×
20.05.2019
219.017.5d59

Результат интеллектуальной деятельности: СВАРОЧНАЯ ПРОВОЛОКА ДЛЯ СВАРКИ ЖАРОПРОЧНЫХ ЖАРОСТОЙКИХ СПЛАВОВ

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано при создании ответственных конструкций из жаростойких жаропрочных сплавов на железохромоникелевой основе, в частности для изготовления реакционных змеевиков высокотемпературных установок пиролиза, подвергающимся значительным статическим нагрузкам, работающих при температурах 900-1100°С, в условиях науглероживания, коррозии и износа труб. Сварочная проволока содержит компоненты в следующем соотношении, мас.%: углерод 0,25-0,55, кремний 0,8-2,0, марганец 0,5-2,0, хром 22-27, никель 25-40, молибден 0,1-0,6, вольфрам 0,5-5,0, ниобий 0,5-2,0, титан 0,1-0,6, алюминий 0,1-1,0, цирконий 0,05-0,1, иттрий 0,01-0,1, кальций 0,01-0,05, магний 0,01-0,1, бор 0,0005-0,005, железо, примеси и газы - остальное. Кроме того, ограничено суммарное содержание в проволоке циркония, иттрия, кальция и магния, суммарное содержание марганца, ниобия и вольфрама, а также содержание примесей и газов. Состав проволоки обеспечивает увеличение длительной прочности при температурах 900-1150°С и стойкости к науглероживанию металла шва, повышение сопротивляемости горячим трещинам при сварке и при горячей обработке давлением в процессе изготовления проволоки. 1 з.п. ф-лы, 4 табл.

Изобретение относится к области производства сварочных материалов для сварки высоколегированных жаропрочных и жаростойких сплавов на железохромоникелевой основе и может быть использовано при создании ответственных конструкций в металлургии, энергомашиностроении, химической и нефтеперерабатывающей отраслях промышленности, например, для изготовления реакционных змеевиков высокотемпературных установок пиролиза, подвергающихся значительным статическим нагрузкам, работающих при температурах 900-1100°С, в условиях науглероживания, коррозии и износа труб.

Известна сварочная проволока повышенной свариваемости для жаропрочной никельхромомолибденовой стали на основе 25Cr-35Ni (Заявка Японии №52-5414, кл. В23К 35/30, Кубота Тэкко. - Опубл. 14.02.1977).

Сварочные швы, выполненные этой проволокой, обладают достаточно высокой стойкостью против образования горячих трещин. Недостатками данной проволоки являются пониженная жаропрочность швов при температурах 900-1100°С и их недостаточная стойкость против науглероживания.

Наиболее близкой по технической сущности и составу компонентов является сварочная проволока Св. - 30Х15Н35В3Б3Т (ГОСТ 2246-70 «Проволока стальная сварочная», стр.11, табл.2), содержащая, мас.%:

Углерод 0,27-0,33
Кремний не более 0,60
Марганец 0,50-1,00
Хром 14,00-16,00
Никель 34,00-36,00
Титан 0,20-0,70
Сера не более 0,015
Фосфор не более 0,025
Вольфрам 2,50-3,50
Ниобий 2,80-3,50
Железо остальное

Металл шва, выполненный известным составом сварочной проволоки, имеет высокие прочностные свойства, жаростойкость и жаропрочность до температуры 800-850°С. Однако он обладает недостаточной длительной прочностью при температурах 900-1150°С, пониженной стойкостью к науглероживанию металла шва, повышенной склонностью к образованию горячих трещин при сварке. Кроме того, металл сварочной проволоки имеет недостаточную способность к горячему деформированию при горячих переделах (ковка, прокатка, волочение).

Техническим результатом изобретения является увеличение длительной прочности при температурах 900-1150°С и стойкости к науглероживанию металла шва, повышение сопротивляемости против горячих трещин при сварке и горячей обработке давлением (ковка, прокатка, волочение).

Технический результат достигается за счет того, что сварочная проволока, содержащая углерод, кремний, марганец, хром, никель, вольфрам, ниобий, титан, и железо, согласно изобретению дополнительно содержит молибден, алюминий, бор кальций, цирконий, иттрий, магний при следующем содержании компонентов, мас.%:

Углерод 0,25-0,55
Кремний 0,8-2,0
Марганец 0,5-2,0
Хром 22-27
Никель 25-40
Молибден 0,1-0,6
Вольфрам 0,5-5,0
Ниобий 0,5-2,0
Титан 0,1-0,6
Алюминий 0,1-1,0
Цирконий 0,05-0,1
Иттрий 0,01-0,1
Кальций 0,01-0,05
Магний 0,01-0,1
Бор 0,0005-0,005
Железо, примеси и газы остальное

при этом:

суммарное содержание циркония, иттрия, кальция и магния должно быть меньше или равно 0,2: Zr+Y+Са+Mg≤0,2;

суммарное содержание марганца, ниобия и вольфрама должно быть в пределах 4,0-7,5: (Mn+Nb+W)=4,0-7,5;

содержание примесей не должно превышать следующих значений, мас.%:

Свинец ≤0,001 Сурьма ≤0,002
Висмут ≤0,0005 Олово ≤0,0025
Цинк ≤0,0015 Мышьяк ≤0,002
Медь ≤0,2 Фосфор ≤0,01
Сера ≤0,008

содержание газов должно быть следующим, мас.%:

Кислород ≤0,0025
Водород ≤0,0015

Состав предлагаемой сварочной проволоки представляет собой высокоуглеродистый железохромоникелевый сплав типа 25Cr-35Ni-Nb-5W с комплексным легированием Ti, Al, Mo и другими элементами.

Содержание углерода в пределах 0,25-0,55 мас.%, хрома 22-27 мас.%, никеля 25-40 мас.% с добавками Nb (0,5-2,0 мас.%) и W (0,5-5 мас.%) обеспечивает аустенитно-карбидную структуру металла шва. Микроструктура наплавленного металла представляет собой аустенит и карбидную фазу. Карбидная фаза в предлагаемом сплаве состоит из карбидов следующего состава: карбидов типа М7С3(Cr7C3) и MC(NbC) M6C[(Cr, Ni, W, Si)6C] и М23С6(Cr23C6). Карбидное упрочнение жаропрочного сварного шва проводится в комплексе с интерметаллидным упрочнением частицами Ni3Ti, Ni3(Al, Ti), Fe2W и др. Углерод в количестве 0,25-0,55% способствует сохранению аустенитной структуры и увеличению длительной прочности металла шва. При содержании углерода менее 0,25% снижается жаропрочность, возможно, из-за образования недостаточного количества дисперсных карбидов хрома типа М23С6, если же углерода более 0,55%, то это вызывает охрупчивание металла шва из-за выделения глыбообразных карбидов на границах зерен.

Никель как основной аустенизирующий компонент сплава с содержанием от 25 до 40% обеспечивает сохранение плотноупакованной кристаллической решетки γ-раствора, в котором замедляются процессы диффузии, благодаря чему металл шва становится более жаропрочным, повышается его пластичность и ударная вязкость. Уменьшение количества никеля ниже 25% приводит к снижению длительной прочности при высоких температурах. Содержание никеля более 40% уменьшает стойкость металла против горячих трещин при горячей обработке давлением (ковка, прокатка) и сварке.

Хром как ферритизатор в количестве от 22 до 27% способствует увеличению длительной прочности, сопротивляемости науглероживанию, окалиностойкости металла шва. При содержании хрома менее 22% заметно снижается стойкость против науглероживания из-за ухудшения качества защитной пленки, в состав которой входит хром. Увеличение содержания хрома более 27% приводит к заметному снижению пластичности сварных швов.

Введение кремния от 0,8 до 2% в состав сварочной проволоки делает шов более устойчивым к науглероживанию, повышает его сопротивляемость окислению при высоких температурах до 1150°С и коррозии в атмосфере продуктов сгорания углеводородного топлива, содержащих серу и сернистые соединения. Известно, что кремний способствует возникновению горячих трещин в железохромоникелевых аустенитных швах. Однако в присутствии карбидной эвтектики в шве, выполненном предлагаемой проволокой, отрицательное влияние кремния выражено значительно слабее, и его содержание в сварочной проволоке может составлять 0,8-2,0%. Кремний в этих пределах не ухудшает длительную прочность шва. Уменьшение кремния менее 0,8% сокращает длительность действия защитной оксидной пленки, образующейся в начале процесса науглероживания, что приводит к снижению стойкости шва к науглероживанию. Повышение содержания кремния более 2,0% резко ухудшает свариваемость сплава (уменьшает стойкость против горячих трещин при сварке), а также затрудняет деформируемость сплава при ковке и прокатке.

Легирование марганцем (0,5-2,0%) обеспечивает более высокую стойкость шва против горячих трещин. Марганец облегчает горячую механическую обработку металла предлагаемой сварочной проволоки. Положительное влияние марганца обусловлено его способностью связывать серу в тугоплавкий сульфид MnS. При содержании более 2% марганец отрицательно влияет на коррозионную стойкость металла шва.

Вольфрам в количествах от 0,5 до 5% упрочняет металл шва без ущерба для пластичности. Он повышает длительную прочность шва при высоких температурах (900-1150°С). Введение в шов вольфрама более 5% приводит к охрупчиванию металла шва.

Добавка в сварочную проволоку ниобия от 0,5 до 2% и молибдена 0,1-0,6% повышает сопротивляемость науглероживанию и окалиностойкости. Кроме того, ниобий обеспечивает требуемый уровень жаропрочности, упрочняя аустенитную матрицу металла шва ввиду сравнительно хорошего усвоения этого элемента сварочной ванной при всех видах сварки плавлением.

Однако ниобий при его содержании более 2% способствует возникновению горячих трещин в аустенитном шве. Отрицательное влияние ниобия на горячеломкость аустенитного шва тесно связано с образованием легкоплавких эвтектик ниобия с железом и никелем. При содержании ниобия менее 0,55 снижается длительная прочность металла шва.

Суммарное содержание марганца, вольфрама и ниобия должно быть в пределах 4,0-7,5 мас.%.

Количество этих элементов в сумме меньшей, чем 4,0 мас.%, приводит к заметному снижению длительной прочности металла шва при высоких температурах (900-1100°С) вследствие недостаточного упрочнения аустенитной матрицы металла шва.

При содержании марганца, вольфрама и ниобия больше 7,5 мас.% резко снижается пластичность металла шва из-за выделения карбидных и интерметаллидных фаз в результате длительной эксплуатации при высоких температурах.

Введение титана в пределах от 0,1 до 0,6% заметно измельчает структуру сварного шва, он связывает газы, уменьшает вероятность образования пор, повышает сопротивляемость шва разрушению от термосмен (термостойкость). При содержании титана более 0,6% трещиностойкость сварного шва заметно падает из-за образования низкотемпературных эвтектик Fe-Ti и Ni-Ti.

Содержание в шве алюминия в количестве 0,1-1,0% повышает сопротивляемость науглероживанию и окалиностойкость в связи с тем, что наряду с хромом и кремнием он повышает длительность действия защитной пленки, образуя тугоплавкие оксиды при эксплуатации в углеродосодержащих средах и температуре 900-1100°С.

Кроме того, при комплексном легировании шва алюминием совместно с ниобием, вольфрамом, титаном увеличивается длительная прочность шва при высоких температурах.

Медь при содержании более 0,2% затрудняет горячую механическую обработку металла проволоки, способствует охрупчиванию шва, выполненного предлагаемой сварочной проволокой, вследствие выпадения медистой фазы по границам зерен.

Введение кальция в количестве 0,01-0,05% повышает сопротивляемость горячим трещинам при горячей обработке давлением и сварке, уменьшает содержание газов, в первую очередь, кислорода в металле шва, а также уменьшает количество неметаллических включений, т.е. действие кальция заключается в улучшении качества металла и выражается в дополнительном раскислении металла шва.

Добавка кальция более 0,05% повышает газонасыщенность металла шва, значительно снижает его пластичность.

Добавка кальция менее 0.01% практически не влияет на газонасыщенность металла шва.

Кроме того, как щелочно-земельный элемент кальций в указанном количестве существенно увеличивает стойкость к науглероживанию, что связано с каталитической активностью щелочных и щелочно-земельных металлов в реакциях газификации углерода, проникающего из углеродосодержащей пирогазовой смеси в металл сварных соединений труб при эксплуатации.

Добавка бора в количестве 0,0005-0,005% значительно увеличивает длительную прочность, сопротивление ползучести и длительную пластичность металла шва. Такое сильное влияние небольших количеств бора объясняется повышением межкристаллитной прочности в результате легирования бором приграничных зон и замедлением диффузионных процессов. При содержании бора больше 0,005% образуется легкоплавкая боридная эвтектика, которая, располагаясь на границах зерен, снижает пластичность, а также значительно увеличивает склонность металла шва к горячим трещинам.

При содержании бора менее 0,0005% эффект повышения жаропрочности заметно меньше.

Введение циркония и иттрия в количестве от 0,01 до 0,1% каждого увеличивает длительную прочность металла шва, способствует получению более качественного металла, очищая металл от неметаллических включений. При добавке этих элементов (Zr и Y) образуются самостоятельные включения в виде окислов иттрия и циркония, нитридов и интерметаллидов циркония. Их основное влияние заключается в способности растворяться, хотя и в небольших количествах, в γ-твердых растворах железа и тем самым осуществлять их легирование. Кроме того, цирконий и иттрий относятся к поверхностно-активным элементам, легирующим границы зерен и тем самым повышающим их межкристаллическую прочность. Известно, что при высоких температурах границы зерен являются наиболее слабыми местами, по которым происходит преимущественно разрушение

Введение иттрия свыше 0,1% увеличивает содержание газов в шве, снижая его пластичность. Повышение содержания циркония в проволоке свыше 0,1% ухудшает стойкость против горячих трещин при сварке. При содержании циркония и иттрия менее 0,01% снижается их рафинирующее и модифицирующее действие в жидком металле сварочной ванны.

Магний в небольших количествах (0,01-0,1%) препятствует влиянию серы на пластичность металла шва. Магний в указанных количествах увеличивает длительную пластичность металла шва, повышает сопротивляемость горячим трещинам. Положительный эффект в этом случае связан с его влиянием на глобуляризацию сульфидов и неметаллических включений. При увеличении содержания магния свыше 0,1% ухудшается свариваемость. При введении Mg менее 0,01% эффективность удаления серы из сварочной ванны значительно снижается.

Введение в шов микродобавок циркония, иттрия, кальция и магния в сумме ≤0,2% приводит к повышению высокотемпературной пластичности материала сварочной проволоки и металла шва в интервале 900-1200°С, повышает сопротивляемость против образования горячих трещин при сварке и горячей обработке давлением (ковке и прокатке). Однако в сумме их содержание должно быть не более 0,2%. При более высоком содержании структура шва более крупнозернистая, в металле шва образуются эвтектики этих элементов, что ведет к его охрупчиванию.

Введение этих элементов в количестве не более 0,2% измельчает литую структуру металла шва. Действие данных элементов связано с их комплексным благоприятном влиянием на структуру и свойства основного металла и металла шва; наиболее важным при этом является снижение серы, кислорода и неметаллических включений; очищение границ зерен; равномерное распределение включений и их глобулизация.

Содержание в шве серы более 0,008% и фосфора более 0,01% приводит к горячим трещинам при сварке. Это обусловлено их способностью образовывать легкоплавкие эвтектики с железом и никелем. Кроме того, сварной шов, содержащий большое количество сульфидной или фосфидной эвтектики, обладает пониженными механическими свойствами из-за хрупкости эвтектической составляющей.

Содержание легкоплавких цветных примесей в предлагаемой сварочной проволоке и металле шва свинца более 0,001%, сурьмы более 0,002%, висмута более 0,0005%, олова более 0,0025%, цинка более 0,0015%, мышьяка более 0,002% уменьшает длительную прочность и снижает сопротивляемость против горячих трещин при горячей обработке давлением и сварке. Механизм действия этих даже ничтожно малых количеств легкоплавких примесей следующий: сосредоточиваясь преимущественно на границах зерен γ-твердого раствора, они резко снижают межкристаллическую прочность основного металла и сварного соединения, вызывая их преждевременное разрушение под действием температуры и нагрузки.

Присутствие в металле сварного шва, выполненном заявленной сварочной проволокой, кислорода в количестве большем 0,0025% резко снижает сопротивляемость образованию горячих трещин. Это связано со способностью кислорода сегрегировать в межкристаллических прослойках с образованием его соединений с такими элементами, как сера, железо, ниобий, снижающих температуру затвердения этих прослоек и вызывающих образование горячих трещин.

Водород в шве в количестве, превышающем 0,0015%, уменьшает стойкость к образованию горячих трещин. Причина этого кроется в то, что водород, выделяемый из расплава на поверхностях растущих столбчатых кристаллов, нарушает их спайность, образуя трещины. Кроме того, водород может усиливать трещинообразование, вызываемое другими элементами, в частности серой, диффундирующей в эти трещины.

Пример конкретного выполнения

В опытном сварочно-металлургическом производстве ЦНИИ КМ «Прометей» были выплавлены в открытой индукционной печи с использованием высококачественных шихтовых материалов четыре 100-килограммовых отливки заявляемой и одна отливка известной сварочной проволоки. Отливки сварочной проволоки были подвергнуты электрошлаковому переплаву с получением слитков диаметром 120 мм. Выплавленные слитки были прокованы на заготовки размером кв. 40 мм × 2000 мм. Ковка производилась на ковочном молоте в интервале температур 1150-900°С с последующим охлаждением заготовок на воздухе. Из этих заготовок изготовили катанку ⌀ 6 мм, а из катанки - сварочную проволоку заявляемого и известного составов ⌀ 1,6 и 3 мм. Сварочной проволокой заявленного и известного состава была проведена аргонодуговая сварка в V-образную разделку пластин # 10 мм из сплава 40Х26Н32С2Б, ГОСТ10052-75. Из металла заготовок под сварочную проволоку были изготовлены разрывные образцы для испытаний на горячую деформируемость. Из металла сварных швов, выполненных заявляемой и известной сварочной проволокой, были изготовлены образцы для испытаний на статическое растяжение, длительную прочность, науглероживание, а также на склонность к образованию горячих трещин.

Химический состав предлагаемой и известной сварочной проволоки приведен в таблице 1. Испытания на статическое растяжение проводили при температурах 20, 900-1100°С. Испытания на длительную прочность проводили по времени до разрушения образцов при 900-1100°С и соответственно при нагрузках 70, 50 и 20 МПа. Их результаты приведены в таблице 2.

Жаростойкость металла шва, выполненного заявляемой и известной проволокой, оценивали по сопротивляемости науглероживанию. Науглероживание образцов проводили при 1000°С в кварцевой капсуле, заполненной древесным углем и графитом. Количественную оценку проводили по измерению глубины науглероженного слоя, выявляемого металлографическим путем.

Сопротивляемость науглероживанию приведена в таблице 3.

Оценку горячей деформируемости металла заявляемой и известной сварочной проволоки оценивали по результатам высокотемпературных испытаний разрывных образцов при температурах 900, 1000, 1100, 1150°С по величине относительного сужения - наиболее достоверного показателя деформируемости материала. Также способность металла заявляемой и известной сварочной проволоки к горячему деформированию оценивали по результатам визуального наблюдения за ковкой заготовок под сварочную проволоку и осмотра прокованных заготовок.

Оценку сопротивляемости металла горячим трещинам при сварке проводили на установке ЛТП 1-6 по методике МВТУ им.Баумана. Оценку проводили по критической скорости растяжения (Vкр, мм/мин), когда начинают появляться трещины в сварном шве. Результаты оценки горячей деформируемости при горячей обработке давлением и сопротивляемости горячим трещинам при сварке заявляемой и известной сварочной проволоки приведены в таблице 4.

Технико-экономическая эффективность от использования данного изобретения по сравнению с известной сварочной проволокой выразится в повышении ресурса работы и эксплуатационной надежности сварных труб реакционных змеевиков печей пиролиза, а также сварных узлов других высокотемпературных энергетических установок за счет увеличения длительной прочности и пластичности, повышения сопротивляемости науглероживанию металла сварных соединений, улучшения свариваемости материала. Кроме того, высокая горячая деформируемость металла предлагаемой сварочной проволоки позволит значительно снизить брак и потери металла при ее изготовлении.

Источник поступления информации: Роспатент

Показаны записи 11-20 из 25.
29.04.2019
№219.017.3f46

Агломерированный флюс марки 48аф-55

Изобретение может быть использовано для автоматической сварки низколегированных хладостойких сталей нормальной, повышенной и высокой прочности на обычных режимах, а также форсированных режимах и повышенных скоростях сварки низколегированными проволоками. Флюс содержит, мас.%: электрокорунд...
Тип: Изобретение
Номер охранного документа: 0002295431
Дата охранного документа: 20.03.2007
29.04.2019
№219.017.4442

Способ получения нанокомпозитных покрытий

Изобретение относится к электролитическим способам обработки изделий из титановых сплавов для получения защитных покрытий и может быть использовано в нефтегазодобывающей, нефтеперерабатывающей, судостроительной и других отраслях промышленности. Способ включает микродуговое оксидирование...
Тип: Изобретение
Номер охранного документа: 0002471021
Дата охранного документа: 27.12.2012
18.05.2019
№219.017.5614

Печь пиролиза для производства непредельных углеводородов

Изобретение может быть использовано для производства этилена и других непредельных углеводородов. Пирогазовый поток подают через подающие магистрали 1 во входные патрубки двух впускных тройников 2. Пройдя через четыре выходных патрубка двух впускных тройников 2, пирогазовый поток поступает в...
Тип: Изобретение
Номер охранного документа: 0002345122
Дата охранного документа: 27.01.2009
20.05.2019
№219.017.5d4d

Способ микродугового оксидирования титановой проволоки для антифрикционной наплавки

Изобретение относится к сварочным материалам для специальных наплавок при изготовлении изделий из титановых сплавов. Способ включает микродуговое оксидирование в водном растворе жидкого стекла NaSiO с концентрацией 20,0±2,0 г/л при напряжении от 320 до 340 В в течение 15±2 мин при температуре...
Тип: Изобретение
Номер охранного документа: 0002391449
Дата охранного документа: 10.06.2010
20.05.2019
№219.017.5d4f

Флюс для аргонодуговой сварки изделий из медно-никелевых сплавов

Изобретение может быть использовано при сварке неплавящимся электродом в среде аргона стыков труб из медно-никелевого сплава типа МНЖ5-1. Флюс содержит компоненты в следующем соотношении, мас.%: фторид алюминия 56-62, фторид кальция 8-14, хлорид калия 10-20, борный ангидрид 10-20. Флюс...
Тип: Изобретение
Номер охранного документа: 0002396157
Дата охранного документа: 10.08.2010
20.05.2019
№219.017.5d50

Способ производства листов из хладостойкой стали

Изобретение относится к технологии производства листового проката, предназначенного для изготовления деталей и узлов конструкций, работающих при низких температурах, например контейнеров для перевозки и длительного хранения отработавшего ядерного топлива. Для повышения хладостойкости листов из...
Тип: Изобретение
Номер охранного документа: 0002394108
Дата охранного документа: 10.07.2010
20.05.2019
№219.017.5d51

Состав порошковой проволоки для сварки труб категории прочности х90

Изобретение может быть использовано для автоматической и механизированной сварки в среде защитных газов низколегированных трубных сталей категории прочности Х90. Порошковая проволока содержит, мас.%: двуокись титана 4,21-7,32; полевой шпат 0,50-1,50; электрокорунд 0,21-0,71; плавиковый шпат...
Тип: Изобретение
Номер охранного документа: 0002387527
Дата охранного документа: 27.04.2010
20.05.2019
№219.017.5d58

Способ термической обработки полуфабрикатов из низкоуглеродистых ферритоперлитных сталей

Изобретение относится к технологии термической обработки поковок, предназначенных для изготовления деталей и узлов, работающих при низких температурах, например, контейнеров для перевозки и длительного хранения (более 50 лет) отработавшего ядерного топлива. Техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 0002373292
Дата охранного документа: 20.11.2009
30.05.2019
№219.017.6bda

Способ оксидирования титанового сплава для антифрикционной наплавки

Изобретение относится к сварочным материалам для специальных наплавок при изготовлении изделий из титановых сплавов. Способ включает микродуговое оксидирование МДО в электролите под напряжением, при этом в качестве электролита используют раствор фосфатов или силикатов, а процесс МДО ведут в два...
Тип: Изобретение
Номер охранного документа: 0002367728
Дата охранного документа: 20.09.2009
09.06.2019
№219.017.79a8

Суспензия для получения покрытия

Изобретение относится к области стекломатериалов для функциональных покрытий с необходимыми электрофизическими свойствами. Технический результат изобретения заключается в разработке состава суспензии для получения покрытий для снятия статических электрических зарядов, работающего в диапазоне...
Тип: Изобретение
Номер охранного документа: 0002399595
Дата охранного документа: 20.09.2010
Показаны записи 11-20 из 45.
20.06.2015
№216.013.56d9

Композиционный наноструктурированный порошок для нанесения покрытий

Изобретение относится к области порошковой металлургии, в частности к получению порошка для нанесения износо- и коррозионно-стойких покрытий с высокой адгезионной и когезионной прочностью методом холодного газодинамического напыления (ХГДН). Композиционный наноструктурированный порошок для...
Тип: Изобретение
Номер охранного документа: 0002553763
Дата охранного документа: 20.06.2015
10.09.2015
№216.013.777c

Установка для сварки трением с перемешиванием

Установка может быть использована при сварке трением прессованных или катаных тонкостенных полуфабрикатов неограниченной длины из алюминиевых сплавов. Сварочный инструмент закреплен на корпусе, имеющем привод его поступательного перемещения вдоль линии сварки по горизонтальной поверхности...
Тип: Изобретение
Номер охранного документа: 0002562177
Дата охранного документа: 10.09.2015
27.09.2015
№216.013.7f07

Способ двухступенчатого преобразования энергии ионизирующего излучения в электрическую энергию

Изобретение относится к способу преобразования энергии ионизирующего излучения в ультрафиолетовое излучение. В заявленном способе предусмотрено использование диссоциирующего газа и преобразование ультрафиолетового излучения в электрическую энергию с помощью полупроводникового алмаза. Источник...
Тип: Изобретение
Номер охранного документа: 0002564116
Дата охранного документа: 27.09.2015
20.11.2015
№216.013.91de

Способ преобразования энергии ионизирующего излучения в электрическую энергию

Изобретение может быть использовано в электронике, приборостроении и машиностроении при создании автономных устройств с большим сроком службы. Способ преобразования энергии ионизирующего излучения в электрическую энергию включает изготовление полупроводникового материала, состоящего из областей...
Тип: Изобретение
Номер охранного документа: 0002568958
Дата охранного документа: 20.11.2015
13.01.2017
№217.015.8896

Кокиль для литья лопастей корабельных гребных винтов из титановых сплавов

Изобретение относится к литейному производству, преимущественно к литью в кокиль крупногабаритных лопастей корабельных гребных винтов из титановых сплавов. Кокиль содержит рабочую полость 6, литниковую систему со стояком 3, прибылями 4, 5 и питателем 11. Кокиль выполнен с вертикальным разъемом,...
Тип: Изобретение
Номер охранного документа: 0002602314
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.a220

Способ центробежной отливки тонкостенных труб из жаропрочных сплавов

Изобретение относится к литейному производству и может быть использовано при отливке тонкостенных труб из сложнолегированного жаростойкого жаропрочного сплава 50Х32Н43В5С2Б2, в частности труб диаметром 0,076-0,159 м, толщиной стенки 0,008-0,014 м и длиной 3,0 м. На внутреннюю поверхность формы...
Тип: Изобретение
Номер охранного документа: 0002606824
Дата охранного документа: 10.01.2017
17.02.2018
№218.016.2a32

Способ производства листов из экономнолегированной стали с высокой хладостойкостью и свариваемостью для широкого применения, в том числе в арктических условиях

Изобретение относится к области металлургии, конкретнее к производству листового проката для использования при строительстве морских сооружений, транспортном и тяжелом машиностроении и для работы в арктических условиях. Техническим результатом изобретения является получение проката...
Тип: Изобретение
Номер охранного документа: 0002643030
Дата охранного документа: 29.01.2018
20.12.2018
№218.016.a96d

Способ производства листового проката с регулируемым пределом текучести из стали унифицированного химического состава

Изобретение относится к области производства высокопрочных сталей улучшенной свариваемости для применения в судостроении, строительстве морских сооружений, транспортном и тяжелом машиностроении и др. отраслях промышленности. Получение проката унифицированного химического состава в листах...
Тип: Изобретение
Номер охранного документа: 0002675441
Дата охранного документа: 19.12.2018
19.01.2019
№219.016.b1f5

Способ сварки трением с перемешиванием алюминиевых заготовок переменной толщины

Изобретение может быть использовано при изготовлении сварных конструкций из алюминиевых полуфабрикатов переменной толщины методом сварки трением с перемешиванием. В процессе сварки проводится пошаговый контроль температуры поверхности сварного шва позади сварочного инструмента. При фиксировании...
Тип: Изобретение
Номер охранного документа: 0002677559
Дата охранного документа: 17.01.2019
25.01.2019
№219.016.b41a

Способ получения керамоматричного покрытия на стали, работающего в высокотемпературных агрессивных средах

Изобретение относится к области материаловедения, в том числе к созданию защитных керамоматричных покрытий на поверхности стали, обладающих высокой коррозионной стойкостью в агрессивных средах при температурах контактного взаимодействия 400-600°С за счет изменения состава и структуры их...
Тип: Изобретение
Номер охранного документа: 0002678045
Дата охранного документа: 22.01.2019
+ добавить свой РИД