×
24.05.2019
219.017.5d96

Результат интеллектуальной деятельности: Способ получения полиэфирсульфонов

Вид РИД

Изобретение

№ охранного документа
0002688942
Дата охранного документа
23.05.2019
Аннотация: Изобретение относится к области получения полиэфирсульфонов, применяемых в качестве суперконструкционных полимерных материалов для 3D печати. Способ получения полиэфирсульфонов заключается в том, что проводят реакцию нуклеофильного замещения нуклеофильного агента дигалоидароматическим соединением в среде апротонного растворителя в присутствии щелочного агента карбоната калия в количестве 0,06 моль, и в реакционную смесь вводят гексахлорбензол в количестве 0,0001 и 0,01 моль. В качестве нуклеофильного агента используют диоксисоединение, выбранное из группы, включающей 4,4-диоксидифенил-2,2-дихлорэтилен, либо смесь 0,0125-0,025 моль 4,4-диоксидифенил-2,2-дихлорэтилена и 0,0125-0,025 моль 4,4-диоксидифенилпропана. В качестве дигалоидароматического соединения используют 0,025 моль 4,4-дихлордифенилсульфона. Изобретение позволяет получить полиэфирсульфоны заданной длины полимерной цепи с хорошими термическими и механическими характеристиками. 7 пр.

Изобретение относится к области получения полиэфирсульфонов - простых ароматических эфиров на основе ароматических диолов и 4,4'-дихлордифенилсульфона, применяемых в качестве суперконструкционных полимерных материалов для 3D печати.

3D печать очень часто называют «Третьей промышленной революцией», так как становится реальным то, что ранее было доступно только в человеческих фантазиях. 3D печать начинает плотно входить в нашу жизнь, полимерные материалы, используемые для 3D печати, с каждым разом подвергаются модификации, совершенствуются их свойства. Перспективным полимерным материалом для данного вида печати представляются ароматические полиэфиры, в частности полиэфирсульфоны. К сожалению, полиэфирсульфоны обладают существенным недостатком -высокие температуры переработки. Традиционные способы переработки связаны с необходимостью применения высоких давлений (до 1400 кг/см2) и температур (до 350°С), соответствующего технологического оборудования и энергозатрат. Сильное межмолекулярное взаимодействие, обусловливающее низкую деформируемость и текучесть в области температур размягчения, а также узкие температурные интервалы переработки существенно затрудняют переработку полиэфирсульфонов в изделия [Ваниев М.А., Кирюхин Н.Н., Огрель A.M. Способ переработки полимера // Патент РФ №2058339, 1996]. Для переработки в условиях 3D печати полиэфирсульфон должен обладать высокой стабильностью свойств, что обеспечивается условиями проведения самого синтеза (температурой, природой растворителя, инертной атмосферой), степенью блокировки концевых реакционноспособных групп, а также полнотой отмывки самого полимера от всех технологических примесей, какими являются растворитель, выделяющий низкомолекулярной продукт - галогенид щелочного металла, непрореагировавшие мономеры - соответствующие бисфенолы (бисфеноляты) и галоидароматические сульфонильные соединения [Артемов С.В. Способ получения поли- и сополиэфирсульфонов // Патент РФ №2005737, 1999]. В связи с этим создание экономически эффективных технологий получения полиэфирсульфонов, обладающих улучшенными характеристиками является в настоящее время достаточно актуальной задачей.

Известен способ получения ароматических полиэфиров реакцией нуклеофильного замещения эквимолекулярных количеств полиароматического нуклеофильного реагента с дигалоидароматическим соединением в среде апротонного растворителя при нагревании в присутствии щелочного агента, в качестве последнего используют K2CO3 в сочетании с эквимолекулярной смесью Na2S⋅9H2O и Al2O3 или SiO2 в количестве от 0,5 до 5,0 мол. на 1,0 моль K2CO3 [Болотина Л.М., Чеботарев В.П. Способ получения ароматических полиэфиров // Патент РФ №2063404, 1996].

Недостатками способа являются длительность процесса, использование высоких температур.

Известен способ получения поли- и сополиэфирсульфонов взаимодействием в инертной атмосфере ароматических бисфенолов и галоидароматических сульфонов в среде растворителя в присутствии щелочного агента при нагревании с последующим измельчением и экстракцией целевого продукта, в качестве щелочного агента используют избыток по отношению к ароматическим бисфенолам смеси карбоната и гидрокарбоната калия, а в качестве растворителя - диметилсульфон, реакционную массу по окончании синтеза непосредственно или после разбавления растворителем до соотношения реакционная масса : растворитель 1:5, преимущественно до 1:2, измельчают до частиц размером 0,01-5,5 мм, преимущественно 0,5-1,0 мм, и промывают экстрагентом при перемешивании. Смесь карбоната и гидрокарбоната калия берут в избытке до 50 мол. %, преимущественно до 6 мол. % [Артемов С.В. Способ получения поли- и сополиэфирсульфонов // Патент РФ №2005737, 1999].

Недостатками способа являются необходимость новых технологических операций по измельчению твердого раствора полимера, длительной его отмывки от растворителя и солей, сложность регенерации твердого растворителя - диметилсульфона.

Известен способ получения полиэфирсульфонов [Ли Чжунчжи, Ван Цзи, Ван Цзе. Синтез полиэфирсульфоновой смолы // Патент КНР №103613752, 2013], заключающийся во взаимодействии бисфенола А и 4,4/-дихлордифенилсульфона в молярном соотношении 1:1, N-метилпирролидон в качестве растворителя, в качестве дегидратирующего агента - хлорбензол и NaOH - солеобразующего агента. Реакцию регулируют, блокируя с помощью газообразного хлорметана концевые фенолятные группы. Процесс в целом проводят в среде инертного газа, например, азота. Количество NaOH составляет 1.01-1.10 моль по отношению к бисфенолу А. Скорость реакции можно сократить за счет остановки реакции с помощью хлорметана.

Недостатками способа являются применение газообразного блокатора растущей цепи, что усложняет техническое оснащение процесса, требует новых систем и условий барботирования.

Наиболее близким к предлагаемому техническому решению является способ получения полиэфирсульфона, приводящий к повышению температуры стеклования и кислородного индекса. Задача достигается за счет того, что в способе получения ароматических полиэфиров реакцией нуклеофильного замещения в среде апротонного растворителя при нагревании в среде в присутствии щелочного агента, состоящего из K2CO3 с добавкой 0,5% мол. до 5,0% мол. эквимолярной смеси Na2S⋅9H2O и Al2O3 или SiO2 на 1,9 моль K2CO3, в качестве полиароматического нуклеофильного реагента применяют фенолфталеин или смесь дифенилолпропана и фенолфталеина при их мольном соотношении от 90:10 до 1:99, а в качестве дигалоидароматического соединения - 4,4-дихлордифенилсульфон (ДХДС) или его смесь с 4,4'-бис-(хлорфенилсульфонил) дифенилом при их мольном соотношении от 99:1 до 1:99. Регулирование молекулярной массы получаемых полимеров осуществляют добавлением к мономерам либо моногалоидных соединений ряда диарилсульфонов (например, монохлордифенилсульфона), либо избытком дигалоидароматического соединения. Кислородный индекс полученных полимеров составляет 26-41%, приведенная вязкость 0,47-0,53 дл/г (при концентрации 1 г в 100 мл растворителя), температура стеклования полученных образцов 196-290°С, время реакции 4-12 часов и более, температура реакции 165-175°С. [Ловков С.С., Чеботарев В.П. Способ получения ароматических полиэфиров // Патент РФ №2394848. 2010]

Недостатками данного способа являются относительно низкая вязкость растворов полученных образцов, следовательно, молекулярный вес, что может привести к ухудшению механических характеристик полиэфира. Осуществление синтеза в N,N-диметилацетамиде не позволяет повышать температуру среды выше 170-175°С, а при этой температуре многие бисфенолы, применяемые для получения полиэфирсульфонов не достаточно активны. Избыток дигалоидного соединения, используемый для регулирования молекулярной массы полимера может привести к преждевременному обрыву цепи и блокировать рост полимерной молекулы на ранних стадиях.

Задачей данного изобретения, совпадающей с техническим результатом, является создание полиэфирсульфонов заданной длины полимерной цепи, реакцией нуклеофильного замещения, с хорошими термическими и механическими характеристиками: высокие температура стеклования, значение показателя текучести расплава и кислородный индекс, стабильных в ходе высокотемпературной переработки.

Поставленная задача достигается путем получения полиэфирсульфонов реакцией нуклеофильного замещения полиароматических нуклеофильных агентов - 4,4/-диоксидифенил-2,2-дихлорэтилена, смеси диоксисоединений 0,0125-0,025 моль 4,4'-диоксидифенил-2,2-дихлорэтилена и 0,0125-0,025 моль 4,4'-диоксидифенилпропана, с дигалоидароматическим соединением - 0,025 моль 4,4'-дихлордифенилсульфоном в среде апротонного растворителя - 28 мл диметилсульфоксида и 25 мл толуола, в присутствии 0,06 моль щелочного агента карбоната калия и гексахлорбензола (ГХБ) в количестве от 0,0001-0,01 молей, причем ГХБ может выступать регулятором длины полимерной цепи за счет химического взаимодействия с концевыми фенолятными группами полимерной молекулы и при этом влиять на огнестойкость полученного полимера.

При малых добавках гексахлорбензола он выступает как один из мономеров и увеличивает молекулярный вес, а при больших количествах (0,01 и более моль) ГХБ обрывает полимерную цепь и служит ингибитором реакции поликонденсации.

Данное изобретение иллюстрируется следующими примерами.

Пример 1. В четырехгорлую колбу, снабженную мешалкой, ловушкой Дина-Старка, термометром и газоотводной трубкой, загружают 5,7073 г (0,025 моль) 4,4'-диоксидифенилпропана, 7,1792 г (0,025 моль) 4,4'-дихлордифенилсульфона, 7 г (0,06 моль) измельченного и высушенного карбоната калия, 28 мл диметилсульфоксида и 25 мл толуола, включают подачу газообразного азота. Температуру поднимают до 110°С и выдерживают при перемешивании в течение 45 минут. Далее поднимают температуру до 140°С, отгоняют воду в виде азеотропной смеси с толуолом. После полной отгонки воды температуру поднимают до 160°С, и выдерживают в течение 6 часов. Смесь охлаждают до комнатной температуры, разбавляют 25 мл диметилсульфоксида, отфильтровывают осадок хлористого натрия и осаждают полимер, прикапывая фильтрат в воду при интенсивном перемешивании. Осадок полиэфирсульфона отфильтровывают, промывают водой до отрицательной реакции на хлорид-ионы (проба нитратом серебра) и сушат при 90°С 2 часа, при 150°С - 3 часа, при 180°С - 4 часа.

Приведенная вязкость 0,5%-ного раствора полимера в хлороформе при 20°С равна 0,57 дл/г, кислородный индекс 25%, температура стеклования 190°С.

Полученный полимер имеет строение:

Пример 2. Способ осуществляют по примеру 1, только после выдерживания реакционной среды в течение 6 часов при температуре 160°С вводят 0,0285 г (0,0001 моль) гексахлорбензола (ГХБ), увеличивают скорость перемешивания и выдерживают 0,5 часа.

Приведенная вязкость 0,5%-ного раствора полимера в хлороформе при 20°С равна 0,78 дл/г, кислородный индекс 36%, температура стеклования 230°С.

Полученный полимер имеет строение:

Примечание. В данном примере ГХБ активирует рост полимерной цепи.

Пример 3. Способ осуществляют по примеру 1, только после выдерживания реакционной среды в течение 3-х часов при температуре 160°С вводят 0,0285 г (0,0001 моль) гексахлорбензола (ГХБ), увеличивают скорость перемешивания и выдерживают 0,5 часа.

Приведенная вязкость 0,5%-ного раствора полимера в хлороформе при 20°С равна 0,58 дл/г, кислородный индекс 33%, температура стеклования 210°С.

Примечание. В данном примере ГХБ активирует рост полимерной цепи.

Пример 4. Способ осуществляют по примеру 1, только после выдерживания реакционной среды в течение 3-х часов при температуре 160°С вводят 2,85 г (0,01 моль) гексахлорбензола (ГХБ), увеличивают скорость перемешивания и выдерживают 1 час.

Приведенная вязкость 0,5%-ного раствора полимера в хлороформе при 20°С равна 0,28 дл/г, кислородный индекс 33%, температура стеклования 190°С.Образуются концевые группы:

Примечание. В данном примере ГХБ ингибирует рост полимерной цепи

Пример 5. Способ осуществляют по примеру 1, только в качестве диоксисоединения в реакционную смесь вводят 7,02852 г (0,025 моль) 4,4'-диоксидифенил-2,2-дихлорэтилена. После выдерживания реакционной среды в течение 3-х часов при температуре 160°С вводят 0,0285 г (0,0001 моль) гексахлорбензола (ГХБ), увеличивают скорость перемешивания и выдерживают 1 час.

Приведенная вязкость 0,5%-ного раствора полимера в хлороформе при 20°С равна 0,82 дл/г, кислородный индекс 40%, температура стеклования 235°С.

Полученный полимер имеет строение

Примечание. В данном примере ГХБ активирует рост полимерной цепи.

Пример 6. Способ осуществляют по примеру 1, только в качестве диоксисоединения в реакционную смесь вводят смесь 3,51426 г (0,0125 моль) 4,4'-диоксидифенил-2,2-дихлорэтилена и 3,5896 г (0,0125 моль) 4,4'-диоксидифенилпропана. После выдерживания реакционной среды в течение 3-х часов при температуре 160°С вводят 0,0285 г (0,0001 моль) гексахлорбензола (ГХБ), увеличивают скорость перемешивания и выдерживают 1 час.

Приведенная вязкость 0,5%-ного раствора полимера в хлороформе при 20°С равна 0,87 дл/г, кислородный индекс 41%, температура стеклования 230°С.

Полученный полимер имеет строение:

Примечание. В данном примере ГХБ активирует рост полимерной цепи

Пример 7. Способ осуществляют по примеру 1, только, в качестве диоксисоединения в реакционную смесь вводят 7,02852 г (0,025 моль) 4,4'-диоксидифенил-2,2-дихлорэтилена. После выдерживания реакционной среды в течение 3-х часов при температуре 160°С вводят 2,85 г (0,01 моль) гексахлорбензола (ГХБ), увеличивают скорость перемешивания и выдерживают 1 час.

Приведенная вязкость 0,5%-ного раствора полимера в хлороформе при 20°С равна 0,42 дл/г, кислородный индекс 41%, температура стеклования 235°С.

Способ получения полиэфирсульфонов реакцией нуклеофильного замещения полиароматических нуклеофильных агентов, отличающийся тем, что в качестве нуклеофильных агентов используются: 4,4-диоксидифенил-2,2-дихлорэтилен, смеси диоксисоединений 0,0125-0,025 моль 4,4-диоксидифенил-2,2-дихлорэтилена и 0,0125-0,025 моль 4,4-диоксидифенилпропана с дигалоидароматическим соединением - 0,025 моль 4,4-дихлордифенилсульфона в среде апротонного растворителя в присутствии 0,06 моль щелочного агента карбоната калия, и в реакции используется гексахлорбензол в количестве 0,0001 и 0,01 моль.
Источник поступления информации: Роспатент

Показаны записи 11-20 из 174.
29.12.2017
№217.015.f48b

Фильтрующий материал и способ его получения

Изобретение относится к области фильтрующих материалов и может быть использовано для сверхтонкой очистки воздуха от высокодисперсных аэрозолей в противоаэрозольных фильтрах, противогазах, респираторах и масках. Для получения фильтрующего материала осуществляют электроформование...
Тип: Изобретение
Номер охранного документа: 0002637952
Дата охранного документа: 08.12.2017
04.04.2018
№218.016.303a

Сердечник бронебойной пули

Изобретение относится к боеприпасам и, в частности, к пулям автоматным и винтовочным, имеющим сердечник из твердого сплава с высокой пробивной способностью. Технический результат - повышение характеристик бронепробиваемости и, в том числе, возможности пробивания бронеплит на керамической...
Тип: Изобретение
Номер охранного документа: 0002644987
Дата охранного документа: 15.02.2018
10.05.2018
№218.016.3ba9

Нетканый многослойный материал для поглощения электромагнитного излучения в свч диапазоне

Изобретение относится к области радиофизики и предназначено для поглощения электромагнитного излучения сверхвысокочастотного (СВЧ) диапазона, причем его структура и свойства отвечают требованиям создания элементов носимой одежды для маскировки человека в СВЧ диапазоне. Нетканый материал для...
Тип: Изобретение
Номер охранного документа: 0002647380
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.3d11

Способ получения керамической вставки для оружейных стволов

Изобретение относится к области огнестрельного оружия, а именно способу получения керамической вставки для ствола стрелкового оружия. Способ получения керамической вставки для оружейных стволов включает подготовку исходных смесей из керамических порошков и временного связующего, формование...
Тип: Изобретение
Номер охранного документа: 0002647948
Дата охранного документа: 21.03.2018
18.05.2018
№218.016.5139

Способ обнаружения шумящих объектов в мелком и глубоком море

Изобретение относится к области гидроакустики и может быть использовано в системах шумопеленгования. Техническим результатом является повышение помехоустойчивости и дальности действия приемной системы на низких частотах в условиях мелкого и глубокого моря путем использования приемной системы на...
Тип: Изобретение
Номер охранного документа: 0002653189
Дата охранного документа: 07.05.2018
29.05.2018
№218.016.5277

Гидроакустический комплекс для обнаружения движущегося источника звука, измерения азимутального угла на источник и горизонта источника звука в мелком море

Изобретение относится к гидроакустике и может быть использовано для обнаружения движущегося источника звука, измерения азимутального угла на источник и горизонта источника в мелком море в пассивном режиме с помощью акустических приемников, установленных на морском дне, координаты которых и...
Тип: Изобретение
Номер охранного документа: 0002653587
Дата охранного документа: 11.05.2018
29.05.2018
№218.016.55c5

Способ обнаружения шумящих в море объектов с помощью комбинированного приемника

Изобретение относится к области гидроакустики и может быть использовано в системах шумопеленгования. Техническим результатом является повышение помехоустойчивости и дальности действия приемной системы на низких частотах в условиях мелкого моря путем использования приемной системы, которая...
Тип: Изобретение
Номер охранного документа: 0002654335
Дата охранного документа: 17.05.2018
09.06.2018
№218.016.5c4d

Способ создания изгибов волноводов

Изобретение относится к области создания интегральных оптических волноводных микроструктур для прикладного использования в системах получения, обработки и передачи информации по оптическим каналам связи и другим областям науки и техники. Способ формирования изгиба волновода в интегральной...
Тип: Изобретение
Номер охранного документа: 0002655992
Дата охранного документа: 30.05.2018
05.07.2018
№218.016.6c55

Способ выявления в воздухе малых концентраций взрывчатых и наркотических веществ на основе анализа биоэлектрических потенциалов обонятельного анализатора крысы

Изобретение относится к области безопасности и газоанализаторов, а именно к способам обнаружения взрывчатых и/или наркотических веществ в воздухе. В основе изобретения лежит анализ ЭКоГ сигналов, снятых имплантированными в мозг крысы электродами. На первом этапе происходит обучение используемых...
Тип: Изобретение
Номер охранного документа: 0002659712
Дата охранного документа: 03.07.2018
06.07.2018
№218.016.6cb6

Способ хранения клеточных культур в суспензии

Изобретение относится к биологии и медицине и может быть использовано при хранении клеточных культур. Для криоконсервации используют контейнер с регулируемым объемом и возможностью его герметизации, при этом осуществляют вывод атмосферного газа из внутреннего объема контейнера и последующий...
Тип: Изобретение
Номер охранного документа: 0002660075
Дата охранного документа: 05.07.2018
Показаны записи 11-20 из 98.
10.06.2015
№216.013.52db

Полимерная композиция на основе полиэтилентерефталата

Изобретение относится к полимерным композициям на основе полиэтилентерефталата, которые могут применяться при производстве бутылок, контейнеров различного назначения, пленочных изделий, волокон. Полимерная композиция на основе полиэтилентерефталата содержит 3-10 вес.% полигидроксиэфира с...
Тип: Изобретение
Номер охранного документа: 0002552732
Дата охранного документа: 10.06.2015
27.07.2015
№216.013.65a1

Нанокомпозитный полиамидный материал, обладающий повышенными барьерными свойствами

Изобретение относится к нанокомпозитному полиамидному материалу, используемому в упаковочной пленке, обладающей достаточно высокими прочностными и барьерными свойствами. Нанокомпозитный полиамидный материал содержит полиамид и наполнитель - слоистый силикат, в качестве которого используется...
Тип: Изобретение
Номер охранного документа: 0002557570
Дата охранного документа: 27.07.2015
27.09.2015
№216.013.7fd2

Полимерная композиция

Изобретение относится к композиционным материалам на основе полиэтилентерефталата, предназначенным для изготовления однослойных емкостей в виде бутылок, обладающих улучшенными барьерными свойствами. Композиционный материал получают путем модификации полиэфира модифицирующим композитом....
Тип: Изобретение
Номер охранного документа: 0002564319
Дата охранного документа: 27.09.2015
27.09.2015
№216.013.7fd8

Полимерная композиция

Изобретение относится к композиционным материалам на основе полиэтилентерефталата, предназначенным для изготовления однослойных емкостей в виде бутылок. Полимерная полиэтилентерефталатная композиция включает полиэтилентерефталат и модифицирующий композит, который в свою очередь имеет в своем...
Тип: Изобретение
Номер охранного документа: 0002564325
Дата охранного документа: 27.09.2015
27.09.2015
№216.013.7fd9

Полимерная композиция

Изобретение относится к композиционным материалам на основе полиэтилентерефталата, предназначенным для изготовления однослойных емкостей в виде бутылок. Композиционный материал получают путем модификации полиэтилентерефталата модифицирующим композитом, имеющим в своем составе полигидроксиэфир и...
Тип: Изобретение
Номер охранного документа: 0002564326
Дата охранного документа: 27.09.2015
10.12.2015
№216.013.97ab

Полимерная композиция на основе полиэтилентерефталата

Изобретение относится к композиционным материалам на основе полиэтилентерефталата, используемым для изготовления однослойных емкостей в виде бутылок, обладающих повышенными барьерными свойствами. Полимерная композиция на основе полиэтилентерефталата, используемая в качестве композиционного...
Тип: Изобретение
Номер охранного документа: 0002570447
Дата охранного документа: 10.12.2015
27.03.2016
№216.014.c62a

Водорастворимая целлюлозная композиция и способ ее получения

Изобретение относится к новым биологически активным водорастворимым целлюлозным композициям и способам их получения, предназначенным для фармацевтической промышленности. Водорастворимую целлюлозную композицию получают путем обработки водной суспензии диальдегидцеллюлозы хлопковой (ДАЦ) водным...
Тип: Изобретение
Номер охранного документа: 0002578311
Дата охранного документа: 27.03.2016
20.06.2016
№217.015.0537

Способ получения сложных полиэфиров для полиуретанов

Настоящее изобретение относится к области получения сложных полиэфиров и может быть использовано для получения эластичных полиуретанов. Сложные полиэфиры получают в результате поликонденсации адипиновой кислоты, этиленгликоля и 1,4-бутандиола при 140°C постепенно доводя температуру до 195±5°C....
Тип: Изобретение
Номер охранного документа: 0002587218
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2f4c

Композиционный материал

Изобретение относится к композиционным материалам на основе полиэтилентерефталата, предназначенным для изготовления однослойных емкостей в виде бутылок. Композиционный материал получают путем модификации полиэтилентерефталата модифицирующим композитом. Изобретение обладает улучшенными...
Тип: Изобретение
Номер охранного документа: 0002580742
Дата охранного документа: 10.04.2016
10.06.2016
№216.015.4806

Полиэтилентерефталатная композиция

Изобретение относится к полиэтилентерефталатным композиционным материалам на основе полиэтилентерефталата, предназначенным для изготовления однослойных емкостей в виде бутылок и контейнеров различного назначения, обладающих улучшенными барьерными свойствами. Изобретение реализуется путем...
Тип: Изобретение
Номер охранного документа: 0002585665
Дата охранного документа: 10.06.2016
+ добавить свой РИД