×
18.05.2019
219.017.5ad7

Результат интеллектуальной деятельности: СПОСОБ ОБЛУЧЕНИЯ МИНЕРАЛОВ

Вид РИД

Изобретение

№ охранного документа
0002431003
Дата охранного документа
10.10.2011
Аннотация: Изобретение относится преимущественно к радиационным методам обработки ювелирных минералов для повышения их ювелирной ценности. Для этого в способе облучения минералов в нейтронном потоке реактора в контейнере предложено в процессе облучения облучаемые минералы экранировать от тепловых и резонансных нейтронов, причем состав материала и плотность экрана рассчитывают так, чтобы удельная активность облученных минералов после окончания облучения и выдержки не превышала 10 Бк/г. В состав экрана вводят элементы, входящие в состав природных примесей облучаемых минералов, вызывающих захват нейтронов. Перед облучением может быть проведен анализ содержания природных примесей в облучаемых минералах методом нейтронного активационного анализа, из природных примесей облучаемых минералов выделяют только элементы, активируемые резонансными нейтронами. В качестве элементов экрана применяют тантал и марганец или скандий, и/или железо, или хром. В материале экрана используют хромоникелевую сталь, легированную материалами, выбранными из ряда тантал, марганец, скандий. Изобретение позволяет повысить защиту продукции (облученных минералов) от резонансных нейтронов, активирующих примеси в минералах. 4 з.п. ф-лы, 1 табл.

Изобретение относится преимущественно к радиационным методам обработки минералов с целью повышения их ювелирной ценности.

Известен способ обработки минералов и драгоценных камней с помощью ускоренных электронов с энергией от 3 до 45 МэВ с интегральной дозой от 1·1016 до 1·1018 электрон/см2 при температуре от 80°С до 350°С (DE, N 2910520, кл. С04В 41/00, 1982).

Известен способ изменения окраски минералов в реакторе действием нейтронного и сопутствующего ему гамма-излучения. Облучение производится быстрыми нейтронами с энергией не ниже 0,5 МэВ при интегральной дозе облучения 5·1018-1·1018 нейтрон/см2 и при интегральной дозе гамма-облучения 5·106-1·109 рентген при температуре не выше 300°С. В качестве фильтра тепловых нейтронов используется кадмиевая фольга (DE, N 2934944, кл. С04В 41/00, 1982).

Известен также способ облучения минералов в реакторе в потоке быстрых нейтронов с энергией не ниже 0,5 МэВ при интегральной дозе от 5·1015-1·1018 и интегральной дозе гамма-излучения 5·105-5·109 рентген. Тепловые нейтроны, присутствующие в спектре потока ядерного реактора, отфильтровывают с помощью кадмиевой фольги (NL, N 172467, кл. С30В 33/00, 1987).

Известен также способ облучения минералов нейтронным и гамма-излучением реактора (SU, N 601855, кл. В01J 19/08,1983). Способ заключается в том, что используют для оптимизации характеристик получаемого изделия быстрые нейтроны с энергией не менее 2 МэВ при интегральных потоках нейтронного излучения 5·1015-5·1018 нейтрон/см2 и интегральных дозах гамма-излучения 5·106-5·109 рентген. Тепловые нейтроны частично отфильтровывались с помощью кадмиевой фольги, окраска минералов, облученных таким способом, оказалась устойчивой к световому и тепловому воздействию.

Однако все описанные выше способы требует длительного высвечивания для устранения наведенной активности.

Наиболее близким к заявляемому является способ, позволяющий уменьшить наведенную активность образцов, обусловленную тепловыми и резонансными нейтронами, которые образуются в рабочем объеме за счет замедления быстрых нейтронов (RU, N 2104770, кл. В01J 19/08, 1998 - прототип). Сущность изобретения: тепловые нейтроны частично отфильтровываются с помощью кадмиевой фольги, которой оборачивают контейнер. Контейнер заполняется веществом или смесью веществ, поглощающих тепловые и резонансные нейтроны, например бор, кадмий, бор-индий, кадмий-тантал, кадмий-индий и т.д. Затем размещают в нем минералы, причем соотношение предлагаемых веществ в смеси и плотность заполнения ею контейнера рассчитывают из условия, чтобы в момент облучения в контейнере отношение потока быстрых нейтронов к потоку тепловых нейтронов было больше или равно 10.

Известен также аналогичный способ (RU, N 2341596, кл. В01J 19/08, 2007), который также позволяет уменьшить наведенную активность образцов, обусловленную тепловыми и резонансными нейтронами, образующимися за счет замедления быстрых нейтронов в рабочем объеме. Для этого в способе облучения минералов в нейтронном потоке реактора, когда тепловые нейтроны частично отфильтровываются с помощью кадмиевой фольги, предложено емкость (или контейнер), в которую помещены облучаемые минералы, заполнять веществом или смесью веществ, поглощающих тепловые и резонансные нейтроны, например бор-индий, кадмий-тантал, кадмий-индий, причем соотношение указанных веществ в смеси и плотность заполнения ею контейнера рассчитывают таким образом, что в момент облучения в контейнере должно быть соблюдено условие

где Фб.н. - поток быстрых нейтронов с энергией выше 1 МэВ; Фт.н. - поток тепловых нейтронов.

Поскольку материалы, как правило, содержат активируемые примеси и их наведенная активность пропорциональна потоку тепловых нейтронов, а для получения желаемой окраски минерала необходимо облучить их флюенсом быстрых нейтронов до 1018 н./см2, то, при характерном соотношении, в ядерном реакторе быстрых нейтронов к тепловым ≅1, минералы при таком облучении получат такой же флюенс тепловых нейтронов, что приводит к наведенной активности ≅1000 Бк/г, что недопустимо. Облучаемый контейнер с минералами имеет некоторый объем и его экранирование поглощающим тепловые нейтроны материалом, например, кадмием в качестве фильтра тепловых нейтронов (который используется в рассмотренных выше аналогах и прототипе), не обеспечивает: необходимое соотношение между быстрыми и тепловыми нейтронами ввиду генерации тепловых нейтронов внутри контейнера за счет замедления быстрых нейтронов.

Экспериментальным путем было установлено такое соотношение потока быстрых нейтронов к потоку тепловых нейтронов внутри контейнера в момент облучения, при котором осуществляется устранение различных дефектов в минералах, улучшение их окраски.

Недостатком данного решения является недостаточная защита продукции (облученных минералов) от резонансных нейтронов, активирующих примеси в минералах.

Принятые нормативы минимально значимой удельной активности (МЗУА) в соответствии с НРБ-99/2009 СанПиН 2.6.1.2523-09, в частности, для присутствующих в составе облученных топазов изотопов Та-182, Sc-46, Mn-54, Cr-51, Fe-59, составляют 10 Бк/г. При данных уровнях активности эффективная индивидуальная годовая доза облучения лиц из персонала и населения не превысит 10 мкЗв и в экстремальных случаях 1 мЗв, а коллективная эффективная доза 1 чел-Зв при любых условиях использования. Эквивалентная доза на кожу не превысит 50 мЗв/год. При этом в принятых нормах природные радионуклиды оценивались при их попадании в потребительские товары из техногенных источников (например, Ra-226, Po-210) или по их химической токсичности (для тория, урана и др.). Если присутствует несколько нуклидов, то сумма отношений активности к их нормированным значениям не должна превышать единицу.

Задача изобретения - создать способ облучения минералов в нейтронном потоке реактора в контейнере, при котором будет повышена защита продукции (облученных минералов) от резонансных нейтронов, активирующих примеси в минералах.

Поставленная задача решается тем, что: в способе облучения ювелирных минералов в нейтронном потоке реактора в контейнере в процессе облучения облучаемые минералы экранируют от тепловых и резонансных нейтронов, причем состав материала и плотность экрана рассчитывают так, чтобы удельная активность облученных минералов после окончания облучения и выдержки не превышала 10 Бк/г.

Кроме того:

- перед облучением проводят анализ содержания природных примесей в минералах, активируемых резонансными нейтронами, методом нейтронного активационного анализа;

- в состав материала экрана вводят элементы, входящие в состав природных примесей облучаемых минералов, вызывающих захват нейтронов;

- выполняют экран из материала, соответствующего природным примесям, активируемым резонансными нейтронами;

- выполняют экран из хромоникелевой стали, легированной танталом и/или марганцем и/или скандием.

Примером реализации изобретения служит способ облучения минералов в нейтронном потоке реактора в контейнере, описанный ниже.

Если состав минерала не известен, в отличие, например, от минералов искусственного происхождения, то перед облучением проводят анализ содержания природных примесей методом нейтронного активационного анализа и определяют расчетом уровень необходимой блокировки облучаемого материала от резонансных нейтронов, активирующих примеси в минералах, исходя из критерия не превышения удельной активности облученных минералов после окончания облучения и выдержки уровня 10 Бк/г.

В состав материала экрана контейнера, помещаемого в нейтронный поток реактора, целесообразно вводить элементы, входящие в состав природных примесей облучаемых минералов, вызывающих захват нейтронов любой энергии, поскольку все эти элементы при введении в состав экрана будут снижать активность минерала после облучения, Однако из экспериментов с кристаллами топаза выявлено, что наиболее опасными с точки зрения удельной активности являются примеси тантала, марганца, скандия, хрома и железа, активируемые надтепловыми (резонансными) нейтронами, что приводит к необходимости применения именно этих материалов в экранах контейнера, помещаемого в нейтронный поток реактора. Экран можно выполнять целиком из указанных выше материалов, но реально изготавливать экран из хромоникелевой стали, уже содержащей хром и железо, в этом случае достаточно дополнительно легировать материал экрана элементами из ряда тантал, марганец и скандий.

Для Та-181 резонансный интеграл захвата нейтронов с энергией свыше 0.5 эВ (эффективная граница кадмиевого среза) составляет 720·10-28 м2 при вкладе сечения, соответствующего закону 1/v, на уровне всего 9.2·10-28 м2 /Таблицы физических величин. Справочник. И.К.Кикоин. М., Атомиздат, 1991/. С учетом относительно высокого периода полураспада (114.43 сут), удельного содержания тантала в топазах различных месторождений на уровне 10-5%-10-6% после облучении топаза при флюенсе нейтронов (Е≥0.1 МэВ) на уровне 1017-1018 н/см2 удельная активность продукта только по изотопу Та-182 может составлять 1000 Бк/г и более. Меньший флюенс, как показали эксперименты, не приводит к необходимому результату по изменению ювелирного качества продукции.

При флюенсе 1018 н/см2 (Е≥0.1 МэВ) удельная активность, вызванная захватом быстрых нейтронов атомами Та-181, составит 1.67·1011 Бк/г. Таким образом, при концентрации Та-181 в топазе на уровне 10-8 активность топаза после облучения составит 1,36·103 Бк/г. Время выдержки продукта для выхода на МЗУА (10 Бк/г) при условии распада остальных радионуклидов, образовавшихся при облучении, составит около 3 лет, что с экономической точки зрения значительно снижает рентабельность данной технологии, приводит к снижению скорости оборота средств и утрате мотивации ювелирной промышленности.

Наличие в облученных топазах также и таких радионуклидов, как Sc-46, Mn-54, Cr-51, Fe-59, требует, в свою очередь, учета их активности в конечном продукте, поскольку данные изотопы имеют значимые периоды полураспада от 27.7 сут для Cr-51 до 312 сут для Mn-54.

В результате поглощения нейтронов ядрами чаще всего испускаются мгновенные гамма-лучи, поэтому такую ядерную реакцию называют радиационным захватом нейтронов и обозначают через (n, γ). Радиационный захват нейтронов приводит, как правило, к образованию радиоактивных ядер. Иначе говоря, увеличение числа нейтронов в ядре на единицу делает его нестабильным. Количество данного радиоактивного изотопа, образующегося в веществе при облучении нейтронами, прямо пропорционально количеству его стабильного предшественника. После облучения регистрируют гамма-излучение образцов, активированных нейтронами, в широком диапазоне энергий, вследствие чего получаемый гамма-спектр содержит информацию о вкладе различных химических элементов.

Поскольку время облучения намного больше периода полураспада (T1/2):

,

где σФNx - скорость образования радиоактивных ядер в пробе, Ф - плотность потока нейтронов (см-2 с-1), σ - сечение реакции (см2), Nx - количество стабильного изотопа данного элемента в облучаемом образце.

После облучения некоторое время затрачивается на транспортировку или выдержку для распада более короткоживущих продуктов ядерных реакций, мешающих анализу. В результате распада активность радионуклидов тоже уменьшается в соответствии с выражением:

,

где Авыд - активность нуклида после выдержки; tвыд - время между концом облучения и началом измерения активности.

Расчет не учитывает «выгорание» стабильных ядер Nx в образце при облучении, поскольку «выгорание» незначительно и заметно только для изотопов с большим сечением ядерных реакций и при более длительном облучении.

В дальнейшем приведены результаты для топаза, на примере которого, как наиболее характерного природного ювелирного минерала, рассмотрен эффект изменения окраски. Похожие результаты могут быть получены и для других ювелирных минералов, объединенных с топазом похожим составом химических соединений (топаз - Al2[SiO4](F,OH)2, цитрин, аметист, агат - SiO2, александрит - BeAl2O4, гелиодор - Be3Al2Si6O18 и др).

Экспериментально было установлено, что увеличение флюенса с 1017 до 5·1017 привело к изменению окраски исследуемых образцов топазов с прозрачной до голубой, что повысило ювелирную ценность минерала примерно в 2-4 раза. Дальнейшее увеличение флюенса (до 1018), хотя и повысило интенсивность окраски образцов, но одновременно увеличило их активность, что, соответственно, повысило и время необходимой выдержки для выхода на МЗУА. В этой связи образцы, помещенные в контейнер, получали в дальнейшем флюенс 6·1017. В силу различного содержания активируемых примесей в образцах сравнение проведено для выборки из 50 образцов. В таблице представлены наиболее характерные данные для двух групп из данной выборки. Приведена удельная активность изотопов в образцах, Бк/г, в числителе - после облучения, в знаменателе - после выдержки (150 суток)

В первом режиме не применялся предложенный способ снижения активности образцов за счет блокировки резонансных нейтронов, во втором режиме резонансные нейтроны блокировались применением экрана из танталовой фольги.

Как видно из данных таблицы, у образцов второго режима активность снижена примерно в 4-40 раз, что уменьшает требуемую выдержку до периода меньше 1 года, приемлемую для коммерческих целей.

Таблица
Номер образца Та-182 Sc-46 Mn-54 Cs-134
1 (1-й режим) 1887/783 29/8.7 -/- 12/10.5
2 (1-й режим) 1205/500 22/6.7 9.3/6.1 -/-
3 (1-й режим) 1000/414 17/5.0 -/- -/-
4 (1-й режим) 1432/594 23/6.9 10/7.3 269/235
5 (2-й режим) 241/100 36/10.7 2.3/1.7 4.0/3.5
6 (2-й режим) 58/24 48/14.2 3.0/2.2 -/-
7 (2-й режим) 43/18 г 25/7.6 8.6/62 -/-
8 (2-й режим) 77/32.1 -/- 8.4/6.1 -/-

Тем самым, показана эффективность предложенного способа, в котором, исходя из данных активационного анализа и расчетов, в материал экрана помимо материалов, эффективно экранирующих от тепловых нейтронов, вводят материалы, имеющие высокие сечения поглощения резонансных нейтронов при уровнях энергии нейтронов, активирующих примеси, имеющие относительно высокое содержание в облучаемом минерале (выше 10-8%) при значимых периодах полураспада образующихся из них при облучении изотопов (выше 24 ч).

Экспериментально в процессе облучения опытных партий минералов подбирают минимально необходимый флюенс нейтронов, обеспечивающий достижения заданного ювелирного качества при обеспечении допустимого уровня удельной активности продукта с использованием экрана согласно предложенному изобретению.

Источник поступления информации: Роспатент

Показаны записи 21-30 из 259.
20.08.2013
№216.012.6211

Способ получения радиоизотопа молибден-99

Заявленное изобретение относится к способу получения радиоизотопа молибден-99 путем облучения мишени, содержащей молибден или его соединения, в потоке нейтронов ядерно-физической установки. В заявленном способе в качестве мишени используют структурированный материал, состоящий из наночастиц...
Тип: Изобретение
Номер охранного документа: 0002490737
Дата охранного документа: 20.08.2013
10.10.2013
№216.012.733d

Способ модификации электрохимических катализаторов на углеродном носителе

Изобретение относится к области электрохимии и может быть использовано, например, при разработке и производстве катализаторов для электролизеров или топливных элементов с твердополимерным электролитом. Описан способ модификации электрохимических катализаторов на углеродном носителе,...
Тип: Изобретение
Номер охранного документа: 0002495158
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.749c

Способ получения композитного материала для электрода суперконденсатора

Изобретение относится к способу получения композитного материала для электрода суперконденсатора, включающему синтез электропроводящих полимеров или их замещенных производных в процессе окислительной полимеризации соответствующих мономеров на поверхности углеродных материалов. Экологически...
Тип: Изобретение
Номер охранного документа: 0002495509
Дата охранного документа: 10.10.2013
27.10.2013
№216.012.7a19

Способ предварительной обработки углеродного носителя электрохимического катализатора

Изобретение относится к области электрохимии и может быть использовано в качестве подготовительного этапа производства электрокатализаторов. Описан способ предварительной обработки углеродного носителя электрохимического катализатора, заключающийся в том, что обработку углеродного носителя...
Тип: Изобретение
Номер охранного документа: 0002496919
Дата охранного документа: 27.10.2013
10.11.2013
№216.012.7cb8

Способ плазмохимической обработки углеродного носителя электрохимического катализатора

Изобретение относится к способу плазмохимической обработки углеродного носителя электрохимического катализатора. Способ заключается в том, что обработку производят в вакуумной камере, снабженной устройством для возбуждения холодной плазмы, держателем углеродного порошка, выполненным с...
Тип: Изобретение
Номер охранного документа: 0002497601
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7d4b

Способ получения водорода

Изобретение относится к области химии. Для получения водорода проводят реакцию паровой каталитической конверсии углеродсодержащей жидкости с получением продуктов реакции, содержащих водород. Продукты реакции направляют на вход катодного пространства для электролиза в высокотемпературном...
Тип: Изобретение
Номер охранного документа: 0002497748
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7ff9

Способ получения радионуклида висмут-212

Изобретение относится к технологии получения радионуклидов для ядерной медицины, в частности для терапии онкологических заболеваний. В заявленном способе в раствор, содержащий радионуклид тория и его дочерние продукты распада, добавляют ионообменную смолу, после чего раствор декантируют, а...
Тип: Изобретение
Номер охранного документа: 0002498434
Дата охранного документа: 10.11.2013
20.11.2013
№216.012.8363

Способ получения радионуклида торий-228

Изобретение относится к реакторной технологии получения радионуклидов для ядерной медицины. В заявленном способе получения радионуклида Th, включающем облучение мишени, в качестве материала мишени берут природный изотоп тория Th, мишень размещают в линейный ускоритель электронов и облучают...
Тип: Изобретение
Номер охранного документа: 0002499311
Дата охранного документа: 20.11.2013
27.11.2013
№216.012.85eb

Способ генерации энергии в гибридной установке

Изобретение относится к способам преобразования энергии жидкого или газообразного топлива в электрическую и предназначено для гибридных транспортных средств. Способ заключается в том, что электрическую энергию аккумулируют в выбранные моменты времени в аккумуляторной батарее. Осуществляют...
Тип: Изобретение
Номер охранного документа: 0002499961
Дата охранного документа: 27.11.2013
10.12.2013
№216.012.88c3

Одностадийный способ получения нетканого материала на основе полилактида и нетканый материал

Изобретение относится к одностадийному способу получения нетканого материала и нетканому материалу, полученному таким способом. Способ осуществляют методом электроформования из расплава на основе полилактида. Проводят каталитический синтез (со)полилактида в реакционной зоне экструдера. В...
Тип: Изобретение
Номер охранного документа: 0002500693
Дата охранного документа: 10.12.2013
Показаны записи 21-30 из 35.
13.01.2017
№217.015.80eb

Способ получения водорода из биомассы

Изобретение относится к способу получения водорода из биомассы и может быть использовано для получения водородсодержащих продуктов путем получения водорода из продуктов пиролиза растительного биотоплива, а также в системах аккумулирования и транспорта энергии, в системах производства топлива...
Тип: Изобретение
Номер охранного документа: 0002602150
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8296

Способ эксплуатации ядерного реактора в топливном цикле с расширенным воспроизводством делящихся изотопов

Изобретение относится к способам эксплуатации ядерных реакторов, предназначенных для наработки делящихся химических элементов. Способ эксплуатации ядерного реактора в топливном цикле с расширенным воспроизводством делящихся изотопов включает первоначальную загрузку активной зоны топливными...
Тип: Изобретение
Номер охранного документа: 0002601558
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.894a

Способ оттаивания мерзлых горных пород и грунтов

Изобретение относится к химической, горнодобывающей промышленности, в частности к искусственному оттаиванию мерзлых пород в горном деле и строительстве, и может быть использовано при разработке россыпных месторождений, в том числе с применением внешних энергоисточников, в особенности ядерных....
Тип: Изобретение
Номер охранного документа: 0002602460
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8a2a

Способ аккумулирования водорода

Изобретение относится к способу аккумулирования водорода и может быть использовано в химической промышленности для переработки углеводородных газов, а также в системах транспорта и водородных технологий. Нагретый поток, содержащий водяной пар и низшие алканы, имеющие от одного до четырех атомов...
Тип: Изобретение
Номер охранного документа: 0002604228
Дата охранного документа: 10.12.2016
26.08.2017
№217.015.e428

Способ преобразования энергии

Изобретение относится преимущественно к способам преобразования энергии газообразного топлива (природный или синтез-газ, водород) в механическую. Способ преобразования энергии предусматривает подачу в камеру сгорания сжатого воздуха и парометановодородной смеси, расширение продуктов ее сгорания...
Тип: Изобретение
Номер охранного документа: 0002626291
Дата охранного документа: 25.07.2017
15.12.2018
№218.016.a7fe

Аппарат и способ получения водородсодержащего газа

Изобретение относится к аппарату и способу получения водородсодержащего газа. Способ включает в себя подачу парометановой смеси в межтрубное пространство коаксиального смесителя, установленного на верхнем корпусе реактора. Далее подвод паровоздушной смеси в центральную трубу, а также подвод...
Тип: Изобретение
Номер охранного документа: 0002674971
Дата охранного документа: 13.12.2018
29.03.2019
№219.016.f520

Способ преобразования энергии

Способ преобразования тепловой энергии в механическую, в котором в замкнутом цикле с помощью тепловой энергии проводят нагрев и испарение рабочего тела, которое подают затем на расширение в турбину. После турбины рабочее тело сорбируют в сорбенте, конденсируют и нагнетают на повторный нагрев и...
Тип: Изобретение
Номер охранного документа: 0002425230
Дата охранного документа: 27.07.2011
18.05.2019
№219.017.5a84

Способ получения метановодородной смеси

Изобретение относится к области химии и может быть использовано для получения метановодородной смеси, содержащей H и СН, для производства водорода, спиртов, аммиака, диметилового эфира, этилена, для процессов Фишера-Тропша, для переработки углеводородных газов, а также в хемотермических...
Тип: Изобретение
Номер охранного документа: 0002438969
Дата охранного документа: 10.01.2012
18.05.2019
№219.017.5a88

Способ и устройство локализации расплава активной зоны ядерного реактора

Изобретение относится к системам локализации аварии на АЭС для улавливания компонентов активной зоны ядерного реактора и их обломков из разрушенного корпуса. Способ локализации расплава включает в себя улавливание, выдерживание и охлаждение расплава в резервуаре, расположенном под реактором....
Тип: Изобретение
Номер охранного документа: 0002432628
Дата охранного документа: 27.10.2011
18.05.2019
№219.017.5add

Способ хемотермической передачи тепловой энергии

Изобретение относится к способам передачи энергии, преимущественно от ядерных энергетических установок и при участии хемотермических систем, например, конверсии углеродсодержащего вещества. В предложенном способе хемотермической передачи тепловой энергии осуществляют эндотермическую реакцию...
Тип: Изобретение
Номер охранного документа: 0002431208
Дата охранного документа: 10.10.2011
+ добавить свой РИД