документа: 0002740476
Дата охранного документа: 14.01.2021
12.04.2023
№223.018.45e1

Микроволновой способ получения цеолита типа zsm-12 со структурой mtw

Изобретение раскрывает микроволноврй способ получения цеолита типа ZSM-12 со структурой MTW с кислотностью от 650 до 1000 мкмоль/г, выходом по массе продукта от 12 до 20 г и общим размером пор от 0.15 до 0.25 см/г итогового продукта, в отличие от цеолита, синтезированного традиционным...
Тип: Изобретение
Номер охранного документа: 0002740452
Дата охранного документа: 14.01.2021
12.04.2023
№223.018.464c

Способ получения компонента высокоплотного и высокоэнергоемкого ракетного и авиационного топлива на основе 2-винилнорборнана (варианты)

Изобретение относится к новому двухстадийному способу синтеза компонентов высокоплотного и высокоэнергоемкого ракетного и авиационного топлива на основе 2,2`-бис(норборнанила), который может быть использован в качестве высокоэнергоемого топлива, в частности ракетного и для дальней авиации....
Тип: Изобретение
Номер охранного документа: 0002739190
Дата охранного документа: 21.12.2020
12.04.2023
№223.018.4656

Способ получения компонента высокоплотного и высокоэнергоемкого ракетного и авиационного топлива на основе метилзамещенного 2, 2'- бис (норборнанила) (варианты)

Изобретение относится к новому двухстадийному способу синтеза компонентов высокоплотного и высокоэнергоемкого ракетного и авиационного топлива на основе метилзамещенного 2,2`-бис(норборнанила), который может быть использован в качестве высокоэнергоемкого топлива, в частности ракетного и для...
Тип: Изобретение
Номер охранного документа: 0002739242
Дата охранного документа: 22.12.2020
20.04.2023
№223.018.4bfe

Способ получения водородсодержащего газа

Изобретение относится к способу получения водородсодержащего газа, включающему две последовательные стадии. Способ характеризуется тем, что на первой стадии при температуре Т=1000-1100°С осуществляет некаталитическую матричную конверсию метана в синтез-газ в присутствии водяного пара, а на...
Тип: Изобретение
Номер охранного документа: 0002769311
Дата охранного документа: 30.03.2022
15.05.2023
№223.018.57ce

Способ оценки свойств полимерной мембраны

Изобретение относится к физико-химическим методам исследования полимерных растворов и может быть использовано в процессе изготовления пористых полимерных пленок и полых волокон. Способ оценки свойств полимерной мембраны путем определения скорости осаждения полимерного раствора для получения...
Тип: Изобретение
Номер охранного документа: 0002767951
Дата охранного документа: 22.03.2022
+ добавить свой РИД